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Resumen

En este articulo se desarrolla un modelo de plasticidad de superficie limite para suelos cohesivos sin drenaje
dotado de un algoritmo capaz de manejar tanto carga dindmica multiaxial como la ausencia de rango eldstico.
Dicho algoritmo puede ser implementado en cualquier programa de elementos finitos. En el desarrollo de la
formulacién continua se siguen los mismos pasos que en la plasticidad clasica. Modelos monodimensionales
tradicionales como el exponencial, hiperbélico, de Davidenkov o el de Ramberg-Osgood pueden ser poyectados
en el dominio de tensiones desviadoras y extendidos sitemdticamente a las tres dimensiones espaciales.” En
particular, el modelo exponencial se ha relevado apropiado para suelos cohesivos y ha sido utilizado en este
trabajo. Los pardmetros internos del mismo se obtienen directamente de las curvas tipicas de reduccién
del médulo a cortante, de perfiles de velocidades de ondas a cortante y/o de ensayos de penetracién. Para
analizar el comportamiento del modelo, se le expone tanto a cargas monoaxiales como a multiaxiales y tanto
a cargas cuasiestaticas como a sismicas. Ademds, el modelo desarrollado es especialmente 1itil en interaccién
suelo-estructura tridimensional e incluso requlere menos pardmetros que modelos lineales monodimensionales
equivalentes, usados habitualmente en ingenieria geotécnica.

PLASTICITY MODEL FOR CLAYS UNDER MULTIAXIAL NONPROPORTIONAL LOADING

Summary

An associative bounding surface plasticity model for undrained clays and an algorithm capable of handling
both multiaxial dynamic loading and the absence of elastic range is developed. The algorithm is suitable of
being implemented in any finite elements code. When developing the continuum theory, the classical plasticity
steps are followed. Traditional monodimensional models such as the hyperbolic, exponential, Davidenkov and
TRamberg-Osgood can be mapped in the deviatoric domain, casted in the overall layout and extended to the
3D reality in a systematic way. Specifically, the exponential model has been shown appropriate for cohesive
soils and therefore it is used in this study. The internal parameters of the mapping of the exponential model
are easily obtained from the traditional shear moduli reduction curves, shear wave velocity profiles and/(n
SPT blowcounts. The behavior of the model is investigated in both monotonic and dynamic loading, and in
both monodimensional and in three-dimensional loading. The model is specially useful in 3D soil-structure
interaction and re(flulres less parameters than the equlvalent linear models commonly used in geotechnical
earthquake engmeormg
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INTRODUCCION

El comportamiento de suelos es altamente no-lineal incluso para pequenas solicitaciones?.
Esta no-linealidad ha sido tradicionalmente abordada de diferentes formas. I.a forma
mas conocida y mas usada es llevar a cabo los andlisis mediante métodos lineales equi-
valentes que proratean de algin modo las propiedades del suelo sometido a diferentes
niveles de deformacién a partir de curvas experimentales®>. En ingenieria sismica, donde
el suelo puede analizarse como no drenado, el programa SHAKE3?* es el abanderado del
método, extendido a tres dimensiones en programas tales como HASSI o FLUSH5. Otro
método de analizar tales comportamientos es a través de modelos no-lineales monodimen-
sionales que aceptan comportamiento ciclico. Entre este tipo de modelos estdn los de
Martin-Davidenkov, Harding-Drnevich-Cundall-Pyke (HDCP), exponencial o hiperbdlico,
Ramberg-Osgood, etc., implementados en diferentes programas”®®1°. Ambos métodos por
experiencia proporcionan habitualmente soluciones ingenierilmente aceptables para gran
parte de problemas?, pero carecen de la posibilidad de an4lisis no-lineal multiaxial acoplado
donde las propiedades del suelo dependen de la deformacién en cada instante y de su his-
toria reciente. Este tipo de anilisis es importante en ingenieria sismica y en el estudio
de transmisién de vibraciones en zapatas. En particular, el primer método implica el uso
durante todo el andlisis de ciertas propiedades constantes prorateadas a partir de maximas
deformaciones esperables a través de un proceso iterativo. Realmente las propiedades son
variables en cada instante y tal prorateo implica esteblecer el porcentaje equivalente entre
deformacién maxima y “efectiva”, ademds de la presuncién de que tal deformacién pro-
porcionara valores adecuados a ser utilizados durante todo el andlisis. El segundo método
implica que existe total independencia de las propiedades del suelo en diferentes direcciones;
esto es, que la deformacidn en una direccién no afecta a las otras direcciones.

Finalmente, la tercera opcion es el uso de modelos de plasticidad multiaxiales, normal-
mente tomados de la plasticidad de metales. Tales modelos son por ejemplo modelos de Von
Mises®!!, modelos de superficies multiples!?**!* 0 modelos basados en la idea de superficie
limite'®!%. Los modelos de plasticidad simples como el de Von Mises no son capaces de pre-
decir el comportamiento del suelo por su simplicidad. Los modelos basados en superficies
multiples requieron gran capacidad de almacenamiento debido a la cantidad de superfi-
cies a utilizar si se quiere representar adecuadamente el comportamiento, asi como muchas
comprobaciones!”!® debido a la necesidad de seguir la posicién de las diferentes superfi-
cies. Ademads carecen del efecto Masing!'® observado en los suelos. Por contra, los modelos
basados en la idea de superficie limite requieren tinicamente dos superficies y pueden repre-
sentar adecuadamente el efecto Masing. Desafortunadamente requieren pardmetros internos
dificiles de obtener y/o no han sido satisfactoriamente probados en andlisis sismicos tridi-
mensionales y/o requieren demasiadas variables histéricas o no permiten la falta de rango
elastico®®2h22, Las condiciones de carga sismica triaxial y deformaciones plasticas desde el
primer instante de carga son especialmente complicadas de manejar, por lo que el algoritmo
ha de ser robusto.

El procedimiento aqui desarrollado estd basado en la idea de proyectar los modelos
monodimensionales de suelos en el espacio de tensiones desviatorias admisible?:?* ex-
tendiéndolos al espacio multiaxial de tensiones desviatorias. La idea central es el uso de
una superficie de contorno que limita la parte admisible de dicho espacio y el uso de un
parametro auxiliar para proyectar en él los modelos a través de la funcién de endureci-
miento. Asi se adquiere no Unicamente la ventaja de usar modelos ampliamente conocidos
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por la comunidad geotécnica, sino también la posibilidad de anélisis no-lineales multiaxiales
acoplados.

Borja y Amies?! desarrollaron su modelo tridimensional bajo la hipétesis de una regién
elastica permanentemente nula o puntual’® y llevaron a cabo la formulacién acorde con
dicha hipdtesis. En este trabajo se desarrollard un modelo con una superficie de flu-
encia consistente con la proyeccién de funcién de endurecimiento. La regién eldstica se
desvanecerd tnicamente cuando ocurra una descarga para recuperar las propiedades ini-
clales. Se mostrard ademads que en la formulacién continua, la condicién de descarga impli-
cada por un incremento del médulo de endurecimiento es exactamente equivalente a la que
se deriva de la superficie de fluencia, pero esto no es cierto en la formulacién discreta. El
modelo se diferencia numéricamente del desarrollado por Borja y Amies®* fundamentalmente
en la regla de fluencia y en la estabilidad ante carga dindmica. Como pago por la mejora,
en lugar de resolver una ecuacién no- lineal escalar, se tendrd que resolver una tensorial.

TEORIA

Siguiendo la idea de Borja y Amies'®, consideramos un dominio admisible en el hiperespa-
cio de tensiones desviatorias limitado por la denominada superficie limite o frontera (boun-
ding surface). Por conveniencia, dado que el modelo es de caracter desviador, se denominara
o’ al tensor de tensiones completo I al tensor identidad de cuarto orden, 1 al de segundo
orden, P = I — 1(1®1) al tensor de proyeccién en el hiperplano desviador y 0 = P: o’ al
tensor desviador de tensiones. La operacién ® es el producto diddico de tensores de segundo
orden en tensores de cuarto orden y los dos puntos : denotan bien el producto escalar de
dos tensores de segundo orden, o bien el producto de uno de cuarto orden y uno de segundo
en otro de segundo (aplicacién tensorial).

Puesto que consideraremos que el material es inicialmente isétropo (sélo la historia
reciente es considerada), la superficie limite tiene que ser (al menos inicialmente) una
hiperesfera en dicho espacio (un hipercilindro en el hiperespacio completo de tensiones)
y centrada en el origen o estado tensional hidrostitico. La proyeccién de dicha superficie
en el plano desviador de tensiones principales (cominmente denominado plano =) es una
circunferencia inicialmente centrada en el origen desviador. Durante el proceso de carga y
descarga se trabajara bajo la hipdtesis de que la superficie mantiene su forma por razones
obvias de sencillez. No obstante, durante el desarrollo de la formulacién, se le permitird el
traslado para poder asi representar endurecimientos puramente cinemdticos®?.

Se adoptard también la hipdtesis de que el material recupera las propiedades elasticas
cuando se produce una descarga. En el limite de tensiones admisibles (superficie limite)
el material presenta endurecimiento puramente cineméatico o nulo. En el primer caso la
superficie limite se traslada y el valor del endurecimiento seria el infimo de la funcién de
endurecimiento. En el segundo la superficie estaria fija. La Figura 1 muestra un esquema
de como seria la funcién de endurecimiento en el plano 7. En dicha figura se representan el
tensor de tensiones gy y el punto que representa el tensor de tensiones o, cuando se produjo
la ultima descarga. Se define el tensor imagen en la superficie limite a

6 =0+ k{oc—o0y) (1)

donde k es un parametro tal que & reside en la superficie limite. Este parametro permite la
proyeccién de la funcién de endurecimiento en el dominio de tensiones.

Borja y Amies mostraron cémo diversos modelos de comportamiento monodimensionales
tales como la funcién exponencial, la hiperbdlica o el modelo de Davidenkov, entre otros,
pueden ser expresados en funcién del pardmetro k. Por ejemplo, escogiendo una funcién de

endurecimiento de la forma ¢, = H'é,, donde o, = \/g loll v €a = 1/ %ll€]| son las tensiones
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MODULO DE ENDURECIMIENTO

A

VALOR DEL ENDURECIMIENTO
PARA EL ESTADO TENSIONAL
ACTUAL

TENSION EN LA
ULTIMA DESCARG.
ACONTECIDA

SUPERFICIE LIMITE ¢

SUPERFICIE DE FL.LUENCIA

PUNTO REPRESENTANDO
EL ESTADO TENSIONAL
ACTUAL --

Figura 1. Proyeccién del médulo de endurecimicnto en el plano 7 de tensiones principales

uniaxiales desviadoras en incompresibilidad, la funcién exponencial puede ser expresada de
la forma

H' = h'k™ (2)

donde A’ y m son constantes dependientes del material y que serdn determinadas més
adelante. Como ejemplo de una funcién exponencial con un infimo no nulo

H =KWE™+ H (k) (3)

donde H' puede ser una funcién cualquiera (por ejemplo H'(k) = Hj, una funcién de

endurecimiento constante) que representa el endurecimiento cinematico cuando las tensiones
alcanzan la superficie limite.

La funcién de endurecimiento dentro de la superficie limite (dominio admisible) ¢s
unicamente funcién del pardmetro k, por lo que los contornos de endurecimiento constante
son a su vez contornos de k constante. La forma de dichos contornos puede ser directamente
obtenida del hecho de que por definicién imagen reside en la superficie limite

(6-B):(6-B) =R (4)
donde B es el centro de dicha superficie y R es su radio. De la definicién de 6 ecuacién (1)
o+ k(o — 00) - Bl:[o + k(o — 00) — B = R’ (5)

Definiendo el pardmetro p := 1/(1 + k) e insertdndolo en la ecuacién previa escalada
2
por p

lo =00+ p(B -~ 00): [0 — a0 + p(B — 00)] = (PR)” (6)

Por lo tanto, las superficies de endurecimiento constante dentro de la superficie limite
son circunferencias de radio

r:=pR (7)
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y centro

a:= o0y + p(B — gy) (8)

Mientras o se “aleja” de o (tensor de tensiones en la Gltima descarga), el centro del
contorno de k{o) constante se mueve hacia B y el radio se incrementa hacia R. Nétese que
k € (0,00), p € [0,1); r € [0,R). El pardmetro p es el radio normalizado /R de dicho
contorno (Figura 2).

TENSIONES EN
LA ULTIMA DESCARGA
k > inf.

S ——

CENTRO DE LA
SUP. DE FLUENCIA

" SUPERFICIE
DE FLUENCIA

CENTRO DE LA
SUPERFICIE LiM.

B CONTORNOS
" k=CONST.

SUPERFICIE LIMITE

~,

Figura 2. Geometria del modelo

Basdndonos en este esquema, se puede argumentar la forma de la superficie limite de dife-
rentes formas. Supéngase que la superficie limite fuese una superficie extraia que pasase por
o en el dominio de tensiones admisible. Cualquiera que fuese su forma, cruzaria contornos
de endurecimiento constante, a menos que coincidiese con ellos. El hecho experimental de
que el endurecimiento decrece dnicamente con deformaciones plasticas fuerza la eleccién del
contorno de constante k(o) como superficie de fluencia. Si se hubiese escogido un punto
como dicha superficie, se podria producir cuanta deformacién plastica se deseara sin reducir
el médulo de endurecimiento, simplemente evolucionado sobre los contornos de k constante.
La superficie de fluencia no puede ser, por lo tanto y acorde con la experiencia, un punto.
Otra forma de rezonarlo es a partir del concepto de superficie de fluencia: la fluencia es
el conjunto de estados admisibles de tensiones a los que se puede evolucionar a través
de carga neutra (sin plastificacién ni descarga). Puesto que carga neutra implica que el
endurecimiento ha de permanecer invariable, los contornos de k constante y la superficie de
fluencia coinciden.

Cuando el material descarga, se pretende que éste recupere las propiedades eldsticas,
tal y como se obtiene experimentalmente. Entonces, el médulo de endurecimiento vuelve
a ser infinito, y como éste es funcién mondtona de k, implica de que k debe ser infinito.
Esto Ginicamente ocurre cuando oy y o coinciden. Puesto que experimentalmente no se han
observado cambios bruscos en el tensor de tensiones cuando el material descarga, sino maés
bien una evolucién continua, forzosamente se ha de obligar oy = o en el instante en que la
descarga ocurre. En dicho instante, la superficie de fluencia se convierte en un punto y tanto
k como H' retoman el “valor” infinito. Posteriormente, el material evoluciona en el proceso
de carga y se endurece tanto cinemdtica como isotrépicamente de una forma combinada
implicada por el modelo y la funcién de endurecimiento.

Con este marco se desarrollan a continuacién las formulaciones continua y discreta.
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Formulacion continua

La formulacién general del modelo sigue los pasos usuales de la plasticidad cldsica
con retorno radial?* para pequenas deformaciones. Las “velocidades” de deformacién son
divididas en una parte eldstica y una plastica

E=e+ & (9)

Denotando por f:= (0 — a): (6 — @) — 7 a la funcién de fluencia y por v al pardmetro
de consistencia
p_ (3f /90)
165 /00| (10)

~

=Yn

es la regla asociativa y fi = (6 — a@)/|jo — a)| es la normal a la superficie limite en o.
El pardmetro de consistencia es obtenido de la condicién de consistencia f == {) como es
habitual

f=2c—a)(6—d&) —2r7=0 (11)

las derivadas “temporales” &, £ y p de sus propias definiciones
s p

a = p(B —0o) + 0o +p(,3—(70) (12)
F=pR (13)
p=-pk (14)

La derivada del tensor de tensiones es obtenida de la ecuacién- constitutiva de la parte
elastica. Denominando C al tensor eldstico de cuarto orden

& = C: (& — &°) (15)

¥l parametro k se obtiene de su equivalente plastica de la forma siguiente

0k 9o o ' .
" B0 9E" (16)
=I5 |l
== sH~y s (17)

donde se ha denotado al tensor de endurecimiento por H: = [06/0¢] = HA® 1, redefiniendo
H:= %H ' por conveniencia y utilizando el hecho de que

O0k/0o
[ok/oa]] "

como se muestra en el apéndice y puede ser deducido facilmente de la naturaleza del modelo.

Por lo tanto, de dicha ecuacién se observa como H' retiene de forma natural k, que
estd a su vez relacionado con la velocidad de deformacion plastica a través de la cantidad
redefinida como s: = ||0k/Jo||. Esta cantidad realiza la proyeccién de H' en el dominio de
tensiones. La expresién del tensor 0k/0o estd calculada en el apéndice.
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La tnica cantidad en la ecuacién de consistencia que permanece desconocida es la
derivada del centro de la superficie limite en el caso de que-a ésta se le permita trasladarse.
El movimiento de dicha superficie puede ser calculado del hecho de que cuando el tensor
de tensiones resida en ella para el limite k — 0 (6 = 6 en la dicha superficie), la tnica
velocidad de deformacién serd aquella procedente del movimiento de la superficie limite en
&, cabe decir :

B =6,=He (18)
Se ha utilizado el hecho de Que los contornos de k constante no se pueden cruzar, y por
lo tanto 8 = 0.

Sustituyendo todas estas ecuaciones en la de consistencia y tras algunas operaciones
algebraicas, se obtiene el pardmetro de consistencia

n: C &
ﬁ:C:fl-I—ﬁ—_pzSH[R—ﬁ:(O'o—ﬁ)]‘

El tensor elastoplastico tangente se obtiene inmediatamente sustituyendo este valor en
la ecuacién constitutiva de la parte elastica.

(19)

’7:

Algoritmo numeérico

Especialmente importante en el modelo son las capacidades de manejo de la ausencia de
rango eldstico y de cargas dindmicas aleatorias (sismicas) multiaxiales. Lo primero puede
producir errores de redondeo significativos que afectan seriamente al comportamiento y
la estabilidad del algoritmo en descargas y pequefias cargas, puesto que la superficie de
fluencia puede ser puntual o pequefia. Lo segundo provoca que la tensidn (trial stress) resida
ocasionalmente cerca o sobre la tangente a la superficie limite. Entonces, debe asegurarse la .
continuidad de las deformaciones en ese limite, lo que se consigue anulando las deformaciones
plasticas a medida que dicho tensor se aproxime a la tangente. En caso de no hacerse de
este modo existird una discontinuidad que puede provocar la no convergencia del problema
durante la busqueda de solucién. Esto se solventa si se escoge la regla asociativa (opcién
adoptada en este trabajo) o cualquier otra con potencial definido de tal forma que se cumpla
la condicién anterior.

Para desarrollar el algoritmo numérico de busqueda de solucién para cada punto de
integracién en el programa de elementos finitos en el que se instale, se asumiran conocidas
todas las variables en el instante de “tiempo” n y se calculardn las del instante de tiempo
n + 1. Los subindices n y n + 1 en las variables indican el instante al que se refieren.
Se asumird también conocido el tensor incremento de deformaciones desviadoras Ae entre
dichos instantes. El algoritmo es el siguiente:

1) Conocidos a4, gy, ¥ B, y partiendo de la expresién para el pardmetro k del apéndice,
calcular

2
Ny~ ~ n n~ A R2 _ n?
k)n = ——ltlltg + <—£> tli t2 + ——2—1 (20)
uz Ty 3
donde
n = |lo, = Byl
-~ O'n
ti=-"-8,
ny
Ny = ”071, - UOnll
“ o,
ty = — — 0y,
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En el caso de que o0 = 09, hacer 0 =.0¢ + ¢R(C: A¢)/||C: Ag|| (ver apéndice), donde
k, = 1/€ es un nimero grande que depende de la miquina y de la precisién cscogidas.

Las dos soluciones para k,, se corresponden con los dos posibles valores que surgen de la
definicién de k, esto es, aquellos que proporcionan las dos posibles tensiones imagen & en la
superficie limite. El valor positivo es el vélido.

Esta forma de calcular &, evita errores de redondeo cuando el radio de la superficie de
fluencia es casi nulo. En efecto, sie’: =p, — 0, entoncesn, - 0y k, =1/ =1 x1/¢ = o0,
lo que es muy importante para la estabilidad del algoritmo. Por lo tanto, las ecuaciones
deben calcularse de la forma mostrada o de una forma equivalente en el sentido de que deben
proporcionar valores consistentes incluso cuando el radio de la superficie limite tienda a cero
y el endurecimiento a infinito o cuando el paso de carga sea muy pequefio.

2) Comprobar si el material descarga. Definiendo 6%, ,: = C: Ag, si 0%, ;: 11, < 0, entonces

hacer 0y, = 0,, y proceder de nuevo al paso 1.

Nétese que ni Ak ni la funcién de fluencia evaluada para la tensién de prueba o,
pueden usarse para esta tarea, ya que es posible que o¥,,: i, < 0 y tanto Ak > 0 como

= (0, — o) (04, — o) — (paR)® > 0. Esto puede suceder ya que 7, = p,R puede
ser muy pequefio (Figura 3). Durante el periodo iterativo de busqueda de solucién puede
ocurrir que la tensién de prueba resida fuera de la superficie de fluencia, pero (a¥,, -- 0,,)
corte dicha superficie. Esto conduce a ignorar un proceso de descarga o, en el caso de
que alternativamente resida dentro y fuera durante el proceso de bisqueda de equilibrio
global, a la imposibilidad de llegar a una solucién convergente. Por lo tanto, la condicién de
normalidad debe ser la utilizada, ya que aunque en la formulacién continua es equivalente
a las otras dos, esto no es cierto en la discreta.

8
Figura 3. Inconsistencia de Ak y fn+ 1% en el andlisis de la cohdicién de.descarga

3) Calcular

1 , .
Pr= Tk (21)
a, = 0g, +p.(B, —00,) (22)
A (on - an)
B = ] (23)

4) Calcular H,(k,) y H, de forma conjunta como

I_In: = ﬁn + [R - ﬁn: (U()n - ﬂn)]piann (24)
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donde, debido a que puede ocurrir que p,, — 0, se usan las siguientes expresiones consistentes

;,1:7?1( )+ knnz(tz n)

S, = ~ 25
ning(ty: 2) + k,n2 (25)

2
H,(p,); para funcién exp.: H, = hk™ + H,, = ;h’k:’: + -H, (26)

H,
3

El endurecimiento H,, debe ser calculado también consistentemente en caso de que los
errores de redondeo para p, — 0 fuesen importantes.
En el caso de carga monodimensional se puede demostrar que [R—1f,: (oo, —f8,,)]p2s» = 1.
5) Calcular 6%’ = C;: Ag, donde se puede.usar C}, = C (tensor eldstico de cuarto orden)
o C} = C2 (tensor elastopldstico tangente), donde

2~ CF . ®n,: CP
nn:Cfl‘__lznn +Hn

Cr=Cl. - (27)

La eleccién no afecta a la solucién, dnicamente a la velocidad de convergencia.
6) Iteracién i sobre pf, ,, donde p, < p .y < oy, +1) para el cdlculo de las variables en el
instante n + 1. Para un valor de prueba p, IH
6.1) Calcular el pardmetro de consistencia 7,,,; & partir de la ecuacién de consistencia
escogiendo el minimo de (el otro valor se corresponde con el retorno a la parte opuesta
de la superficie de fluencia)

. ’)’fz-+—1,1 = - (28)

donde

(‘H’:H-l) +n3+2Hn+1n3(t3 n-}l)
b=—{( n+l) ( ”n+1)+n3 t3:t4)}n4

c= 7"&4 - (pn-}-l )Z

ng = HC*: |
.
{73 = ng (C* A’:],-Fl)
’ Ny = ”0n+1 an,n-H”
t = ;le(afr:—{-l - azz,n—‘hl)

afm,n+1 =0y, T piz+1(ﬁn - 09,)

tr 7
A= Opny1 — a@,n+1 =1,

s ||0n+1 a:L,TL-f-l ” :

6.2) Calcular el pardmetro de consistencia ., , a partir de la ecuacién constitutiva

. Pt 1
Vo= [ s (29)
T2 » —p?sH

n
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donde tanto I como m son funciones de p. Por ejemplo, usando por simplicidad y bondad
la regla del punto medio (en p) para evaluar la integral

p* — pn+12_ Pn (30)
Tnt1,2 = HT (31)
donde
te: 1*) + (1/p* — 1)(ts: A"
d*:pn+1H*n6/n5(? n,\)+( /p )(5 n) (32)
ng(ts: tg) + (1/p* — L)ns
) a.tr+1 _ a*
A= — (33)
llofi —al
a* =0y, +p*(B, — 00,) (34)
ns = |lo* — o
+ 1 * *
ts = n—B(U ~a’)
ng = llo* — B
R 1 . .
te = —(0c" - ")
Ng
oF =0l — .0 (35)
ﬂ* = ﬂn + 7;+1,1I:I*ﬁ* (36)
H* = H((-)*) (37)
Y Vni1. Se obtiene de la ecuacién de consistencia para los valores (-)*.
Calcular el error de la iteracién ¢ como
error’: = 'Yaiz+1,1 - '?’:L+1,2 (38)

Si |pi,. ., — pih|/pl, . es menor que cierta tolerancia relativa determinada por el usuario
sobre p € [0,1), o el valor absoluto de error’ es menor que cierta tolerancia absoluta
determinada por el usuario sobre 7,41, salir del proceso iterativo en p’ ., y actualizar los
valores-solucién de tensiones. En caso contrario, realizar la bisqueda de un nuevo valor para
pf;.ll. Cualquiera de los algoritmos de buisqueda disponibles es valido. El que se ha usado
en este tabajo es el de Brent?®.

El algoritmo es estable e incondicionalmente convergente.

Una vez que se ha obtenido el tensor desviador o,,;, se le anade la parte hidrostitica
para calcular el tensor completo

0';7‘_*_1 = Opnt1 +KtT(A8)1 (39)

donde K denota el médulo de compresién hidrostdtico y ¢r(-) la traza del tensor.
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DETERMINACION DE LOS PARAMETROS INTERNOS

En este trabajo se ha empleado la funcién exponencial con superficie limite no traslacional
como médulo de endurecimiento debido a su idoneidad 2! para el tipo de suelos a analizar.
Una descripcién detallada del significado y la influencia de los parametros h y m del modelo
en el comportamiento del mismo ha sido realizado anteriormente en otros estudios!*?®. No
obstante, aqui se inferirdn dichos parametros directamente de las curvas de degradacién del
moédulo de rigidez a cortante en funcién de la deformacién 6(vy,) = G(7;)/Gmax, COmiinmente
usadas en ingenieria gotécnica y requeridas por el conocido programa de analisis lineal
equivalente SHAKE. El médulo inicial G, puede ser obtenido a partir de los perfiles de
velocidades de propagacion de ondas a cortante. El radio R de la superficie limite puede ser
estimado a partir de ensayos de penetracién®® o, en ausencia de los mismos, a partir de las
mismas curvas de degradaciéon del médulo de rigidez a cortante. Este tltimo procedimiento
serd el usado en este trabajo.

Conocido el valor de 6 para una deformacién grande ,, el radio de la superficie limite
tendra que ser superior a

R = vV27,0G nax (40)

y por lo tanto el radio R puede ser estimado aproximadamente a partir de tal valor R. La
exactitud de la estimacién carece completamente de importancia si se sigue el procedimiento
a continuacién senalado en la determinacién de los pardametros h y m. Para valores incluso
dos drdenes de magnitud mayores en R, los pardmetros h y m equilibrardn la diferencia
para el rango de deformaciones de interés. Ademads, es necesario resaltar que si se desease
reproducir mejor la curva de reduccién del médulo a cortante bastaria con incluir méds puntos
en el sistema y escoger una funcién tipo

N/2

H= Z k™
i=1

donde N es el nimero (par) de puntos.

Para calcular dichos pardmetros de la funcién de endurecimiento, se asumiran conocidos
dos puntos significativos de la curva de reduccién del médulo a cortante y se denotardn por
[¥s1,61] ¥ [7s2,62]. Por ejemplo, dos puntos representativos pueden ser [y, (8 = 0,8); 0,8],
[752(0 = 0,3); 0,3]. Aunque cualquier otro punto seria en principio vélido si éste es distinto
de 8 =1y de § =0, los puntos cercanos a los mencionados presentardn menor sensibilidad y
equilibraran los errores para distintos valores de deformacién respecto a la curva que se quiere
reproducir. Para cada uno de los puntos prescritos la tensién ciclica bajo comportamiento
a cortante puro monodimensional serd T = G ..7Ys ¥ 1a ecuacién constitutiva, tras ciertas
manipulaciones, se convierte en

T 1 7 E+T "
%_GmerE/.T (R/ﬁ—f) “ (41)

Por lo tanto, resolviendo el sistema de dos ecuaciones no-lineales se obtienen los valores
de h y m. En este estudio se ha utilizado un algoritmo de Powel hibrido modificado?® para
resolver el sistema. En este punto cabe decir que, puesto que al realizar experimentos se
comienza desde el estado virgen de tensiones, los ciclos no variardn desde —7 hasta 7, por lo
que incluso tras gran cantidad de ciclos existird un desplazamiento del centro de los mismos
y una cierta asimetria respecto a dicho punto. Calculando pues los pardmetros A y m a partir
del estado virgen tras haber producido varios ciclos de deformacién, se obtendran valores
ligeramente diferentes (aprox. 5 %), posiblemente mas cercanos a la realidad experimental
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y mas alejados de hipdtesis tedrica. Este ultimo procedimiento es el que se ha seguido en
este estudio.

Por otro lado, una estimacién diferente del radio R produciria distintos valores de m y
principalmente de h, de tal forma que la curva de reduccién del médulo a cortante 6+, sigue
pasando por los puntos estipulados. Si dichos puntos son representativos y la estimacion de
R estd al menos dentro del orden de magnitud, la curva serd aproximadamente la misma
para el rango de deformaciones de interés.

Finalmente, es importante observar que este modelo requierc menos pardmetros que los
modelos lineales equivalentes tipo SHAKE, en contraposicién con la creencia general en la
comunidad geotécnica de que los modelos de comportamiento plastico para suelos requieren
més parametros*. En efecto, tomando por ejemplo el programa SHAKE, éste requiere no
s6lo la curva de degradacién del médulo a cortante, sino también la de amortiguamiento en
funcién de la deformacién y un parametro adicional determinado a partir de la magnitud
del terremoto que traduce deformaciones méximas en deformaciones “efectivas” con las
que calcular las propiedades equivalentes. En este nuevo procedimiento las curvas de
amortiguamiento son inherentes al modelo escogido (exponencial) y no se requiere ningin
conocimiento de la magnitud del acelorograma a imponer, puesto que el comportamiento es
realmente no-lineal.

EJEMPLOS

A continuacién a modo de verificacién del modelo y para mostrar sus caracteristicas, se
incluyen ejemplos bajo cargas unidireccional, bidireccional y tridireccional cuasiestaticas y
bajo carga sismica bidireccional.

Carga unidireccional

La Figura 4 muestra los limites de las curvas de reducciéon del mdédulo G para suelos
arenosos obtenidas experimentalmente por Seed e Idriss? en 1970. Ambas curvas delimitan
el rango de curvas tipico para dichos suelos. Se han usado estas curvas para comporbar
el modelo, forzando los valores 6, y 0, para las deformaciones angulares (ingenieriles)
Yo = 0,01 % ¥ 752 = 0,1 %. Una estimacién R del radio R de la superficie limite se
obtuvo de una deformacién ~,3(03) que proporciona un valor bajo de mdédulo a cortante
(03 = 0,1). La estimacién usada es

R - 10753 03 Gmax

Nétese que R ha de ser forzosamente mayor que v/27,303Gmax. Para verificar la influencia,
de una posible estimacién pobre en las curvas 6(vy,) se han realizado las curvas que se

obtendrian para valores de R = 0,2R, R = 10R y R = 100R. Unicamente a deformaciones
muy grandes la influencia ha sido significativa y para los valores de deformacién usuales
representados en la figura las diferencias eran menores del 1 %, por lo que se omiten dichas
curvas. En dichas curvas también se observa como puntos [0, ;] mds significativos dan
una mejor reproduccién de la curva. La Figura 5 muestra un ejemplo de los ciclos tension-
deformacién resultantes en cortante unidimensional para la curva inferior de la Figura 4. Los
parametros para la misma son R = 200 kPa, G ., = 40 MPa, h = 371,5 kPaym = 1,62. El
estudio detallado desarrollado por Borja y Amies?! es aplicable al modelo, ya que en carga
unidireccional monotdnica cuasiestdtica ambos modelos coinciden con el modelo exponencial
monodimensional que se pretende extender a tres dimensiones.
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REDUCCION DEL MODULO A CORTANTE G

T - e ey

09+

G/ Gmax
o o o =4 o e
w b o (=] ~ [o-]
: " ; T T ;

I
N
T

- ~ SEED E IDRISS-1970

ol ol "
10° 10°% 10 1
DEFORMACION ANGULAR UNITARIA (INGENIERIL)

0.1} | — OBTENIDAS DEL MODELO _]
I
T

Figura 4. Comparacién de las curvas de reduccién del médulo a cortante obtenidas por Seed
e Idriss en 1970 con las obtenidas por el modelo exponencial tras haber prescrito
los valores para vy =0,01 % v=0,1%

EJEMPLO DE CICLO DE TENSION-DEFORMACION MONODIMENSIONAL

30— T — T T T T T — T ]

TENSION CORTANTE [kPa] .

30— L L L T R U WA S———
-8.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01
DEFORMACION ANGULAR UNITARIA (INGENIERIL)

Figura 5. Ejemplo de ciclo tensién-deformacién para ymax = £1%

Carga multiaxial cuasiestatica

En la Figura 6 se muestran tres funciones senoidales de pulsacién w, 2w y 3w que han sido
aplicadas a modo de deformaciones angulares unitarias en las tres direcciones ortogonales
que se denominaron zy, zz € yz respectivamente. Se ha usado el rango inferior para suelos
arenosos del apartado anterior y sus respectivos pardmetros y se ha aplicado la carga en un
total de 100 pasos.

Cuando se aplica la solicitacién en una sola direccién, por ejemplo la zy, el modelo es
monodireccional. Los procesos de descarga aparecen dnicamente en los extremos {maximos
y minimos) de la excitacién. En esos instantes el médulo de endurecimiento es infinito
y comienza, a evolucionar reduciéndose. El modelo se comporta en este caso como el de
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Dafalias y Popov'®. Las tensiones cortantes zy son mostradas en la Figura 7 en funcién del
paso de carga.

(TENSORIALES)
w

~

& R N o -

IS

DEFORMACIONES ANGULARES UNITARIAS

)
o

500 800 1000
PASO DE CARGA

(=)
[
o
o
'S
ofF
o

Figura 6. Deformaciones angulares unitarias impuestas en las direcciones zy, zz e yz

TENSIONES CORTANTES - SOLO APLICADA CARGA XY
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TENSIONES CORTANTES XY [kPa]
=]

N
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) \ T L R ) .
100 200 300 400 500 600 700 800 900 1000
PASO DE CARGA

Figura 7. Tensiones cortantes zy resultantes tras imponer unicamente las deformaciones
angulares zy

Si la carga es aplicada simultdneamente en las direcciones zy y zz, el comportamiento
en la direccién zy cambia como consecuencia del acoplamiento. La Figura 8 muestra la
evolucién de la tensién cortante correspondiente tras el acoplamiento con la direccién zz.
Para este caso de carga biaxial es conveniente la representacién en el plano z tanto de
tensiones como de deformaciones. La Figura 9a muestra la trayectoria de las deformaciones
impuestas (una curva de Lissajous) y la Figura 9b muestra la trayectoria de las tensiones
resultantes, donde por comodidad visual se ha dibujado un circulo de radio Rd menor que
el radio real R de la superficie limite.
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ESTUDIO DEL EFECTO DE ACOPLAMIENTO

v T T T y T

@™
=1

%3 b [~3
= o =3
T

TENSION CORTANTE XY [kPa]
=)

—— EXCITACIONES EN XY, XZ E YZ
- — EXCITACIONES EN XY Y XZ
— - EXCITACION SOLO EN XY

&
S

o100 200 300 400 500 600 700 800 900 100
PASO DE CARGA

Figura 8. Efecto del acoplamiento no-lineal de las diferentes direcciones en las tensiones
cortantes zy

TRAYECTORIA DE TENSIONES
TRAYECTORIA DE DEFORMACIONES TENSION XZ,
DEF. XZ SUPERFICIE LIMITE
R=200; Rd= 60
/\ TENSIONX
DEF. XY

Figura 9. Trayectorias de deformaciones (a) y de tensiones (b) en el plano z al aplicar las
cargas en las direcciones zy y zz. Rd es el radio del circulo dibujado, R el radio
de la superficie limite

Si se aplica la carga en la direccién yz se produce un acoplamiento muiltiple resultando
por ejemplo la evolucién de tensiones en la direccién zy también mostrada en la Figura 8. En
el caso de anilisis tridimensional es conveniente la representacion en el plano de proyeccion
isométrica de tensiones o deformaciones principales (plano 7). La Figura 10a muestra las
trayectorias de deformaciones en dicho plano y la 10b las de tensiones. De la comparacién de
ambas trayectorias también se deduce la influencia del acoplamiento pldstico en la evolucién
de las tensiones. Si el comportamiento fuese lineal, la forma de ambas curvas coincidiria, ya
que unicamente las diferenciaria el escalado por el médulo de elasticidad. En este caso la
forma es distinta debido a la plastificacién y al acoplamiento. '
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TRAYECTORIA DE DEFORMACIONES EN EL PLANO-PI TRAYECTORIA DE TENSIONES EN EL PLANO-P}
DEF. PPAL. 3 TENS. PPAL. 3

SUPERFICIE LIMITE

R=200; Rd= 120

DEF. PPAL. 1 DEF. PPAL. 2 TENS. PPAL. 1 TENS. PPAL. 2

Figura 10. Trayectorias de deformaciones (a) y de tensiones (b) en el plano = al aplicar las
cargas en las tres direcciones. Rd es el radio del circulo dibujado, R el radio de
la superficie limite

Carga dinamica multiaxial

Wb

Como ejemplo de carga dindmica multiaxial se considera una carga sismica en dos
direcciones; N-S (norte-sur) y E-W (este-oeste) en forma de acelerogramas, mostrados en
las Figuras 1la y 11b. Estas excitaciones han sido recogidas en el emplazamiento LSST
(Large Scale Seismic Test) en Lotung (Taiwan). En dicho emplazamiento, que es zona
sismicamente activa, el EPRI (Electric Power Research Institute) construyd dos reactores
nucleares a escala e instrumentalizé la zona para poder registrar el comportamiento del suelo
con y sin interaccién terreno-estructura®”?%2°. El programa de ensayos alli llevado a cabo
es ampliamente conocido por la comunidad geotécnica. El 20 de mayo de 1986 (LSST07)
se recogieron, entre otros, los acelerogramas de dichas figuras a 11 metros de profundidad
en la localizacidén de ac elcrometros denominada DHB. Las propiedades del suelo han sido
analizadas por diversos grupos de investigacién a través de diferentes métodos, obteniendo
diferentes curvas de reduccién del médulo a cortante dependientes o no de la profundldad.
En este estudio, tomando como base las de Anderson?®, se prescribieron los valores de
O(ys == 0,01 %) 0,80 y 0(ys = 0,1 %) = 0,35 para el suelo hasta los 11 metros de
profundldad que se toman para este ejemplo.

El algoritmo numérico para determinar las tensiones en cada punto de integracién ex-
puesto hasta ahora ha sido implementado en el programa de elementos finitos SPECTRAIIL
Dicho programa es una modificacién de SPECTRA, que contiene elementos tipo “stick”??,
elementos tridimensionales de 8 nudos a los cuales se les han eliminado las funciones de forma
que no-son dependientes Unicamente de la coordenada (vertical) del elemento. Estos ele-
mentos presentan comportamlento a cortante tipo viga-Timoshenko, pero sin la componente
de flexidiy, y por lo tanto son capaces de predecir el comportamiento de estratos paralelos
de dnnenslones horizontales infinitas sometidos a excitaciones cortantes o'de compresion
propagdndose segun el eje los mismos.

Para modelar los 11 m de terreno de este andlisis se han usado dichos elementos con
longitudes de 1 m, totalizando 12 elementos. La integracién usada es gaussiana de 2 puntos
y puede demostrarse que no se produce bloqueo 23
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Figura 11. Acelerogramas recogidos en Lotung (Taiwan) durante el terremoto del 20 de
mayo.de 1986 (LSST07) a 11 metros de profundidad. Brazo FA-1, punto DHB

Los médulos de cortante iniciales G, para cada elemento han sido determinados a
partir de perfiles de velociades de ondas S®° y se muestran en la Figura 12. El peso especifico
medido en la zona es aproximadamente de 19,0 kN/m?3. .

El algoritmo de integracién en el tiempo es el HHT?! con o = —0, 1, el paso de tiempo
empleado es de At = 0,02 s y el intervalo de muestreo de los acelerogramas en campo de
0,005 s.

Tras imponer las aceleraciones registradas a 11 m de profundidad, en las Figuras 13a y
13b se comparan las predicciones en la superficie (andlisis acoplado) con los registros del
lugar entre 8 y 20 s (la parte mds significativa). La correlacién de resultados es buena
tanto para bajas como para altas excitaciones. La peor prediccién para los instantes de 11
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a 13 s puede ser entre otras causas debida al incremento de presién efectiva observado en
Lotung durante dicho terremoto, por lo que serd conveniente incluir este grado de libertad
en el modelo para obtener resultados ain mejores. A modo de ejemplo, en la Figura 14a se
muestran las trayectorias de deformaciones angulares unitarias a 10,71 m y en la 14b las de
tensiones.

Un anélisis mas detallado del comportamiento.del emplazamiento para los 47 m de los
que se disponen acelerogramas esta siendo realizado actualmente por los autores.

MODULO A CORTANTE INICIAL Gmax

1 T T T T T T T T

ELEMENTO (Altura = 1m)

11 1 — i ) 1 N L 1. I
1 2 3 4 5 6 7 8 9 10

Gmax {kPa] x 10°

Figura 12. Perfil de mddulos a cortante iniciales utilizado

LSSTO07 - ACELERACION EN SUPERFICIE - COMPONENTE E-W

T T T T T

ACELERACION [m/s?]

e —

-1.51 | — PREDICCION | 1
REGISTRADO EN CAMPO |
2 i L i L 1
16 12 14 16 18 20
TIEMPO (s]

Figura 13a). Continuacién



Modelo de plasticidad multiaxial para arcillas 187

2 LSSTO7 - ACELERACION EN SUPERFICIE - COMPONENTE N-S
.5 T T T T T

2f t

ACELERACION [m/s?]

REGISTRADO EN CAMPO

2l ’7— PREDICCION

25 70 12 14 16 18 20
TIEMPO [s}

Figura 13b). Comparacién de la prediccién obtenida con los acelerogramas registrados en
. campo. Ampliacién de la zona entre 8 y 20 segundos

TRAYECTORIA DE DEFORMACIONES' TRAYECTORIA DE TENSIONES
DEF. X2 TENSION XZ

SUPERFICIE LIMITE

Rd= 0.002 R=200; Rd= 35

DEF. XY TENSION XY

Figura 14. Trayectorias de deformaciones angulares unitarias (a) y de tensiones cortantes (b) a
10,71 m de profundidad

CONCLUSION

En este articulo se ha desarrollado un modelo de plasticidad tridimensional de dos super-
ficies para suelos cohesivos con ausencia de rango eldstico, el cual permite la utilizacién de
modelos monodimensionales ampliamente conocidos por la comunidad geotécnica en andlisis
tridimensionales con las direcciones acopladas. Ademds, si se usa el modelo exponencial de
endurecimiento, los pardametros del mismo pueden ser determinados automéaticamente de las
tradicionales curvas de reduccién del médulo a cortante en funcién de la deformacion, y por
lo tanto los datos requeridos son menores que en modelos lineales equivalentes.

Se ha mostrado asimismo un algoritmo computacional para el modelo que evita las
inestabilidades numéricas que pueden surgir por la ausencia de rango eldstico y/o por la
posible naturaleza aleatoria de la excitacién. El algoritmo ha sido ensayado tanto bajo
cargas cuasiestaticas como sismicas, mostrando efectos del acoplamiento no-lineal entre
las diferentes direcciones. Las predicciones son buenas tanto cuando las deformaciones
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son pequenas como cuando son relativamente grandes, debido a que el comportamiento es
realmente no-lineal, y por lo tanto las propiedades del material varian en funcién del tensor
de deformaciones en cada instante. Esto no es posible en programas lineales equivalentes, por
lo que las predicciones de los mismos son tinicamente buenas en ciertos rangos de frecuencia.

No obstante, ¢l modelo necesita ser verificado en andlisis méas complejos de interaccién
terreno-estructura en los que se presenten fenémenos de interferencia y refraccién. Ademas,
es un modelo de cardcter desviador, por lo no es afectado por el valor de primer invariante
de tensiones. Esto implica la imposibilidad de predecir incrementos de presion efectiva y la
aparicién del fendémeno de licuefaccién. Se estd realizando actualmente la adaptacién del
modelo para poder predecir tales efectos.
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APENDICE

Calculo del parametro &
De la definicién de k y 6
6—B):6—p) =R
por lo que
[0 + k(o — 00) — B]: [0 + k(o —00) — B] = R*
y operando y despejando k se obtiene

(o~ p):(0 —00) + [@ =Bl ool Tlo — ol BT —BI) 4,

lo — ool?

k=

Cilculo de k

Partiendo de la misma ecuacién que para el calculo de k£ y tomando su derivada “tem-

poral” ) .
2o + k(o —00) = Bl: [0 + k(o — 00) + k(6 — 0) — 8] = 0

Despejando k, se obtiene

i A+ k)o—p)+ k(1 +k)o—00)]: (6 — ) ~[(0 —B) + k(o — a0)): (43)
(0 — B): (0 — a0) + kllo — oo|]? |
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Célculo de dk/do

De la ecuacién anterior es inmediato deducir el siguiente tensor de segundo orden

ok (1+k)(o—P)+k(l+k)(o—a)

- 44
60 = (0 B)(o—o0) + ko — o’ “
Calculo de la direcciéon de fluencia cuando p — 0
g—i =2(0 —a)
Si p =0, entonces ¢ = a = g4, y por lo tanto haciendo A — 0
af . of o f . .
(%—(o =0y +ho) = 8—0(0 =0o) + @(q =09)ho = 2hl: g
y por lo tanto
o
® =9 o] “

Demostracién de la equivalencia de k(¢) > 0 con f:6 < 0

Por simplicidad se hace la demostracién para el caso de superficie limite fija; esto es
B=0,8=0, 6, =0. Para este caso

i _(+ko+k(+k)(o—ao)

o:(0 — 0y) + kllo — 0y]|? (46)
De la definicién de i
fo 9@
o -a
_o—0o+ 1/(1 +k)og
" o-a 7
_(1+ K)o+ k(1 +k)(o—o00)
(1 +Ek)o — af

Puesto que ambos numeradores coinciden en que (1 + k)%||o — a|| > 0 por ser nimeros
positivos y en que o: (0 — ay) + k|jo — a¢||> = 6: (6 — 04) > 0 debido a la convexidad de la
suerficie limite, ambas condiciones son equivalentes.
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