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SUMMARY

A finite element formulation to deal with the fow of metals coupled with thermal effects is presented.
The deformation process of the metal is treated using the visco-plastic flow approach and the solution
technique for the coupled problem implies a simultaneous solution for velocities and temperatures. Some
aspects of the numericai solution of the problem are given and in the last part of the paper some examples
of steady-state extrusion and rolling problems showing the applicability of the method are shown.

INTRODUCTION

In most metal forming processes the total strains are so large that the elastic deformation can
be considered as negligible versus the plastic or viscoplastic strains, and the state of deformation
can be considered as given by a constitutive law which defines the strain rate as a non-zero
function of stresses ‘

éijzf(o‘kr) (1)

In such cases, the deformation process is equivalent to the flow of a viscous fluid of a
non-Newtonian kind.

This procedure, commonly known as the ‘flow approach’, was first presented in the work of
Goon efal.” Zienkiewicz and Godbole** gave a more general solution for viscoplastic materials.
Many authors®® have presented solutions for pure plasticity which prove.that the flow
formulation is a valuable technique for modelling of metal forming processes.

In general, it is clear that the assumption that metal forming processes are isothermal is not
tenable, and unlikely to be a good approximation as the deformations are very large and
temperature changes occur either due to external/internal sources of heat, or due to the
spontaneous heat generation following the energy dissipation in the plastic deformation process.
In such cases, if the material is temperature sensitive, the deformation process is highly coupled
with the energy balance equation.
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The extension of the general ‘flow approach’ to take into account prescribed temperature
conditions is trivial. Clearly, if the temperature is known a priori and its relation to the yield
stress is given, no additional difficulties are introduced in the nonlinear flow solution. This,
indeed, has been done by Cornfield and Johnson® *a the development of a numerical solution
for hot rolling problems, and extended to the process of dieless extrusion by Price and
Alexander.® Of more complexity is the problem of determining the coupling due to the energy
dissipation, which in turn is dependent on temperature sensitive yield values. Nearly all the
energy dissipated in the plastic deformation process is converted into heat energy and causes
the temperature of the material to rise. Farren and Taylor'® measured both the plastic work
and the temperature rise in a tensile experiment. They found that for steels, copper and
aluminium, the heat rise represents 86-5, 90-5-92 and 95 per cent, respectively, of the plastic
work. The remainder of the plastic work is stored as internal energy associated with the small
scale non-homogeneous deformations that are inherent characteristics of plastic flow. This
energy can be recovered during heat treatment. It is obvious, therefore, that the temperature
rise in a plastic deformation process must be considerable, and that the problem of the
temperature development must be studied in conjunction with the flow process.

The first attempt to solve numerically the thermai problem of plastic deformation was made
by Bishop'* who developed a numerical method to compute the temperature distribution
associated with a plane extrusion problem. He assumed the material to be perfectly rigid plastic
and obtained the flow field from a slip line solution. Such a solution required the yield stress
to be independent of rate and temperature, hence his numerical solution is an uncoupled
thermoplastic one. Later, Altan and Kobayashi®® applied Bishop’s method for finding the
temperature field for the case of axisymmetric extrusion. They obtained the deformation field
through experimental ‘visioplasticity’ methods'* and they used a constitutive equation sensitive
© to both temperature and strain rates. Therefore, their solution is essentially uncoupled.
Basically, the above methods worked in Eulerian co-ordinates and made the approximation
that the process was resolved into two steps, one involving heat generation and transport
(convection) and the other conduction. More recently Sulijoadikusomo and Dillon'® have
calculated the temperature distribution during a transient axisymmetric extrusion process for
a material with temperature-sensitive properties. To calculate the deformation gradient field
again experimental methods were used; therefore, the flow solution was not attempted
analytically and the procedure is similar to that of Altan and Kobayashi but with a Lagrangian
approach instead of an Eulerian one. '

The first attempt to use the flow formulation for solving coupled thermal plastic problems
was made by Zienkiewicz ef al.'® and Jain'” who used a finite element iterative procedure which
follows the lines of (a} solving the flow problem for a given temperature distribution, (b) solution
of the thermal equations for which temperatures are calculated, and (c) repetition of the solution
of the flow problem with the plasticity values adjusted according to the temperature field. They
applied this method to find the temperature distribution for a plane extrusion problem.

In this paper a direct coupled thermal plastic/viscoplastic low numerical solution algorithm
using finite elements is presented. The solution for the temperature distribution is obtained
simultaneously with that for the velocity field. In particular, the general formulation is presented
in more detail for steady-state coupled thermal creeping plastic/viscoplastic flow problems. The
discrete systems of equations for the velocity and temperature fields are obtained by applying
the Galerkin weighted residuals method to the equilibrium equations and to the heat balance
equations, respectively.’'® The incompressibility constraint is imposed via a penalty function
method. The flow and temperature equations are simultaneously solved using a non-symmetric
solver, ’

E‘
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The element used throughout this paper is the nine-noded isoparametric Lagrangian quadri-
lateral with biquadratic shape functions for velocities and temperature. A selective integration
scheme is employed in the evaluation of the terms of the stiffness matrix due to flow. Some
aspects of the numerical solution are discussed, and in the Jast part of the paper some examples
of steady-state plane and axisymmetric extrusion and hot rolling problems are presented.

CONSTITUTIVE RELATIONS FOR A VON MISES TYPE FLOW

If elastic deformations are neglected a general description of behaviour of most materials can
be given in terms of viscoplasticity with the strain rates defined by a relationship of the form

«‘51;' = rijkfo'kl (2)
where
Ffjkr = F(Ekb T) (3)

is a symmetric tensor and T is the temperature,

For a Von Mises type of plastic or viscoplastic material, applicable to metals and many other
materials, the form of matrix I can be easily obtained using Perzyna’s viscoplasticity model,
and equation (2} as shown by Zienkiewicz and Cormeau’® can be written in a manner describing
an isotropic incompressible non-Newtonian fluid with”!S

1
=58y Sy=oy—8&p  p=ou/3 4)
2u
with
_o'y-i-(E:/‘y*./S)”" (5)
- NEY:

In the above, u is the nonlinear viscosity, p is the pressure, v and s are physical constants
for viscoplastic materials,'® oy is the uniaxial yield stress of the material, which in general is a
function of the temperature, pressure, and deviatoric strain invariant . The rate of £ 18 defined
here as

£ = (2é464) (6)
For pure plastic flow the value of y tends to infinity; therefore equation (5) yields
Ty
= + 7
RNEF: o

It is important to notice that for small values of Z the viscosity tends to infinity; therefore in
numerical computation a cut-off value must be chosen.t

1 If the strain invariant, £, js defined as is common in literature by

= 2.

£ = \/(35.75.‘;)
equations (5) and (7) must be subsequently modified to give

oy +E Y

3z
and
o’)’

Hom

3z
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COUPLED THERMAL PLASTIC/VISCOPLASTIC FLOW: BASIC EQUATIONS

As we have already said, in metal forming the deformation process is highly coupled with the
energy balance equations. In this, the temperature development depends on the energy
dissipation occurring in the plastic process at a rate given by

L.
Q= T T (8)

where f is the fraction of plastic work that turns into heat and J is the mechanical equivalent
of heat.
This energy enters the thermal diffusion-convection equation

oT 1 ot
pc[a—t+(VT) u]-—V (kVT)+0O 9)

where T is the temperature, 3/0t the time derivative, p the density, k the conductivity, and ¢
the specific heat per unit volume.

Equation (9) must be solved simultaneously with the incompressible flow equations. These
are

d
(1) Equilibrium Lo + bo— p[—a—?-i— (vu)Tu] =0 (10

(2) Incompressibility m'& = 0 (11)

In the above, b are constant body forces, o and £ are the stress and strain rate tensors,
respectively, written in vector form, u is the true velocity vector, V=[d/dx, 9/ ay]T for plane
and axisymmetric situations, and L and m are matrix operators which can be found in Reference
20.

The stresses, o are related to the strain rate using equation (4) and retaining the mean
pressure as

o=—-mp+uDé a2
Here the strain rate £ is defined as
£=Ln (13)

The particular forms of I for plane and axisymmetric problems can be found in texts.”® The
system is completed by equation (5} and suitable expressions fos the temperature dependence
of the physical properties.

The boundary conditions which need to be specified here are either the velocities

u=u (14a)
or tractions

t=1 {14b)
and the temperature )

T=T (14c)

or heat flow

—kn'VT =g+a(T-T) (14d)
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In the above, the bar denotes a specified boundary value, n is the outward normal to the
boundary and « is a radiation coefficient.

Discretization of the thermal flow equations

The finite element discretization of equations (9); (10) and (11) follows standard patterns.*®
The velocity and temperature fields are expressed in terms of independent nodal parameters
and suitable shape functions as

v=ZX2N;a;=Na
— - (15)
T=2NT;=NT
where for plane and axisymmetric flow (see Appendix I)
u={u, 0], a=[u,v] (16)

Applying the Galerkin method with weighting functions W and W, respectively, to equations
(10) and (9} and rewriting equation (11) in discrete form we have

j BT dﬂ+“ P W (V(Na)T'N dﬂ]a (17)
13 4]
+U WTdeQJia—j waon—J wW'rdlr=0 (18)
I dt o F,

“ {pcWHVNTY Na+AkVWI YR} dQ + J aW'™N dr] T
1) T,

+U chTN} ar_ f Wo cm+f WG —aT)dl=0 (19)
[ dr  in L

In the above, B=LW, B=LN and , q are prescribed tractions and heat flows on the
surfaces I, and T',, respectively.

In this paper the incompressibility constraint, equation (18), has been treated using a ‘penalty
function’ approach18 which allows us to eliminate the pressure, p, writing equation (18) as

m Ba=p/A (20)
where A is a very large quantity (generally this is taken as 107 p). The above equation gives
automatically ‘

p=Am'Ba (21)

and using the constitutive equation equation (12), and equation (21}, the final system of -
equations for the coupled problem can now be written as

M§a+(K+K+I={)a+f=O
(22)

M1T+HT+E=0
dr
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where
0
K;= J (m"B;)"Am"B; dQ) (24)
9]
M, = [ WIpN, a0 25)
M = j WocN, (26)
i, =j Wibodn-| Widr @7
(43 I,
fi= ~J w.0 dQ+J- Wi —aT)dl’ (28)
141 Te
H,.J:J W,pc VN;{Na) dQ+J‘ kYW VN; dQ+J aW;N; dI' 29
n n g
&, = [ pWI(vmNaN, do (30)
1

Equation system {22) can be written as

+K+K 0 f
[ IS S0

0 dr \T 0 HiT i
which can be used to solve transient thermally coupled viscoplastic/plastic flow problems.
System of equations (31) is highly nonlinear and coupled due to the dependence of matrices K,

K, K, H and f on the velocity and temperature fields.
In general the standard practice of taking

W=N, W=N (32)

can be used, providing the convective velocities are small. However, this can lead to instability
and we have used throughout the optimally ‘upwinded’ weighting functions®™* to obtain best
results. This adds little to the computational cost.

It is also worth mentioning here that the convective acceleration terms K are in general
insignificant in metal forming problems. We have, however, retained these in the solution as
the same program is then valid for a wider set of problems. In the solution to be described, very
little additional computational time was added due to retaining of convective terms.

STEADY-STATE COUPLED VISCOPLASTIC THERMAL FLOW

In the problems to be discussed here in detail we have assumed that steady-state conditions
prevail, i.e. that

—a=0; —T=0 (33)
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Steady state plane extrusion: 39 etements
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Figure 1. Plane extrusion: fulf slip boundary
Now the system of equations (21) reducés to
K, +K,+K} 07(a) (f
[ 0 ! HHT}"L{f}:O 34

or Ab+¢=0.
The solution process can now be attempted iteratively. In the examples shown in this paper
we have used a direct iteration scheme giving for the uth iteration

a
b,,ﬂ{ } =—A L8, 35
TS, 1fas (35)
The temperature dependence of the material properties is taken into account together with

the velocity dependence after each iteration defines a new set of material properties applicable
in the next iteration. The iteration process stops when some error norm is satisfied. It is

{al {b) {c)
h
10 1w 10k
9 e §h
[ -5 _
8 10 = B
2 7 L\ Volues X 122:0 o 2
Z = g
- 6 g 10° - s o6
5 2 g 5
w - -7
o4 >~ g - o4
- 3 g s
» &
= 2 107 p- 2 b
2
P 1 =
o 1 { 1 - 10'9 Ly o 1 1 |
1400 1600 180C 2000 1400 1600 1800 2000 1400 1600 1800 2000
Temperature (°F) Temperaiure (°F) Temperature (°F)

Figure 2. The yield stress, oy ; the fluidity parameter v, and the power coefficient 7 as a function of femperature
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important to estimate the error norm separately for velocities and temperature due to their
widely different values. In this paper the convergence of iterations is judged using an Euclidean
norm with an appropriate factor, i.e. requiring that iteration stops when

V(2n 1 =2 (8201 —2,)] < £V (@m,) 6

VUTi1 = T (Tass — T = eV(T7T,)
Here £ = (-01 has been taken.
Some points in the solution procedure need to be mentioned here:

1. Matrices K aEd K are non-symmetric due to the presence of convective terms, whereas
matrices K and K are symmetric if W= N (see equations {23)—(25) and (27}, and in this paper

cm/s
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Uy® 35 cm/s
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500 U 35-:0cm/s

600

1 2 3 4 5 6 7 8cm
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Figure 3. Velocity profiles along A—A (x =11-5 cm}
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a non-symmetric equations solver has been used in the simultaneous solution of system of
equations (34). However, -for creeping flow situations, separate solutions for each of the
equations represented in equation (34) are possible, thus taking advantage of the symmetry of
the matrices K and K. The simultaneous solution, however, has the advantage that hoth
convective and creeping solutions can be incorporated in a single program without adding any
extra cost to the solution.

2. If the dependence of the material propertxes on temperature is very pronounced, oscillations
and Jack of convergence can occur. This may require some under-relaxation procedure and in
our computations in such cases we have used one-half of the temperature change to estimate
the viscosities for next iteration, thus reducing the oscillations. -

3. Finally, we note that for the examp}es shown in this paper a nine- noded biquadratic
isoparametric Lagrangian element’ has been used for velocity interpolation with a selective
integration scheme (3 X3 Gauss quadrature except for the penalty term matrix, K, in which
2 X2 quadrature is used to relax the constraint imposed by the incompressibility in the overall
‘stiffness’ matrix.''**° For temperature interpelation the same kind of elements have been used
and a full 3x3 Gauss quadrature has been employed for all terms of H since no penalty term
is involved.

EXAMPLES

Plane extrusion of Ti-6AI-4V

The first example is a steady-state plane extrusion problem at high temperature with material
properties very sensitive to temperature. The geometry, finite element mesh and boundary
conditions are shown in Figure 1. Frictionless walls have been assumed and steady-state free

A
{a) N
- — — — — =\
- - =
O3 emss [ T T TN L N :
= = ESE\{ = — —
x : ———\@ . > .
o
A
{b) h
- - - —
| e —
| ______Q
U=330cm/s = = Z T = X s =
= = === — e : §
= = Z=== = 5
s ————-. . 5
e
(e} 1;-#\
T T T T Y
- e —
-35. — T T T
u0350cm/sE = ===y N . .
= = :::S}:k\ o 3 = = =
= = — = — ) — — =
T
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Figure 4. Computed velocity fields for various entry velocities -
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surface conditions have been treated adjusting the surface co-ordinates as suggested by
Zienkiewicz et al.'® The temperature at the upstream boundary, T;, is prescribed to 1750°F,
whereas at the downstream boundary a boundary condition of zero temperature gradient,
aT/an =0, is imposed. The free surface has been considered here as insulated (i.e. a =0).
The problem has been studied for three different ram velocities of 0-35, 3-5 and 35-0 cm/sec.
The physical properties of the material can be found in Appendix 1. Also, in Figure 2 the
temperature dependence of some material properties has been plotted.

Results for the computed velocity fields and for the temperature profiles along y =2-5 cm
for the three different entry velocities can be seen in Figures 3, 4(a)—(c) and 5, respectively.
We note that an increase in the velocity at entry causes an increase in the temperature at exit.
Also, in Figure 5 results for the temperature profiles for a constant viscosity corresponding
to values of ¢, etc. at T = 1750°F are given. These results correspond to the uncoupled solution.
The big difference with those obtained using the adequate dependence of the physical properties
on temperature shows that the effect of the temperature on the material properties cannot
be neglected in the numerical solution without leading to gross errors in the temperature
distribution.

| ITAN
% 2810
2350 BE\
>
K ———
2250 —_—y— u, = 0-35cm/s m temperature independen?
—V— U, = 35 cem/s constant material properties
3:5 —#¥— U, = 35-0 cm/s for T=1750°F
v
2150 v \
.
) A
— \
@ V=Y Yy
2 v
o 2050t —O— u, = 0-35 cm/s
g —o— u = 3-5cm/s @ temperature dependent
& —X— u,= 35-0cm/s
1950 & v u, = Velocity af entry , T=1750°F , @ =(37/3n,)=0
*
/ x‘ =
v
1830 - of vjib-o—o-uo-—o—-—o---o--m—o o
O 0-De e g l— 0 ———D o
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/aoe X
1750 / - /)F i 1 | 1 i t I’
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Figure 5. Temperature profiles along y = 2-5 cm for different entry velocities
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Figure 7. Extrusion pressure and effect of radiation

Figures 6(a)—(c) show the isotherms for each of three entry velocities and again the three
different temperature patterns show the big effect of the ram velocity on the temperature
distribution.

The extrusion pressure depends also on the velocity at entry for the coupled problem. Figure
7(a) shows the values of the extrusion pressure for the three different ram velocities. Also in
the same figiire the extrusion pressure obtained with the slip line solution for pure plastic flow
with constant yield for T =1750°F is shown for comparison.

The effect of taking into account radiation effects has also been studied. The value of the
radiation coefficient, o, has been taken as a function of temperature and given by the expression
shown in Figure 7(b). This dependence of « on temperature adds no extra difficulties to the
problem and simply required its value to be updated at the end of each iteration according to
the temperature values obtained. The ambient temperature, T, has been taken equal to 70°F.
The effect of radiation can be seen in Figure 7(b) and as expected causes the temperature near
the surface to drop.
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Results for 9L-S
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Figure 8. Convergence of velocities, temperature and extrusion pressure for coupled temperature/flow plane strain
extrusion problem

Finally, the convergence of the velocity field and that of the extrusion pressure for a ram
velocity of 3-5cm/sec can be seen in Figure 8. It is worth noting that due to the high
dependence of the yield stress of the temperature, it has been necessary to make use of the
under-relaxation mentioned at the end of last section. The temperature field converges more
rapidly than the velocity field and only five iterations were needed to achieve convergence,
whereas 13 iterations were needed for the convergence of the velocities. It is worth noting that
the convergence of the solution with and without convective terms is exactly the same for this
problem.

Hot rolling of a rectangular slab

The process of rolling is, obviously, one of fundamental importance in metal forming. Clearly,
in general the problem is not one of steady-state flow, but if the sheet rolled is of long extent
it can be approximated as such. .

The example chosen here is a plane strain hot rolling problem with the yield stress dependent
on temperature. The problem domain, boundary conditions, finite element discretization and
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Figure 9. Geometrical configuration boundary conditions and finite ¢clement mesh used in kot rolling problem

material properties are shown in Figure 9. Two separate solutions, one using the creeping flow
formulation and the other taking into account the acceleration terms, have been carried out.

The numerical computation does not take into account roll deformation, but friction effects
between roll and slab surfaces have been considered, following the procedure suggested by
Zienkiewicz et al.,'® by imposing a direct proportionality between the pressure, p, and the yield
strength, o, in 2 boundary zone defined by narrow elements. In these

_ { el mpl<a,
a,=4 _ i _
o  lwpl=d,
where 77 is the friction coeflicient and &, is the uniaxial yield stress. In this example, friction
conditions have been imposed using the above equation for the yield stress values for the thin
layer of elements in contact with the roll surface (see Figure 9).

The problem has been studied for two different entry temperafures of 700 and 400K,
respectively. Results obtained with and without convective terms for both velocities and

Temperature ot entry 700K

__M v=30-8 cm/sec
- = =¥

= =
—_ — —— e — J—

u=22-56 cm/sec

TTT7T

.

RN
}
|
PR
T

——— —— —

Tongential vetocity of the roll = 28-73 cm/sec

Figure 10. Computed velocity field—rigid contact between roll and slab assumed
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Figure 11. Horizontal and vertical velocity profiles

temperature are nearly identical. The computed velocity field for both temperatures agree
within 0-1 per cent and it is shown in Figure 10. The horizontal and vertical velocities across
several sections for the rigid contact case have been plotted in Figure 11.

Figures 12(a) and 12(b) show the temperature contours for both entry temperatures,
respectively.

The temperature profiles along the slab surface are shown in Figure 13.

The roll force has been assumed to act midway along the angular arc of contact and be directed
towards the roll centre. With these assumptions, the roll force per unit width is made up of the
resolved components of the nodal forces in contact with the roll in that direction. The roll torque
has been obtained considering the moments of such forces about the roll centre.

Figure 14 shows the values of the roll force and roll torque for different friction coefficients
between slab and roll.
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Figure 12{a). Temperature contours for entry T'=400 K at intervals AT =4-0K.
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Figure 12{b}. Temperature contours for entry T =700 K at intervals AT=1-5K

Convergence of the process is faster than in the previous example due to the dependence of
the yield stress on temperature being less pronounced here. Four and three iterations were
needed for the convergence of the velocity and temperature fields, respectively, whereas nine
iterations were needed for the convergence of the roll force and roll torque values.

CONCLUDING REMARKS

The methods presented in this paper show how a series of previously unsolved probiems
involved in metal forming can be effectively solved. Obviously extensions to differing configur-
ations and to three-dimensional treatment can be made without difficulties. Much detailed
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0 20 40 60 80
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Figure 13. Temperature profiles
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001 o1 05 |Rigid comact]T, °K

fol | 5251 | 10073 | 12975 | 13833 {400

ot | 2241 | 3as4 | 4385 | 5212 {700
Roll

Torque | 6671 | 20277 | 26231 | 28360 [4Q0

kNxem/| 3445 | 7053 | ‘$275 | 0485 |700

Figure 14. Roll force and roll torque for various friction coefficients

research work is now required to study practical problems with differing thermal properties and
to deal with more complex configurations. As we have said at the outset, elastic effects have
been here excluded—but as shown by Shimazeki and Thompson® such effects can be incorpor-
ated in the basic flow formulation if required.
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APPENDIX 1
Material properties of Ti-6AI4V (Reference 15)
Temperature-independent properties:
p=4598-0kg/om’
¢ =834 cal/kg°F
k=1-54 cal/cm.s.°F
J=418-4 Nxcm/cal.
Temperature-dependent properties:
2y
= tion {6
¥ \/(3)(7; (see equation {6))
where ‘
=794-040-0036 x (T —1500)*~3-25x (T —1500);
o, (N/cm®){ = 1400 = T < 1950°F
=61-0; T=<1950°F
=8.2497; T =<1800°F ‘
n{=28-2497—1-37596 x 1072 x (T — 1800); 1800 = T < 2100°F
=4-1218; T =2100°F
=0-343485x107%;  T=<1800°F
, | =0-343485x107°+0-342532 % 107" x (T~ 1500)%; 1800 < T <2100°F
Y 1=0-832265x 1073 +0-294604 x 107" x (T — 1500)°; 2100 =< T < 2240°F
=1-58535; T =<2240°F
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