
15th World Congress on Computational Mechanics (WCCM-XV) 
   8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII) 

Virtual Congress: 31 July – 5 August 2022 
S. Koshizuka (Ed.) 

 
 
 

FINITE ELEMENT QUANTITATIVE ANALYSIS AND DEEP 
LEARNING QUALITATIVE ESTIMATION IN STRUCTURAL 

ENGINEERING 

PENG ZHI¹*, YU-CHING WU¹ 

 ¹Department of Structural Engineering, College of Civil Engineering, Tongji University 
Shanghai, 200092, PR China 

*pengzhi@tongji.edu.cn 
 

Key words: Finite Element, Quantitative Analysis, Deep Learning, Structural Engineering 

Abstract. In the past two decades, finite element method (FEM) has been widely used to study 
mechanics of solids, fluid–structure interactions, and building construction strategies. FEM 
has been rapidly grown all over the world due to development of computer technology. 
Computer has much more powerful computing capability than humans. However, structural 
engineering education not only focused on teaching engineers to use FEM as computation tool, 
but also concentrated on cultivating engineers’ capability of experience-based qualitative 
analysis. In addition, artificial intelligence techniques have been rapidly developed in recent 
years. It is demonstrated that human experience-based capabilities might also be replaced by 
deep learning methods in various game-playing areas. Thus, this study aims at exploring what 
role artificial intelligence techniques will play in the futural structural analysis area. In this 
paper, several finite element analyses are carried out for three representative boundary value 
problems, such as tightly stretched wires under loading, soil seepage, and plane stress. 
Corresponding deep neural networks are trained using FEM simulation data to quickly and 
accurately predict results of relevant problems. It is indicated that to some extent artificial 
intelligence technique might replace human experience-based qualitative analysis as a 
surrogate of FEM. 

 
 
1 INTRODUCTION 
As a numerical method for solving partial differential equations (PDEs), finite element method 
(FEM) is widely used in structural analysis, solid mechanics, seepage, fluid dynamics and other 
engineering problems. Rapid development of neural networks in recent years has provided 
researchers with new directions for solving these problems. For example, one of approaches is 
to directly solve the PDEs equations using neural networks based on physical constraints[1, 2]. 
Raissi et al.[3] proposed physics-informed neural networks (PINNs), and PDE equations are 
combined with loss function of neural network, in which collocation method was used to 
randomly select residual points in the domain for training. PINNs were applied to solve 
problems of fluid mechanics and material mechanics[4, 5]. Lu et al.[6] developed the Python 
library for PINNs, DeepXDE, which could be used as an analytical tool for solving 
computational engineering problems. Samaniego et al.[7] found that in variational format of 
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PDEs, corresponding functional physically represents energy. Training process of neural 
network was to minimize loss function. And the energy form could be used as loss function of 
neural network to solve relevant problems. Another approach was data-based method relying 
on results of FEM. Nie et al.[8] randomly generated a large number of two-dimensional finite 
element samples, in which each pixel represented a four-node element. Geometry, boundary 
and loading information were input in digital form, and stress could be predicted using 
convolutional neural networks. In addition, Jiang et al.[9] used conditional generative 
adversarial networks to study relatively complex two-dimensional mechanical problems. 
Nourbakhsh et al.[10] proposed a general surrogate model for characterizing stress in 3D trusses, 
in which parametric dome, wall, and slab truss structures were used as dataset. In the surrogate 
model, input values were 25 features of an individual truss member, including 22 nodal features 
and 3 member features, and output value was stress. It is demonstrated that artificial intelligence 
techniques have been rapidly developed in recent years. 

However, studies focused on exploring what role artificial intelligence techniques will play 
in the futural structural analysis area are limited. In this paper, several finite element analyses 
are carried out for three representative boundary value problems, such as tightly stretched wires 
under loading, soil seepage, and plane stress. Different material parameters, geometric 
dimensions, and loading are used as features to create the surrogate-based model. 
Corresponding deep neural networks are proposed and trained using FEM simulation data to 
quickly and accurately predict results of relevant problems. Accuracy of the proposed neural is 
demonstrated. It is indicated that to some extent artificial intelligence technique might replace 
human experience-based qualitative analysis as a surrogate of FEM. 

2 DEEP NEURAL NETWORKS 
One of the simplest deep neural networks is the multilayer perceptron, also known as the 
forward neural network (FNN). The multilayer perceptron consists of input layers, hidden 
layers, and output layers. Figure 1 presents an example of a network with a single hidden layer, 
where x  denotes input data, i the number of input units, h  hidden layer, j the number of hidden 
layer units, y  output data, and k the number of output units. 

 
Figure 1: A simple neural network. 
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Formula of the forward propagation of the neural network is given as  
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where jiω , kjω  denote weights, jb , kb  the biases, and σ  the activation function.  
Most of activation functions are nonlinear. Common activation functions have relu function, 

sigmoid function, tanh function, and softplus function, as shown in Figure 2.  
The network uses a loss function to measure error between predicted values y and known 

values 𝑦𝑦�. Commonly used loss function, the mean squared error (MSE), is given as 
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Symmetric mean absolute percentage error (SMAPE), the other loss function used to 
evaluate overall quality of neural network predictions, is defined as 
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Gradients of parameters are calculated by neural network through backpropagation. And 
value of the loss function is reduced through optimization algorithm until predicted values are 
close to known values. 

 
         (a)                                                      (b) 

 
         (c)                                                      (d)  

Figure 2: Common activation functions: (a) relu function, (b) sigmoid function, (c) tanh function, and (d) 
softplus function. 
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Convolutional neural networks (CNNs) can be used to process multidimensional matrices. 
They have been widely used in image processing[11]. Usually, an image consists of two-
dimensional pixels, in which each pixel might contain multiple channels. CNNs are mainly 
composed of convolutional layers and pooling layers. The convolutional layer integrates 
information of all channels by convolution kernels. If multiple convolution kernels are used, 
multiple channels might be regarded as output. Pooling layer aggregates input values to reduce 
sensitivity of convolutional layer into location of features[12]. 

3 NUMERICAL EXAMPLES 

3.1 Tightly stretched wire under loading 
A tightly stretched wire under loading is held at both ends, as shown in Figure 3. Total length 
of the wire is L, internal tension is T, and deflection of the tightly stretched wire could be 
determined based on external loading. The tightly stretched wire is equally divided into 100 
elements with 101 nodes. For the sake of simplicity, it is assumed that loadings act only on 
nodal points. Nodal loadings are randomly generated in the range of 5 N to 50 N. Three different 
loadings are considered as follows. 
Case A. There is totally only one loading subjected on any random nodal point; 
Case B. There are totally 101 loadings subjected on all nodal points; 
Case C. Random generation of any number of loadings from 1 to 101 subjected on any random 
nodal point.  

To clearly visualize nodal displacements during simulation, all nodal displacements are 
enlarged in certain degree, 100 times in Cases B-C, and 1000 times in Case A.  

 
Figure 3:  A tightly stretched wire under loading. 

While loading is considered as the only feature, length of wire L is assumed as 10 m, and 
tension of wire T 6000 N. Loadings are randomly generated in different samples. For each case, 
there are 10000 samples, in which 8000 samples are used as the training set, and 2000 the testing 
set.  

A single-layer perceptron is used without hidden layer. Input vector of the network consists 
of values of nodal loading, or 0 if there is no load on the nodal point. MSE is used as loss 
function. Adam algorithm is used as optimization algorithm, where batch size is 10. 

After the neural network is trained, solutions of three cases all have good accuracy. MSE of 
all tests are less than 0.01. Here stiffness matrices used to calculate nodal displacements are the 
same in different examples. While biases are neglected, weight matrices in the neural network 
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represents flexibility matrices in FEM physically. 
While both loading and tension are considered as features, tension in the wire T is randomly 

selected in the range from 6000 N to 10000 N. It is indicated that stiffness is different for each 
sample. Total length of the wire is given as 10 m. 10000 samples are randomly generated for 
every case. 

Two single-layer perceptron are built, where input data of NN1 consists of 101 loadings, and 
output data 101 node displacements; input data of NN2 consists of T and 101 loadings, and 
output data 101 node displacements. Other assumptions of the neural network are the same as 
above. 

Figure 5 shows MSE of the test set after the neural network is trained. It is indicated that 
accuracy of NN2 is higher than that of NN1 especially in case B, where MSE decreases about 
89%. In the other two cases, MSE decreases slightly. When tension is taken as a component of 
the input vector, it is difficult to find weights and biases using single-layer networks for cases 
of linear relationship between tension and displacement. 

To improve accuracy of neural network predictions, a new neural network architecture is 
proposed. It takes the information of every node as input data, including coordinates, boundary 
conditions, nodal loadings, and tension. If there are n nodes, the vector is x coordinate of all 
nodes of n×1 in size. In the vector of boundary conditions, 1 indicates constrained boundaries 
and 0 free ones. The tension vector is obtained by multiplying its value by an all-ones matrix 
with the shape of n×1. Thus, the input data of the network contains 4 channels, and its shape is 
4×n×1. Batch normalization used after the input layer is helpful to achieve convergence of 
results. To integrate various information of nodes, a convolutional layer is set up. Size of the 
convolution kernel is 3×3, in which padding is 1. There are totally 3 convolution kernels. The 
next layer is the convolution layer of 3×n×1 in size. The third one is the fully connected layer. 
The last is output layer consisting of n nodal displacements. Figure 4 shows the convolutional 
neural network scheme for the tightly stretched wire problem, called NN3, where the number 
of fully connected layer units is 202. 

 
Figure 4:  The convolutional neural network scheme for the tightly stretched wire problem. 
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For the sake of comparison, the same dataset is used for NN3. Figure 5 shows errors of three 
neural networks of the numerical example. For all of three cases, NN3 has the smallest error 
superior to the other two networks, because the convolution layer fully connected with NN3 is 
able to consider nonlinear relationship between input and output. It is indicated that for small 
number of loadings or the sparse loading vector, it is disadvantageous for the neural network to 
find relationship among loading, tension and displacement. For case C, the number of loadings 
is random, and the MSE of NN3 is 0.61. Thus, it is indicated that the neural network has a 
certain generality. 

 
Figure 5:  For three cases (A, B, C), MSE of the test set for different neural networks. 

While length, loading and tension are considered as features, length of the wire L is randomly 
generated in the range from 10 m to 100 m. Likewise 100 elements are divided equally. 
Loadings of case C are applied. Tension in the wire T is randomly generated in the range of 
6000 N to 10000 N. 10000 simulations are carried out using FEM.  

NN3 is used for training, and the batch size is set to 128. After 250 epochs, the MSE is 
basically stable, about 22.8 and SMAPE is about 6.9%. Figure 6 shows the top three maximum 
errors on the test set, and the results of the neural network are very close to the results of FEM 
generally. In addition, it is also found that although the overall error of some samples is small, 
the shape has a large deviation, as shown in Figure 7. Deviation might appear in cases in which 
loadings are relatively sparse. And the corresponding displacement curve might be vibrated. 

 
Figure 6:  The three samples with the maximum error in the test set (The green bar chart above the X-axis 

represents the magnitude and location of loads). 
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Figure 7:  Notable samples in the test set (The green bar chart above the X-axis represents the magnitude and 

location of loads). 

3.2 Flow through porous media 

As shown in Figure 8, a concrete gravity dam has a sheet pile in the upstream face that can help 
to reduce the uplift pressure. Area of the domain is 60 m × 60 m, and boundary condition of the 
bottom side is assumed as the impervious rock. The soil area is divided into 250 three-node 
elements with a total of 154 nodes in FEM analysis, where D denotes depth of the sheet pile, B 
the width, R permeability of soil is assumed as, and Φ the upstream head. Table 1 presents 
minimum and maximum values of FEM parameters given in the flow through porous media 
problem. 

        
Figure 8:  A concrete gravity dam and mesh in FEM. 

Table 1: Values of FEM parameters given in the flow through porous media problem 

 D (m)      B (m)   R (m/day) Φ (m) 
Minimum 5 1 0 5 
Maximum 20 5 0.5 30 

 
For the flow through porous media problem, two boundary conditions are given. One has 

impervious boundaries in the upstream and downstream, and the other one has constant heads 
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in the upstream. In each boundary condition, 10000 samples are generated, in which 8000 
samples are selected as the training set and 2000 samples the test set. 

Neural network is shown in Figure 4. It is noted that the input layer for this problem has 5 
channels, such as x coordinates of nodes, y coordinates of nodes, boundary conditions, 
hydrostatic heads on boundary, and soil permeability. For the vector of the boundary condition, 
1 denotes constrained boundary nodes, and 0 free nodal points. Size of the input data is 5×154×1. 
There are 5 convolution kernels and 308 units of the fully connected layer. Length of the output 
layer is 154. 

After the neural network is trained, MSE of the test set is around 7.9, and SMAPE about 
7.1%. Figure 9 shows four samples randomly chosen in the test set. It can be seen that results 
obtained from the neural network are very similar to solutions obtained from FEM. 

           

           
(a)                                                                                                 (b) 

Figure 9:  Four samples randomly chosen in the test set of (a) constant heads, and (b) impervious boundaries. 

3.3 Plane cantilever beam  
Figure 10 shows a two-dimensional cantilever beam subjected to a uniform downward loading 
at the free end, where H represents its height, L its length, and q uniformly distributed loading 
at the end. The elastic modulus of the material is assumed as E and the Poisson's ratio v. To get 
stress component σxx, domain of the beam is discretized into 64 three-node elements with 45 
nodes in FEM model. Minimum and maximum values of parameters are given in Table 2. 10000 
samples of are generated for artificial neural network analyses. 

 
Figure 10:  A two-dimensional cantilever beam subjected to a uniform downward loading at the free end.       
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The neural network architecture is shown in Figure 4. The input layer for the 2D elastic 
problem has 8 channels, such as x coordinates of nodes, y coordinates of nodes, boundary 
conditions at x direction, boundary conditions at y direction, loadings at x direction, loadings at 
y direction, elastic modulus, and Poisson's ratio. There are 8 convolution kernels and 90 units 
at the fully connected layer. Stress component σxx is taken as output.  

Table 2: Minimum and maximum values of FEM parameters for the cantilever beam. 

 H (m) L (m) q (N/m) E (Pa) v (-) 
Minimum 10 2H 0 1×106 0 
Maximum 50 3H 100 1×107 0.5 

 
After the neural network is trained, MSE of the test set is about 53.1, and SMAPE 

approximately 4.3%. Figure 11 illustrates four samples randomly chosen from the test set. 
Results of the neural network are in great agreement with ones from FEM. It is indicated that 
the proposed neural network can predicts contours of stress field very well. For some sample 
with large MSE, there is a certain deviation of stress, but the general trend is almost the same.  

     

      
Figure 11:  A comparison between solutions from FEM and ones of neural network for the cantilever problem 

4 CONCLUSIONS  
In this paper, the deep neural network is proposed to qualitatively analyze three representative 
boundary value problems. The proposed neural networks consist of convolutional and fully 
connected layers. Information of each node is regarded as input data, such as nodal coordinates, 
boundary conditions, loading, and material parameters. For the tightly stretched wire problem, 
while wire length, loading, and tension of the wire are randomly generated, SMAPE of the 
neural network is about 6.9% for the test set. For the flow through porous media problem, while 
pile size, upstream hydrostatic head, and soil permeability are randomly generated, SMAPE of 
the test set is about 7.1%. For the plane cantilever beam problem, height, length, loading, elastic 
modulus, and Poisson ratio are randomly generated, SMAPE of the test set is about 4.3%. It is 
demonstrated that neural networks can make good qualitative analysis for general boundary 
value problems. It is indicated that to some extent artificial intelligence technique might replace 
human experience-based qualitative analysis as a surrogate of FEM. 

In this paper, it has been proved that results obtained from the surrogate is basically 
consistent with the finite element solution, but it is just the first step. There are still several 
interesting questions remaining unknown. For instance, under what scenario could the surrogate 
model be implemented? How much computational time is saved? What is scope of the artificial 
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neural network? Can it become a surrogate of overall structural optimization design? In addition, 
some mathematical investigation should be carried out. For example, what is effect of selection 
of basis functions on accuracy of structural analysis? Why can all problems be solved with high 
accuracy by adding hidden layers? The above questions are expected to be further discussed in 
futural researches. 
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