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RESUMEN

Los métodos implicitos de resolucién numérica de las ecuaciones hiperbélicas casilineales
de Saint-Venant de la hidrodindmica utilizados para analizar tramos de rios o canales
unidimensionales en régimen impermanente sobre fondo fijo pueden reducirse en cada paso de
tiempo de cdlculo (bajo la mayoria de los esquemas en diferencias finitas en uso) a la resolucién
de un sistema lineal Az = b, donde A es una matriz banda. En este trabajo el andlisis de
tramos unidimensionales se generaliza a redes fluviales con estructura arborescente (tramos con
afluentes, afluentes de afluentes, etc.) manteniendo la estructura de la matriz banda, con el
consiguiente beneficio en tiempo y memoria de computadora.

SUMMARY

The implicit methods for the numerical solution of the quasilinear hyperbolic equations of
hydrodynamics (Saint-Venant equations) used to analyse reaches of one-dimensional rivers or
channels over fixed beds (unsteady case) may be reduced, for each time step (under most finite
differences schemes currently applied), to the solution of a linear system Az = b, where Ais a
band matrix. In this paper is described the generalization of the analysis of one-dimensional
reaches to fluvial networks with an arborescent structure (reaches with tributaries, tributaries of
tributaries, etc.) maintaining the band matrix structure with the obvious benefits in computer
run time and hard core.

INTRODUCCION

El escurrimiento impermanente unidimensional de un fluido con superficie libre a lo
largo de un canal o cauce fluvial no prismatico de seccién transversal de forma arbitraria
sobre fondo fijo se describe aproximadamente mediante el sistema de ecuaciones
diferenciales hiperbdlicas casilineales de Saint-Venant:
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Si el sistema diferencial (1), (2) fuera lineal, bajo ciertas condiciones bastante
generales se puede asegurar la existencia de una solucién del problema (1), (2), (5)
de Cauchy, continuamente dependiente de la solucidén inicial, y la existencia de una
solucién del problema (1), (2), (5), (6) mixto, dando tantas condiciones de contorno en
la frontera z = 2z, cuantos autovalores positivos tenga la matriz A y tantas condiciones
de contorno en la frontera 2 = 2, cuantos autovalores negativos tenga la matriz A (ver,
por ejemplo, Godunov®). Dado que el sistema (1), (2) no es lineal, la existencia de una
solucién al problema de Cauchy o mixto no puede asegurarse a priori; la solucién debera
ser una solucién generalizada, con discontinuidades, valiendo también la condicién sobre
el signo de los autovalores (ver Rozdestvenskii y Janenko*). El hecho de que la solucién
tiene discontinuidades no es en general mencionado, pues normalmente los métodos
numéricos mas populares ignoran las discontinuidades, y éstas no son relevantes para
las aproximaciones usualmente buscadas en modelizacién fluvial (con excepcién, por
supuesto, de modelizaciones de salto hidriulico y rotura brusca de presas, que usan
métodos especiales).

La condicién sobre el signo de los autovalores implica que si

Q g5

S B

los dos autovalores son positivos, y es necesario dar dos condiciones de contorno “aguas
arriba” en z = z, (suponemos entonces @ > 0); si

Q g5

S B

sera necesario dar una condicién de contorno aguas arriba y otra “aguas abajo” en
z = z,. Ambos casos indican, respectivamente, un régimen del rio supercritico o
subcritico. A los efectos préacticos, es usual que F;(Q,Z) = Q o F;(Q, Z) = Z; por otra
parte, este trabajo analiza exclusivamente el caso subcritico.

Existen diversos métodos para resolver numéricamente este problema en una regiéon
acotada Q = [zy,2;] X [t,,T]. Una resefia de métodos en diferencias finitas y de
caracteristicas aplicables a este problema puede verse en Liggett y Cunge®.

Sea ahora una grilla en la regién Q, = [0, 2] x [0, T], de paso espacial Az y de paso
temporal At, o sea la grilla incluye los puntos de discretizacién (z;,t"), con z; = Az
y t* = nAt. Una aproximacién linealizada en diferencias finitas al sistema (1), (2),
(3) o (4) con dos niveles temporales (ver, por ejemplo, RJchtmyer y Morton®) puede
escribirse vectorialmente como. :

Bn+1wn+1 - ann+cn
donde BM = BM(At,Az) y Brtl = Brtl(At, Az) indican operadores lineales en
d1ferenc1a.s finitas que reemplaza.n a las derivadas.
w™*! indica el vector de valores desconocidos, por ejemplo

{Zpt,Qrt, Zzrt, ... .. ,Qrtl Z7 Qi)

L—-1Y“L-1)
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(si las condiciones de contorno son ¢, (t) = Q(0,t) y ¢,(t) = Z(z.,)). w™ indica el vector
de valores conocidos en el tiempo anterior {Z}, Q7, ..., Z7_,, @7} y c™ es un vector
conocido obtenido a partir de las condiciones de contorno y del término de resistencia.
La solucién se obtiene secuencialmente a partir de la condicién inicial conocida. Si
B?t* = [ (matriz unidad) para todos los intervalos de tiempo t*, se tiene un esquema
numérico explicito; de lo contrario, se tiene un esquema implicito, y en cada intervalo
de tiempo es necesario resolver un sistema lineal

Bptiw™ = 4 (7)

con d" conocido. Dado que usualmente los esquemas implicitos garantizan estabilidad
numérica usando intervalos temporales At significativamente mayores que los esquemas
explicitos (en relacién con un mismo Az) son preferidos a éstos pese a que requieren
programas computacionales mas complicados.

Usualmente, cuando se analizan tramos unidimensionales de rios, los esquemas
numéricos implicitos para resolver (7) conducen a una matriz B}** en forma de matriz
banda, donde el ancho de la banda depende del mimero de puntos adyacentes que se
toman para la discretizacién numérica. Esto permite resolver el sistema (7) en cada
paso de tiempo usando un algoritmo de resolucién de sistemas para matrices banda,
con el consiguiente ahorro en tiempo de computadora y memoria central, dado que para
matrices banda tanto la memoria necesaria como el nimero de operaciones aumentan
linealmente con el niimero de puntos de discretizacién sobre el eje # con una constante de
proporcionalidad dependiente del ancho de la banda. Una descripcién amplia y general
de algoritmos numéricos para resolver sistemas de ecuaciones con matrices banda puede
verse en Rosenberg’.

Mediante métodos numeéricos que discretizan las ecuaciones de Saint-Venant usando
propiedades de matrices banda se han podido modelizar matematicamente en forma
precisa y eficiente numerosos tramos de rios y canales naturales. Es importante
analizar, por consiguiente, si la estructura de matriz banda se mantiene al generalizar
la modelizacién a redes fluviales (unidimensionales) mas complejas, como rios con
afluentes, deltas, etc. [En este trabajo se muestra cémo se puede mantener el
esquema de matriz bidiagonal, de rdpida resolucién, para redes fluviales con estructura
arborescente, y se indican resultados numéricos obtenidos en modelizaciones realizadas
con el esquema propuesto.

MODELO DE DESEMBOCADURA DE AFLUENTE

Para generalizar el modelo hidrodindmico descripto por las ecuaciones (1), (2),
con condiciones iniciales (5} y condiciones de contorno (6), a cuencas fluviales, o sea
a redes fluviales con estructura arborescente, es necesario analizar las ecuaciones que
reflejan la modelizacién de la confluencia de dos tramos fluviales. Stoker® modelizé la
confluencia de dos tramos en un punto a partir del cual continia uno solo dividiendo
dicha confluencia en tres secciones transversales: dos aguas arriba de la confluencia y
una aguas abajo (ver Figura 3). Las ecuaciones de compatibilidad de Stoker son la
ecuacién de conservacién de la masa
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Qi + Q; = Q& (8)

y las ecuaciones que relacionan las cotas en las secciones transversales

Zi = Z; = I (9)

Figura 3. Confluencia de dos cauces fluviales.

Los puntos i, j y k representan los extremos aguas abajo de los tramos que finalizan
en la confluencia y el extremo aguas arriba del tramo resultante, respectivamente. El
mismo analisis vale para una bifurcacién, cambiando el signo de los caudales.

La condicién de compatibilidad de Stoker (8) es obvia; la condicién (9) es una
aproximacion a las condiciones mas precisas

(U; + U).(U; — U)
(29)

(U; + Us)-(U; — U)
(29)

donde U, = %f, U; = %f, U; = %— indican las velocidades medias del escurrimiento
en las secciones transversales k, 7, j, respectivamente. Estas condiciones se deducen
directamente de la ecuacién de conservacién de la cantidad de movimiento (1), como
puede verse en Li et al®. Usualmente los términos de la derecha en (10) son
despreciables, y se obtienen asi las condiciones de compatibilidad de Stoker (9).

El propio Stoker propuso en la referencia citada, un esquema explicito de resolucién
del modelo, que aplicé a la desembocadura del rio Ohio en el Mississipi. Posteriormente,
se usaron otros esquemas para modelizar, con las ecuaciones de compatibilidad de
Stoker, sistemas fluviales con puntos de afluencia y efluencia, entre los cuales figuran
no solamente modelos de cuenca sino también sistemas deltaicos cerrados. Asi,

Zr—7Z; =
(10)

Zy-Z; =
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Quinn y Wylie'® y Fread' consideraron el esquema de un rio principal con un
unico afluente —el esquema Y simple— usando un algoritmo de Newton-Raphson
para obtener iterativamente la cota Z y el caudal Q en el punto de confluencia.
Gradowczyk y Jacovkis'? modelizaron una red fluvial deltaica compleja (el delta del rio
Parand) resolviendo el sistema lineal resultante por un método de Gauss con algunas
simplificaciones. Wood, Harley y Perkins'® consideraron una matriz de coeficientes
externos para los bordes y las confluencias, y modelizaron el rio James en Estados
Unidos, el estuario de Puerto Cork, en Irlanda, y la cuenca del rio Bayamén en Puerto
Rico. Joliffe!* propuso una adaptacién del método generalizado de Newton-Raphson.

En todos los casos mencionados parte del problema numeérico consiste en resolver
un sistema lineal donde la matriz es rala pero no banda. Por consiguiente, resulta muy
deseable, por razones no solamente de tiempo y memoria de computadora sino también
de programacién, poder usar un esquema directo de solucién de sistemas lineales con
matriz banda angosta. Se verd a continuacién que esto se puede hacer para estructuras
fluviales arborescentes.

ALGORITMO DE PREPARACION DE MATRIZ BANDA

Sea un esquema en diferencias finitas implicito tal que en la capa t"*! intervengan
en cada ecuacién en diferencias dos puntos contiguos z;, ;4, separadas por un intervalo
espacial Az;, es decir, que cada par de ecuaciones discretizadas sea de la forma

AuQs + AnZ; + AuQiy, + AuZiy, = A (11.%)

BiiQ;i + B:iZ; + BsiQiyy + ByiZiy, = By (12.4)

donde (11.2) y (12.¢) indican una discretizacién de las dos ecuaciones (1), (2), donde
se ha suprimido el superindice n + 1 de las incégnitas Q?“H y Z?‘H. Los Ari y By,
1 < k < 5, son coeficientes deducidos segin la discretizacién empleada.

Es facil observar que para tramos unidimensinales, en que simplemente se tiene
el par de ecuaciones (11.7), (12.7) para 0 < ¢ < L (con un término menos —pues ya
es conocido— en el miembro de la izquierda para (11.0} y (12.0) y para (11.L - 1) y
(12.L—1) ) queda naturalmente planteada una matriz banda. Interesa ver si, ahadiendo
las ecuaciones de compatibilidad (8}, (9), se puede mantener la estructura de matriz
banda. Para ello se incluyen los tres puntos en que se divide cada confluencia (ver
Figura 3) como puntos de discretizacién de la grilla. La numeracién de los puntos es la
siguiente: los nodos de un tramo en el cual desemboca otro tienen siempre numeracién
consecutiva y posterior a la del tramo afluente, como se indica en la Figura 4. Es
decir, primero se numeran los afluentes, después los rios en los cuales desembocan estos
afluentes y asi sucesivamente,

Tomemos ahora un intervalo genérico de discretizacién (¢,%+ 1). Si se resta (12.7)
multiplicado por %—ﬁ: de (11.¢) se obtiene
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1"

Figura 4. Numeracién de nodos.

CiuiQ; + CuZi + CyiQiya = Cy (13.4)
Restando (13.7) multiplicada por gi-f de (12.7) queda

DliZi + D3iQits + DisiZiyy = Dy (14.5)

Sea ahora un traxno inicial (z;, ;4,) donde en z; (extremo aguas arriba) se
prescribe la condicién de contorno:

a) Condici6én de contorno dada aguas arriba del tramo: @; = dato
En este caso, dividiendo convenientemente se obtiene:

Zi - Eu’Qi+1 = E,; (15'i)
donde

_Csi
E,; =
' Czi

(C4i - Cu’Qi)
By = A

Czi

Restando (15.¢) mutiplicada por D,; de (14.7) queda, dividiendo convenientemente

Qi‘+1 “'FliZi-H = in (16.’i)

Restando (16.¢) multiplicada por C,;4, de (13. + 1) queda, dividiendo
convenientemente

Zi+1 - El,i+1Qi+2 = Ez,i+1 (15-i+1)

con lo cual se forman iterativamente las ecuaciones (15.7) y (16.5)
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ZJ' - Elej+1 = Ezj (15-j)

Qitr — FjZjp, = Fyj (16.5)

esta tltima restando (15.5) multiplicada por D,; de (14.j) y dividiendo
convenientemente. Este par de ecuaciones se desarrolla para i < j < n, donde n
indica punto de desembocadura del tramo en otro tramo o punto extremo aguas abajo
del canal principal.

b) Condicién de contorno dada aguas arriba del tramo: Z; = dato
En este caso se obtiene

Qi - Eu’Qi+1 = Ez.’

Qi-{-l - inZi+x = in

donde
~Cy
E; = ==
' Cli
(Cn'—CziZi)
Ey = —&— —xn%)
: Cli
_Dsi
Fi = D..
L (D4i"D1£Zi)
F; Da

y a partir de alli se procede anidlogamente a como se procedié en a) paral < j < n.

¢) Desembocadura de afluente

Sea m — 1 el punto de discretizacién del tramo principal “inmediatamente” aguas
arriba de la desembocadura, m el punto “inmediatamente” aguas abajo y [ el punto
extremo correspondiente a la desembocadura del del tramo afluente.

Se tiene (ver Figura 5)

Q_l - Fl,l—1 Z = Fz,l—l (16.1 -—'1)
Qm-1 — Fl,m—2Zm—1 = Fz,m—z (16m - 2)
O sea (da’do que Zyn =21 = Zm—1 ¥ Qm-1 + Q1 = Qm)

Qm_(F1,1—1 + Fl,m—2)Zm = F2,1—1 + F2,m.-—2
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Figura 5.

con lo cual queda

siendo

Fl,m.—l = F1,1—1 + Fl,m—2

Fz,m-l = F2,1_1 + Fz,m-z
que restando de (13.m) (multiplicada por C,,,) da, dividiendo convenientemente

Zm - ElQO+l = 2m (15.m)

y asi se sigue planteando las ecuaciones. Sila numeracién de los puntos de discretizacién
de los afluentes es siempre anterior a la de los cauces en los cuales desembocan, se
observa que si k es el punto extremo aguas abajo del esquema arborescente (o sea el
dltimo punto en la numeracién adoptada), se tienen las siguientes alternativas:

d) Condicién de contorno dada aguas abajo: Qi = dato

Entonces Zi = Qx—Frk-1)

- Fly
e) Condicién de contorno dada aguas abajo: Z, = dato
Entonces Qr = Fopy + Fii1 2

El algoritmo de resolucién del sistema lineal es entonces el siguiente: conocidos los
valores de Z} y Q en el extremo aguas abajo, se retrocede, calculando las incdgnitas
por medio de las ecuaciones (15), (16) hasta llegar a un punto m con desembocadura de
afluente. En este caso, al tener Z,, se obtiene Z,,_, = Z,, y @m—, usando (16.m—2) y se
sigue retrocediendo hasta llegar a alguna otra desembocadura de afluente (en cuyo caso
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se procede de igual modo) o al extremo aguas. arriba. Se sigue retrocediendo entonces
con los afluentes, a partir de que se conoce la cota en los puntos de desembocadura, y
se repite el procedimiento con los afluentes de afluentes, etc.

Obsérvese que si se trata de un tramo tnico sin afluentes el esquema
presentado es simplemente el método del “barrido doble” para resolver una matriz
previamente tridiagonalizada, bien conocido en la literatura (ver por ejemplo Gelfand
y Lokutsievsky'). El algoritmo presentado adecua el método del barrido doble a la
estructura arborescente.

El esquema propuesto permite con51derar sin dificultades condiciones de contorno
interiores, como inyecciones laterales de caudal, o condiciones de contorno dadas por
relaciones funcionales entre Z y @, como ya se ha hecho para tramos unidimensionales
(ver, por ejemplo, Liggett y Cunge®). Cabe observar que las condiciones iniciales deben
respetar las ecuaciones de Stoker de compatibilidad (8), (9), para evitar inconsistencias.

REDES FLUVIALES COMPLEJAS

Cuando se tiene un rio con un punto de efluencia, es decir, un cauce que se ramifica
en dos (o sea el escurrimiento del agua es en sentido contrario al antes descripto) y luego
se subramifica, se puede aplicar el algoritmo anterior con una numeracién de los puntos
de discretizacion en sentido contrario a la antes indicada (pues esto equivale a considerar
una estructura de afluentes con caudales negativos). Pero si la red fluvial considerada
tiene bifurcaciones que se cierran, o sea ramas que son efluentes de un cauce y afluente
del mismo (representando, por ejemplo, islas en medio de un cauce, como indica la
Figura 6) o de algin otro tramo, no se puede usar el algoritmo anterior: es necesario
inevitablemente encontrar un procedimiento para plantear las ecuaciones (15) y (16) a
partir de la bifurcacién en las dos ramas. Pero de las ecuaciones (15.n — 2), (16.n — 2)
(13.n), (14.n), (13.5), (14. j) no se puede obtener, para seguir la iteracién, una ecuacién

Zn — Eann+1 = E;, o
Qn - Fl,u—xzn = F2,n—l

eliminando @, y seguir asi a lo largo de la rama bifurcada.

El sistema lineal discretizado (11), (12), con las ecuaciones de compatibilidad (8),
(9), origina en el caso de redes fluviales complejas un sistema lineal a resolver dado
por la ecuacién (7), donde en este caso la matriz B*! es una matriz rala no banda
(1a ubicacién de los elementos no nulos de la misma depende de la topologia de la red
fluvial considerada. Cuando se intenta modelizar un delta como el del rio Paran4, por
ejemplo, esa topologia puede ser extremadamente complicada). Para matrices ralas
suele sugerirse reemplazar los métodos directos de solucién de los correspondientes
problemas lineales por métodos iterativos, tipo Jacobi o Gauss-Seidel, que tienen la
ventaja de no destruir la ralidad de la matriz (los elementos no nulos son los mismos
en cada iteracién y su ubicacién no cambia en cada paso de tiempo de cdlculo) y que
permiten utilizar como aproximacién inicial en el instante t"** los valores obtenidos
en el instante t". Desgraciadamente estos métodos no convergen necesariamente
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Figura 6. Red fluvial deltaica simplificada.

(experimentos realizados por este autor en 1972 para la modelizacién del delta del
rio Parana usando el esquema de Preissmann descripto en Liggett y Cunge® fracasaron
invariablemente por diverger el método iterativo). Para dicha modelizacion se usé en
la inversién de la matriz, finalmente, un método de Gauss ad-hoc mucho mas lento que
los esquemas de matriz banda (ver Gradowczyk y Jacovkis'?) con el que se obtuvieron
resultados plenamente satisfactorios.

COMPARACION CON RESULTADOS ANALITICOS

Antes de la implementacién computacional completa del método utilizado se
efectué una validacién del esquema aplicindolo a un sistema diferencial hiperbélico
simplificado clésico, y comparando los resultados numéricos obtenidos con los resultados
analiticos obtenidos explicitamente a partir de condiciones iniciales y de contorno dadas.
El esquema simplificado utilizado es el tradicional sistema de primer orden hiperbélico
lineal homogéneo con coeficientes constantes

ou, O _
ot 0z
(17)
oh o _
at 0z
con condiciones de compatibilidad
hi=h; =h Ui +uj; = U (18)

en una confluencia (Z, j, k) como la de la Figura 3. Si se supone, con las simplificaciones
habituales, un canal con seccién transversal rectangular de ancho unitario constante,
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tanto en los afluentes como a partir de la confluencia, éstas son las condiciones obtenidas
a partir de las de Stoker. ‘

Sea ahora el esquema arborescente (17), (18) correspondiente a la Figura 7,
discretizado con la numeracién alli indicada. La ubicacién de los puntos de
discretizacién segun la coordenada espacial, o progresiva, es la dada en la Tabla L
Las condiciones iniciales son:

En los tramos 1-4 y 13-19:

u(z,0) = 10 + cosz

(19)
h(z,0) = 6 + senz

En los tramos 5-8 y 9-12:

u(z,0) = 5 + 0.5cosz
(20)
h(z,0) = 6 + 05senz

En el tramo 20-35:

u(z,0) = 20 + 2cosz
(21)
h(z,0) = 6 + 2senz

Las condiciones de contorno son:

u(z,,t) = 10
u(zs,t) = 5
(o t) = 5 (22)

h(zy,t) = 6 + 2(cost + sent)

La solucién analitica del sistema diferencial (17), (18), con condiciones iniciales
(19), (20), (21) y condiciones de contorno (22} es:

En los tramos 1-4 y 13-19:

u(z,t) = 10 + (cost— sent)cosz

h(z,t) = 6 + (cost+ sent)senz

En los tramos 5-8 y 9-12:
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Au(z,t) = 5 + 0.5(cost — sen t)cosz
h(z,t) = 6 + 0.5(cost+ sent) sen z

En el tramo 20-35:

u(z,t) = 20 + 2(cost — sen t)cosz

h(z,t)

6 + 2(cost+ sent)sen z

Esta solucién analitica se comparé con la solucién obtenida aplicando el algoritmo
antes desarrollado al esquema numérico de Preissmann (ver Liggett y Cunge®,donde
estd explicado en forma muy detallada). En esencia la discretizacién de Preissmann
para una funcién genérica f(z,t) y sus derivadas es la siguiente:

(1-9)
2

6
e 4 )+ S5 + )

af 1 n+1 n+1 n n
E ~ 2At(f"++‘ + £ o i1 b )
Of 8 ot i1 (1-6) . n
oz ~ Az(fi+1 - fi ) + Az (.fi+1 + fs)

Aplicado al sistema diferencial hiperbélico (17) se prueba (Cunge'®) que debe ser
6 > 1/2 para que el método sea estable. La aproximacién es de primer orden para
6 > 1/2y de segundo orden para § = 1/2, pero en este caso pueden aparecer oscilaciones
parasitas. Experimentalmente se ha comprobado que 6 > 1/2 garantiza en general la
estabilidad de las ecuaciones casilineales de Saint-Venant {a veces es necesario tomar
“coeficientes de implicitud” § mayor que 1/2, por ejemplo 2/3 o mayor). Pese a ser
de primer orden, es tal vez el esquema en diferencias finitas implicito mas usado en
hidraulica fluvial para escurrimientos subcriticos, entre otros motivos debido a que la
precisién de las series de datos hidrométricos suele ser discutible (en particular, en
paises como Argentina con registros precarios y discontinuos) por lo cual en muchos
casos no vale la pena el esfuerzo de implementar esquemas mads sofisticados cuando los
datos estin ya sujetos a marcados errores de medicién.

El algoritmo aqui propuesto, con el método de Preissmann, se programé en
PASCAL en una computadora personal; los resultados obtenidos para distintas corridas
demuestran una buena aproximacién a los resultados analiticos, similar a la obtenida
para tramos unidimensionales (ver, por ejemplo, Cunge'®).

En las Figuras 8, 9 y 10 (comparacién de u analiticos y calculados para los
puntos de discretizacién 6, 15 y 34, respectivamente), se pueden ver los resultados
obtenidos. Se usé § = 0.55. En particular, el método de Preissmann aplicado a tramos
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Punto Coordenada espacial
1 311/2
2 510/3
3 1111/6
4 211
5 /2
6 211/3
7 511/6
8 II
9 /2

10 211 /3
11 5I0/6
12 I

13 I

14 7I/6
15 411/3
16 9II/6
17 51/3
18 1111/6
19 211

20 211

21 1311/6
22 71/3
23 1511/6
24 811/3
25 1711/6
26 31

27 1911/6
28 1011/3
29 71/2
30 1111/3
31 2311/6
32 411

33 2511/6
34 1311/3
35 9II/2

TABLA I. Coordenadas de los puntos de discretizacién del modelo simplificado.

unidimensionales con § = 1/2 y At = Az debe dar resultados exactamente iguales
(para la precisién de la representacién digital de los numeros reales) a los resultados
analiticos, lo cual se dio también en nuestro ejemplo de la Figura 7 y discretizacién
de la Tabla I. Se tomé At = Az = %. En la Tabla II se indican los resultados para
distintos punto de discretizacién, que coinciden exactamente hasta el centésimo.
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Figura 7. Red de comparacién con solucién tedrica.

h,u
h teorico
6 _ 4
= =3
\\
h calculado
k-— u teorico
5 [~
u calculado
4

o 1 2 3 4 5 6 7 8 9 o t

Figura 8. Comparacién de h y u en el nodo 6.
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h,u
1

N . N u teorico
N P N
1;/ AN ’ \\

10 7 X 7 7’ \'
7,
7 u calculado

! h teorico

// \ //R h calculado
/

(o] l 2 3 4 5 6 7 8 9 10 t

Figura 9. Comparacién de h y u en el nodo 15.
- IMPLEMENTACION COMPUTACIONAL Y APLICACIONES

Sobre la base del analisis antes desarrollado se programé un modelo computacional
usando el esquema numérico implicito de Preissmann para las ecuaciones de Saint-
Venant completas. El modelo est4 implementado en dos versiones, una versién en
PASCAL, para computadora personal, con la cual se hicieron pruebas numéricas, que
se detallan a continuacién, y una versién en FORTRAN IV, en modalidad “batch”,
operativo y en produccién para modelizaciones complejas de casos reales, que incluye
programas auxiliares para optimizar el manejo de datos (4reas mojadas, coeficientes
de conduccién, condiciones iniciales, de contorno, y de comparacién) y el ajuste y
validacién con series histéricas.

La versién en PASCAL se usé para validar el modelo mediante una prueba de
consistencia y experimentos, algunos de los cuales se indican a continuacién. El modelo
usado es el de la Figura 11, con la discretizacién all4 indicada. Los datos del modelo
se indican en la Tabla III. Las secciones transversales son trapezoidales, y se indican
los valores de anchos, 4reas y coeficientes de conduccién para la cota de fondo y para
una cota de 10 m por encima de la cota de fondo. Citamos los siguientes experimentos
realizados:

a) Consistencia del algoritmo: se realizaron dos corridas de.computadora. Las
condiciones iniciales de ambas fueron las indicadas en la Tabla IV.

En la primera corrida se tomé el caudal como condicién de contorno aguas arriba
y cota como condicién de contorno aguas abajo. En la segunda corrida, las cotas
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\ \?h teorico
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Figura 10. Comparacién de h y u en el nodo 34.

obtenidas aguas arriba y los caudales obtenidos aguas abajo en la primera corrida se
tomaron como condiciones de contorno. Los resultados obtenidos en las dos corridas
fueron coincidentes, lo cual garantiza la consistencia de los mismos. Las condiciones de
contorno corresponden a una estabilizacién, segin lo que se indica en la Tabla V. Se
us6 At = dos horas, 8 = 0.85. La estabilizacién fue muy rdpida en ambos casos.

b) Simulacién de marea: para las mismas condiciones iniciales de las corridas
anteriores se consideré un caudal constante aguas arriba y una marea sinusoidal aguas
abajo, con § = 0.85. En la Tabla VI puede observarse la influencia de la marea
hacia aguas arriba: se ha atenuado considerablemente en la confluencia; se puede
observar también que al comenzar a subir la marea el caudal disminuye y al comenzar a
bajar la marea aumenta, reproduciendo un fenémeno natural (para caudal aguas arriba



MODELOS HIDRODINAMICOS EN CUENCAS FLUVIALES

313

Tiempo Punto 6 Punto 15 Punto 27 Punto 34
h u h u h u h u
0 6.43 4.75 6.50 9.50 5.00 18.27 7.73 21.00
/3 6.59 5.09 4.82 10.18 4.63 20.63 8.37 19.63
2I1/3 6.16 5.34 5.68 10.68 5.63 22.37 6.63 18.63
I 5.57 5.25 7.18 10.18 7.37 20.63 3.63 19.63

TABLA II. A y u analiticos y numéricos en distintos puntos de discretizacion para

6=1/2y At = Axz.

Punto Coordenada Cotas Ancho Area Coeficientes
espacial ¢ {(m) (m) (m?) de conduccién

(km) (m®/s)
1 0 99 20 0 1]
109 40 300 6186
2 1 97 20 0 0
107 40 300 6186
3 2 95 20 0 0
105 40 300 6186
4 3 93 20 0 0
103 40 300 6186
5 Y 98 160 R 0
108 120 1100 16500
6 1 97 160 1] (]
107 120 1100 16500
7 2 96 100 0 0
106 120 1100 16500

8 3 95 100 0 0.
105 120 1100 16500
] 4 94 100 0 it}
104 120 1100 16500
10 5 93 100 0 0
103 120 1100 16500
11 5 93 120 0 0
103 140 1300 25000
12 6 92 120 0 0
102 140 1300 25000
13 7 91 120 0 0
101 140 1300 25000
14 8 90 120 0 0
100 140 1300 25000

TABLA III. Datos del modelo de prueba.
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Punto Q(m3/s) Z (m)
1 310 112.50

2 310 116.00

3 310 107.50

4 310 105.00

5 540 110.90

6 540 109.90

7 540 108.70

8 540 107.50

-9 540 106.20
10 540 105.00
11 850 105.00
12 850 103.50
13 850 101.90
14 850 100.00

TABLA IV. Condiciones iniciales de corrida de consistencia.

Punto Corrida 1 Corrida 2

t =24 horas t =12 horas t =24 horas t =12 horas

Q Z Q z Q A Q Z

(m®/s) (m) (m3/s) (m) (m3/s) (m) | (m®/s) (m)
1 310 111.23 310 111.23 310 111.23 310 111.23
2 310 109.09 310 110.09 310 109.09 310 109.08
3 310 106.88 310 106.88 310 106.88 310 106.88
4 310 104.56 310 104.56 310 104.56 310 104.56
5 540 110.25 540 110.25 540 110.25 540 110.25
6 540 109.16 540 109.16 540 109.16 540 109.16
7 540 108.05 540 108.05 540 108.05 540 108.05
8 540 106.92 540 106.92 540 106.92 540 106.92
9 539 105.76 540 105.75 540 105.76 540 105.76
10 539 104.56 540 104.56 539 104.56 540 104.56
11 849 104.56 850 104.56 849 104.56 850 104.56
12 849 103.18 850 103.18 849 103.18 850 103.19
13 849 101.69 850 101.69 849 101.69 850 101.70
14 849 100.00 850 100.00 849 100.00 850 100.01

TABLA V. Consistencia de corridas de estabilizacién.
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Tiempo Punto de discretizacién
2 6 10 14
: 0 Z Q Z Q Z Q Z

(hs) | (m¥s) | (m) | (m¥s) | (m}) [ (m¥s)| (m) | (m%s) | (m)

0 310 109.09 540 109.16 540 104.56 850 100.00

2 309 109.26 538 109.28 521 104.90 784 101.00

4 310 109.36 538 109.38 527 105.19 809 101.73

6 309 109.47 538 109.50 527 105.39 822 102.00

8 310 109.42 541 109.49 544 105.33 869 101.73
10 311 109.31 541 109.42 554 105.07 895 101.00
12 311 109.14 543 109.27 560 104.69 913 100.00
14 311 108.01 542 109.14 556 104.36 903 99.00
16 310 108.91 542 109.03 553 104.12 887 98.27
18 310 108.88 541 108.97 545 104.03 862 98.00
20 310 108.88 540 108.95 540 104.04 842 98.27
22 310 108.94 539 108.99 533 104.18 820 99.00
24 309 109.05 538 109.08 527 104.46 801 100.00
26 309 109.21 538 109.22 521 104.83 790 101.00
28 309 109.36 538 109.37 521 105.18 798 101.73
30 310 109.45 538 109.48 529 105.37 826 102.00
32 310 109.43 540 109.49 542 105.33 865 101.73
34 311 108.31 542 109.41 553 105.06 897 101.00
36 311 109.14 542 109.28 559 104.69 911 100.00
38 311 109.00 542 109.14 557 104.35 905 99.00
40 310 108.92 542 109.03 552 104.12 885 98.27
42 310 108.88 541 108.97 546 104.02 863 98.00
44 310 108.89 540 108.95 540 104.04 841 98.27
46 310 108.94 539 108.99 534 104.18 821 99.00
48 309 108.05 538 109.08 527 104.46 801 100.00

TABLA VI. Simulacién de marea.
constante).

c¢) Operacién de embalse més crecida extraordinaria: en este caso se supone una
operacién normal diaria de embalse en el punto de discretizacién 5, seguido de una
crecida brusca que obliga a derivar caudal por el vertedero ubicado en el punto de
discretizacién 1. Aguas abajo se considera una marea sinusoidal. Las condiciones de
contorno y resultados en algunos puntos de discretizacién se exhiben en la Tabla VII.
Se usé 6 = 0.85 y At = 3 horas. Puede observarse el efecto de remanso con cota sobre
superficie libre horizontal en el afluente cuando el punto 1 estd cerrado (no escurre
caudal) y las oscilaciones de caudal en dicho tramo afluente segiin la operacién del
embalse, que incluye flujo en contrapendiente.

Por su parte, el modelo programado en FORTRAN IV se ha usado en
modelizaciones reales. El modelo consta de alrededor de 700 instrucciones y esta
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Tiempo Punto 1 Punto 4 Punto 5

Z Q Z Q zZ

(hs) | (m%fs) | (m) (m®/s) (m) (m®/s) (m)
0 0 102.70 0 102.70 600 110.58
6 0 101.92 6 101.92 300 106.81
12 0 101.94 -2 101.94 600 109.58
18 0 103.51 -9 103.51 900 114.11
24 0 103.50 4 103.50 600 111.69
27 300 104.19 292 104.02 450 109.82
30 300 108.66 271 103.72 300 107.52
36 300 110.91 293 104.08 600 110.14
42 300 111.41 292 105.74 900 114.57
45 300 111.55 297 106.25 750 114.17
48 0 105.76 56 104.68 600 111.95
54 0 102.17 8 102.14 300 107.01
60 0 101.97 -2 101.97 600 109.59
66 0 103.28 -7 103.28 900 114.06
72 0 103.46 6 103.46 600 111.65

Tiempo Punto 10 Punto 12 Punto 14

Q Z Q Z Q Z

(hs) (m®/s) (m) (m?/s) (m) | (m%fs) (m)
0 600 102.70 606 101.78 600 100.00
6 393 101.92 406 101.40 409 160.50
12 522 101.94 519 101.23 523 100.00
18 793 103.54 772 102.29 764 99.50
24 678 103.50 687 102.39 686 100.00
27 503 104.02 788 102.83 776 100.35
30 388 103.72 664 102.67 . 666 100.50
36 519 104.08 806 102.78 806 100.00
42 797 105.74 1079 103.88 1077 99.00
45 759 106.25 1049 104.50 1028 99.65
48 725 104.68 804 103.34 824 100.00
54 415 102.14 434 101.56 441 100.50
60 526 101.97 523 101.26 528 106.00
66 800 103.28 786 101.91 790 . 99.00
72 685 103.46 697 102.35 699 100.00

TABLA VII. Operacién de embalse y crecida extraordinaria.

implementado en una computadora IBM 4381. Usa 40 Kb de memoria interna durante
su ejecucién para una discretizacién con 60 puntos de cilculo. Para cada punto z;, las
funciones S(Z, ;) y D(Z, z;) —éarea mojada y coeficiente de conduccién para una cota
Z— se representan mediante aproximaciones lineales a trozos, o sea mediante tablas de
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Figura 11. Modelo de red para consistencia.

Rio Limay /07 /

i MICHIHUAO

CENTRAL
PICHI PICUN LEUFU

Figura 12. Esquema del modelo del rio Limay.

valores de dreas y coeficientes de conduccién correspondiente a distintos valores de Z.
Actualmente, las tablas son de 60 pares de valores, y la memoria necesaria es para tablas
de este tamaifio. Aparte, es necesario considerar la memoria necesaria para el programa,
archivos periféricos de parametros de cada corrida, de descripcién del modelo, de
condiciones iniciales, de condiciones de contorno y comparacién, y de trabajo. El
tiempo de ejecucién para una corrida con 120 intervalos temporales de cédlculo es de
37 segundos. Teniendo en cuenta que el tiempo empleado en el armado del modelo
es despreciable, esto equivale a algo menos de un tercio de segundo por intervalo de
tiempo de cdlculo. Este modelo, con sus programas auxiliares de preparacién de datos
de secciones transversales (transformacién de informacién cartogréfica, altimétrica y
batimétrica en archivos de tablas de 4reas para distintas cotas), de optimizacion de
ajuste de coeficientes de conduccién y de graficacion de datos y resultados, se utiliz6 en
1981 para la modelizacién de un tramo del rio Limay, en Argentina, entre las futuras
represas proyectadas en Pichi Picin Leufd y Michihuao por la empresa estatal argentina
responsable de estas obras, que fue la que encargé la modelizacién. El tramo principal
del modelo tiene como punto extremo aguas arriba la proyectada central hidroeléctrica
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en Pichi Picin Leufd, y el afluente es el canal de restitucién del vertedero proyectado,
tal como se ve en la Figura 12. El punto extremo aguas abajo es la central hidroeléctrica
de Michihuao. La red fluvial se discretizé en 57 puntos de cdlculo, 16 correspondientes
al canal y 41 al tramo considerado principal. La longitud del canal es de 5.83 km y la
del tramo principal de 47.8 km.

El modelo se ajust6 convenientemente en régimen natural y se realizaron
posteriormente diversas experimentaciones numéricas con un afio tipico, con ambas
centrales trabajando como centrales de pasada, maximizando el uso de la potencia y
distribuyendo la operacién diaria de las centrales en horas de punta, semipunta y valle,
desagregando el funcionamiento semanal en operacién para dias habiles y operacién
para dias feriados, analizando influencias de una crecida extraordinaria, etc. Entre
las conclusiones obtenidas cabe sefialar que se observé que los niveles del embalse de
Michihuao no se veran practicamente afectados por la operacién de la central de Pichi
Pictin Leufi.

Las condiciones de contorno aguas arriba son los caudales de operacién turbinados
en Pichi Picin Leufi y un caudal por vertedero (nulo o no); la condicién de contorno
aguas abajo es el caudal turbinado en Michihuao.

CONCLUSIONES

Se ha descripto en este trabajo un modelo matematico, ya implementado con éxito,
que permite resolver el sistema de ecuaciones hiperbdlicas casilineales de Saint-Venant
de la hidrodindmica para redes fluviales con estructura arborescente, mediante un
método que, aplicado a esquemas implicitos de resolucién de las ecuaciones diferenciales,
resuelve un sistema lineal de matriz banda en cada paso de tiempo y tiene la misma
eficiencia, en tiempo de cédlculo y memoria computacional necesaria, que un modelo
sobre un dnico tramo que use el mismo método implicito y tenga el mismo niumero de
puntos de discretizacién.
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