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"ABSTRACT

o A consistent formulatlon for umlateral contact problems mciudmg frictional work hardenmg or softening
" is proposed. The approach is based on an augmented Lagrangian approach coupled to an implicit quasi-static
‘Finite Element Method, Analogous to classical work hardening theory in elasto-plasticity, the frictional

“work is chosen as the interpal variable for formulating the evolution of the friction convex. In order to-
facilitate the implementation of a wide range of phenomenological models, the friction coefficient is defined
‘in a parametrised form in terms of Bernstein polynomials. Numerical simulation of a' 3D deep- drawing
operation demonstrates the performance of the methods for predicting frictional contact phenomena in
the case of large sliding paths in¢luding high curvaturés.
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_ - - INTRODUCTION
- In spite of recent advances in the field of computational contact mechanics, most applications
reported in the literature are still restricted to Coulomb’s law of perfect friction {constant friction
. coefficient over the entire process). It is well known that such a simpilified theory may represent
~only a limited range of tribological situations'~*. The state conditions of surfaces in contact and
.consequently the friction behaviour, are influenced by a number of complex phenomena related
to wear such as chemical reactions, abrasion of coatings etc.>®. Especially for configurations

involving large sliding paths, or many repetitions of the same process which is typical for many
metal forming operations, the evolution of surface characteristics may become particularly

" important in the definition of the friction behaviour.

This paper constitutes an attempt to reduce the gap between computational modelling of
‘complex frictional contact problems ‘and physical evidence in practice. Coulomb’s law is
implemented in a generalised form in order to take into account the evolution of the friction
convex as a function of relevant internal variables. To keep the mathematical model general
and numerically robust,.the friction coefficient is defined in a parametrised form using as
" polynomial basis Bernstein functions of arbitrary degree®**. In a first approach, the influence
- of thermal and chemical effects on the evolution of surface chara'cteristics is neglected and the
- ‘main assumption is that only the frictional work dissipated at the interface between workpiece

- -and tools constitutes the internal variable for the evolution of the friction behaviour. -

Within the last few years, one of the most popular approaches for solving frictional contact
problems was the augmented Lagrangian method, initially introduced by Hestenes'? and Powell!?

© .~ for non-linear programming problems with equality constraints. It was extended to treat convex
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differentiable optimisation problems with inequality constraints like the frictionless contact
problem by Rockafellar'*. Lately, within the context of Finite Element Methods, augmented
Lagrangian approaches have been successfully applied to frictionless*>'¢ and frictional contact
problems!”2°. Coupling the augmented Lagrangian approach and the Finite Element Method
vields a mixed formulation where the kinetic variables and the static ones (frictional contact
forces) are the final unknowns of the problem. In this paper a Newton-like-iteration for static
and kinematic variables is performed and the solution of the unilateral contact problem and
the friction problem is obtained simultaneously.

The description is given in the following manner. A contact mechanics summary provides the
necessary background and motivation. Although being essentially a review of classical contact
and friction laws using the formalism of Convex Analysis*#, this summary conveniently provides
a'foundation for the gensralisation of Coulomb’s classical law in order to take into account
frictional work hardening/softening. The derivation of a frictional contact operator based on an
augmented Lagrangian approach where special attention is paid to take into account the curvature
of the contact surface is also-discussed briefly. The performance of the method is demonstrated
-on the example of a deep-drawing simulation of a square cup. The frictional work dissipated in
the interface between forming tools and metal sheet, as well as the variation of the friction
coefficient, are presented

CON’I‘AC’T MECHANICS BACKGROUND

In the followmg we restrict our attention to the problem of finite deformation of a discretized
body of the boundary I'**/ which is constrained by the presence of a rigid, instationary obstacle.

Kmemattcs of curved contact

We note X the current posmon of node of T/ W1th réspect to a global cartesian reference
system. Using an updated Lagrangian formulation,.the current position () is defined by an
initial position X, being the equilibrium position of the prior load step and the corresponding
displacement vector i, such that: X(1)= X +u.

To define the relative displacement of the bodies, it is convenient to take the rigid obstacle
for reference and to describe the relative motion of the deformable body with respect to it (see
Figure 1. _

The potential contact surface can be identified with the boundary of the deformable body

node of T¥f

_relative ﬁ'aject'ory

af .
.zr:f’ PP"l .

interior of the obstacle’

..Figufe I -Local contact k1nemat1cs-«mult1ple solation of projection: (P""’»‘ ), (PEred, 7
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I'*¢/ (or a part of it) and is described with reference to a local frame on the boundary of the
rigid obstacle I, In classical approaches the kinematics, as well as the contact and friction
laws, are written with respect to a fixed local frame, evaluated currently by.the orthogonal -
projection of X on I'™ at the beginning of each step. This is straightforward for flat contact
probiems but in the case of curved contact, partwularly if large slip increments occur, this
strategy is not efficient.

In this paper, the local frame defined by the outward unit normal vector nfi) to I'"4, is
considered to be unknown at the beginning of each load step, thus varying within the iterative
solution of the equilibrium equations due to the curvature of I,

Normal distance
An appropriate expression for the szgned normal distance d" between a node and the obstacle

requires the calculus of an implicit local reference position Prroi (1) on the obstacle. This reference

position is defined by the orthogonal préjection of the current pos:twn of X() on I'™, thus
changing during the equilibrium iterations:

vE@ere,  Pri(eargmin[li—%),  Zel'?] (1)

* The local frame and ‘specially 7i(#) associated to each node, is evaluated in P*i(z), yielding
the following definition of the signed normal distance:

VR, @(E)y=nT@)- [3@)— Proi)] ' 2

" In the case where I is defined by polynomials (for example Bézier surface patches?5-27),

numerical methods have to be used to compute the orthogonal projection defined by (1) and
its assomatcd normal vector?!-23,

Tangential slip increment

In order to evaluate the relative tangential velocity 3 between a node of I"“f and the rigid -
obstacle, first a reference position X%/ on I has to be computed. .

It is emphasized that a reference p031t10n is associated to each node of I/ whether the node
is in contact with I or not. In spite of the contact status independent definition of PProi(ij)
irivolved in that of the normal distance d" (Cf. (2)), an appropriate definition of X" ¢/ for the

_calculus of (Sf depends on the prior contact status (gap, contact).

In the case that a node was in contact at the solution of the prior time step, the reference
position can be determined exactly because it can be derived from the last equilibrium position,
such that: ¥/ (u) = X +AU where AU is the displacement increment of the obstacle. :

In the case that'a node gets into contact during the actual time step the calculation of the
impact-reference position is less trivial and mainly two procedures are used: either a projection
of X on I or an 1mpact search strategy. The reference position by projection is obtained by
solving (1) where X(i) is replaced by X. As depicted in Figure I, the solution of problem (1) is
generally not unigue, (that is why the symbol . in (1)) reqilires additional criteria to select a
proper solution. In the case that there exist multiple solutions on different surfaces (for example
different patches of a CAGD-model®*°, procedures to select a proper solution can be found
in'®2! In the case that there are several solutions on one surface patch, the uniqueness of the
projection might be obtained by the concept of focal point locus?®. Referring to the particular
kinematical configuration shown in Figure 1, the solunon of the impact search strategy (i.e. X
which is based on the relative displacement between X and I would be unique. However, it
should be mentioned that the a priori more precise impact search strategy is numerically less
robust than the projection and yields only a solution, if the relative displacement in between X
and I is nonzero (for more details see References 21, 23). ;

In the case of an incremental solution of quasi-static field probiems the relative tangentla}

- velocity &, involved in the formulation of the friction law, ¢an be replaced directly by the
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Figure 2 Unilateral contact law-—Contact pressure inclusion 4*

corréspondiﬂg slip increment S=3At Using again the outward norma] (1) in P”"’*‘(")el"‘"’ the '
tangential component of the relative displacement increment can be written as™®:

8(id) = (X — @A™ (@))6 = (A — @A @)(E) — 3*7) e

 Contact and frzctzon laws

For measuring the relative motion of two bodxes candidate to contact, kinematic variables

have been introduced. Interaction of the bodies is enforced by the corresponding static variables,

" ie. frictional contact forces after discretization. It is convement to resolve the contact force A
into normal and tangential components:

I=2ri+ 4 , @)

Inthe following, we formulate the normal contact law and proceed with the frictional contact
law.. ' '

Unilateral contact law -

‘Usually, two exclusive contact status: gap (d" >0, 4%= () or contact (d" =0, A" <0) are classically
formulated by an impenetrability condition, a compression condition and a complementarity
condition: ' '

=0, <0, rdr=0 - (5)

The multivalued contact law A™(d"} and its inverse d"{1") can be shown to derive from two
conjugate pseudo- (i.e. non-differentiable) potentials, in the form of two similar inclusions:

redypid)  or  dedys () ' (6)
where wg:“_ is the indicator function of the positive half line, g . its sub-dlfferentlal and g . it
conjugate** .

Law of contact with perfect friction

Coulomb’s classical law states that two. bodies in steady contact either stick to each other or’
they slip on cach other along a same direction. These two exclusive status are traditionally
“expressed by a slip rule, friction criterion and a complementarity condition:

= ES‘;EI— (slip rule)
7y
}i‘ié —-,ul” (friction criterium) _ .
g |&I0A + pAm) =0 (comblementarity coxﬁaitionj : @)

* dcsignates the identity tensor of second order ‘
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Figure 3 Slip rate inclusion 8 —Friction shear inclusion Af

-where the frlction coeﬁiaent u, still is assumed to be constant. As for unilateral contact, the
multivalued slip law 5‘() " and its inverse, the multivalued friction law i{5", can both be shown
to derive from two conjugate pseudo-potentials, in the form of two different inclusions (see
Figure 3}

S edYeamX) ot TedEad9,  A"<0
where :
C={Fd+pir<0y (8)

It shouid be noted that in qu3.31 -static cases, the slip rate & must be approxzmated by slip
increments &. Due to the homogeneity of the normal cone &y ¢y, this operation simply consists
in replacing in expression (8) the slip rate ' by the increment &°

According to Coulomb’s classical law, the friction shear is proportional to the contact pressure.
Unfortunately, this coupling is not symmetric: the contact pressure is independent of thf: friction
shear but the friction criterium depends on the contact pressure.

Generalised law of frictional contact with hardemng/softenmg

In the following Coulomb’s classical law is generalised in order to formulate the evolution of
the friction convex as a function of some internal variables. Disregarding anisotropic friction?9-3°,
only the friction criterion and the complementary condition have to be rewritten in a more
general form:

| A~ u(B)A™ (generalised friction criterium)
|81 24+ #(6)A") =0 (generalised complementarity condition) ‘ 9)

where u(6) presents now the generalised friction coefficient which is assumed to be a function
of the single parameter f. This parameter might be a function of different state variables like
for example the relative sliding velocity or the temperature, as well as a function of internal
variables like the cumulated slip or the frictional work.

Analogous to classical isotropic work hardening thieory in plasticity, it is assumed that the
frictional work constitutes the internal variable for formulating the evolution of the friction
coeflicient. Taking into account that the numerical analysis of a metal forming operation requires
. an incremental approximation of the process, the frictional work associated to a node of I/
is obtained by summing up the integrals with respect to each.load step interval At. Thus, the
increment of the frictional work AW¥(t) is computed by mtegratmg the frictional contact forces
over the sliding path s(u(t))

t+A:

AWt + ADIE + AB) = J (o) 3@t (10)
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and the actual frictional work at time ¢+ At of a node of I/ is defined by:
W+ At At + Af) = (), 2) + AW (e + Ar), Mt + AD) RS

Anticipating that the variation of the friction coefficient within one load step is relatively
small, its value can be updated in an explitic manner and in this case 3(@u(t) in (10) can be
replaced by the slip increment &'. Thus, at convergence of each incremeént, the computed frictionat
work of each contact node constitutes the internal variable for formulating_the evolution of the
associated friction convex C(¥(z).u(z), A(t) Taking into account that ¥(u(t),A()) is formulated in
terms of the mixed squUon (@(t)),A(1)), each contact node is endowed with an independent
evolutive friction convex. By adopting an evolutive generalised Coulomb law, the frictional work

u(r) A(t)) at time t becomes the internal variable for the definition of the friction coefficient

R(PG(E). A1) = L) AN ,

In the following we will formulate the friction coefficient by a parametrised polynomial curve
using as polynomial base Bernstein functions of arbitrary degree m®*~''. Adopting as polynomial
base Bernstein functions has the advantage that also higher order curves can be constructed
with only one curve segment with less tendency to introduce oscillations like for example Lagrange
polynomials. The parameter 8(¢) of the polynomial curve is defined by:

o@D 2}?% for  WED,AD) S '
BEDIN=1  for YEOM) > P , (12)

where Pt can be interpreted as a threshold in order to take into-account that the friction -
coefficient approaches after preliminary work hardening/softening a constant value for the case
that the frictional work exceeds a certain limit. From a practical point of view, this particularlty
of the mathematical formulation is well suited for the phenomenologmal modelling of processes
where running in effects have to be taken into account in the friction behaviour. Accordingly
.., presents a cut off value for the friction coefficient which is imposed if the frictional work
exceeds P, Thus the evoiutwe friction coeﬂiment is defined as: -
WLOCEENION = 5. B(OP,  with  6e[0.1] )

. . i=0
where ‘B, ,(6) is the i* Bernstein function of degree m:

ml (14)

B, (0)=CLo{1—6r~  with  Ci=—
T il(m i)t

and the polynomial coefficients P, define the work hardening/softening of the friction convex.
Taking advantage of the properties of a curve which is defined by Bernstem functions, a physical
meaning can be associated to the coefficients Py and P,

For a particle (or node after Finite Element dlscretxzatmn) which has suffered no frictional
work, we can derive from (12} and (13): ‘

WO=0)= = z B 0OP=P; | (15)
and analogously fora part:cle where the frictional work exceeds the threshold P
H(O= 1= pl= Z B..()P=P, (16)

Thus PG' is identified as the classical friction coefficient of Coulomb's law without friction
hardening and the coefificient P,, is the friction coefficient corresponding to the cut off value
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,ulcm The remamlng cocffients P;fori=1, .., (m—1) define the shape of the friction hardening
curve as a function of the frlctxonal work

From a practical point of view, the polynomial curve defined in (13) enable to present a wide
range of phenomenological models, but unfortunately there is still a lack of experimental data
in order to 1dent1fy the coefficients P

 MIXED FORMULATION FOR CURVED CONTACT

For a complete formulation of the frictional contact problem, the differential inclusions (6) .and
(8) have to be added to the equilibrium equations of the deformable body. Assuming formally
the existence of a differentiable total energy functional ®(7) for characterizing the elastic response
“of the deformable body, as well as the external forces, coulping contact and friction reduces to
_addlng the two correspondmg pseudo-potentiais to the potenna] O(v):

ti = argmin{®(3) + Vs , [ (0] + ¥ &y [3GLD} (17)

It is mentioned that (17) states the problem of a single load step of an incremental analysis.
-1t is recalled that the variation of the friction coefficient during one load step is assumed to be
so small that it is sufficient to perform after the solution of (17) only an updating of the generalised
friction coefficient corresponding to the evolution of the frictional work.  Consequently the
[frictional work does not appear as an extra stored free energy term in (17).

In order to take into account large slips on curved surfaces the k1nemat1c (contact) variables
aré written as a function of the virtual displacement v and of the solution u:

d@=F1(PiE)-[3E) - Pri@]  and  FED=I—R@T@IED-F)  (18)

Although the normal distance d" is a complex funcuon of 7, it can be proved (see. Reference 16)

“that its gradient is equivalent to the normal vector nT(P""”(")) as for flat contact. Consequently,
the system of equations deriving from a quasi-Lagrangian is not medified by the curvature and
the expression proposed by Alart & Curnier’” is recovered.

It is mentioned that, the problem (17) can not be considered as a standard optimisation

- problem because the objective function depends on the virtual variables v and also on the solution
4, because of the dependence of Coulomb’s cone C(4) on the solution # through A"

In order to translate expression (17)into a set of equations which are suited for implementation
in a computer code, an augmented Lagrangian approach is adopted*? %, In the following, only
the final expression of the resulting frictional contact operator will be presented and for a
theoretical discussion it is referred to!7-21-23, _

A couple (i4,4) is solution of an equilibrium under constraints due to frictional contact, if the
following system of equations is satisfied: '

S Rt )

From a mechanical point of view, expression (19) presents for each node of I a system of
equations with six unknowns (3D) where we can distinguish between kinematic variables
(#-primal) and static variables (A-dual). Referring to the first line of expression {19) and anticipating
that there are no explicitly imposed external forces, V;0(x) presents the internal forces and Fe(u, 1)
imposes the constraints due to frictional contact. Thus we can interpret the suboperator F*{(i,1)
as the ‘equilibrium operator’, singe equilibrium of a node of ¥/ can be written as: V;®()+ F** (1,
J{) =0. The function of F=rr. (i, A) is to introduce the additional equations necessary to ev&luate
the frictional contact forces according to (6,8). .

In order to define the explicit expressions ‘of the frictional contact operator, an augmented
- multiplier for curved applications is introduced:

- G = "GN + 51 = (W) +rd G + (@) + 8@ =1+ rd" @G + (@) (20)
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Remembenng that the outward normal #(i) to_the obstacle. depends on the solution 4, also .
the decomposition of the frictional contact force 7 into normal and tangential components has
to be written as a function of (#,4):

_ FEA)y=7-#H)  and, respectively, ' A, Jy=i— A”(u W) (21
Introducing a projection operator, noted proj, the frictional contact operator can be defined:
Fee(iL, 1) = proje;_{& "(ﬁ,z)}ﬁ(ﬂ) + DI i Cigroj_[ova AT A} <2)

and, respectively:
’ L —_ -y ) 1 - PP N . ) ‘ ’ ;
. Fsupp!.(u’ﬂ') —-— [/1 _ Feqm(u’l)] - (23)
r .

It is worth-while to.mention that the projection operator appearing in (22,23) is due to the -
inequalities inherent in the contact and friction laws and is necessary'for formulating these laws
in terms of equations instead of inequalities A crucial point involved in the derivation of the

_proposed augmented Lagrangian consists in replacing the classical convex of Coulomb’s law
C(A") by the ‘augmented’ one C(proju_[o"(@,a])1 2123,

In the following, the contact friction operator corresponding to each contact status is derived
from (22} and (23). In classical approaches the contact status is exclusively determined by either
kinematic or static variables, whereas the augmented multiplier has the inherent advantage to

~ be a linear combination of both.
Absence of contact is detected if the normal component of the augmented mulupher satisfies
¢" 20, yielding:

y . [0
S if a">0$gap=>F*||gap(u,/l)={ l}i} (24)

A sticking nodt‘: is detected if 18"+ u(@)o" <0, and the correspondmg sub- operators are
evaluated to:

(25)

lf ia’.tl +=,u(9)é'" <0$Stick=§’F*Hsrick(ﬁ,I) . {0‘ (H,/].)Tl(ﬁ) +0o (u;/l)} .

A (@Y + (%)

Analogously for a sliding node the tangential force has to hold: 6"+ ,u(ﬂ)cr”“)O and we can
derive from (22) and (23) the corresponding sub-operators:

o (L D7) i) £, )]
if 31+ p(0)o” >0 slip=TF* 1) = { DA e (26)
i @A) — G + uO)o" @Dt (,)]
where the tangential slip d1rect1on umt vector is defined by:
2o F) ) :
t{ti,A) = @7

|G @D

Recalling that the coupled equatlons (19) are in general highly non-linear due to frictional
contact, as well as due to the non-linearites resulting from large transformations and material
laws; iterative methods have to be resorted in order to attempt a solution, The authors confirm
a satisfactory performance of the simultaneous solution of the mixed system (19) by a
Newton-like-iteration scheme. In the next section, the correspondmg contact Jacobian matrices
will be presented.

Jacobian matrices of the contact friction operator for curved contact

In order to preserve quadratic convergence when a Newton type solution scheme is used,
~ countributions of geometric terms arising from the gradient of the unit normal vector at contact
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points have to be taken into account. Since the generalised friction coefficient is kept constant
over each load step of an incremental analysis, thus being updated only at convergence of the
iterative solution of (19), no additional terms have to be taken into account for evaluating the
tangent contact operator. _ 4

In analogy to the tangent stiffness matrix of a finite element, the elemental contact Jacobian
J*(1i,1) is defined by the following operation:

- —

[V F (7] . [ViEi )]

-'J*(l.")“’{WJW;(&’,I)J v | “

'Taking'into account (24} we obtain as elementar}‘r contribution for a node in gap:
Vu FiéQui V ieizm' " B Oi‘ . Oi’ _""
me[f £ VS 3]= a1 0} 45103 29)
_ _ [Vqu ] [VAIF ] | [0;] £—_TI wld
Deriving (25), the elementary contributions for a sticking node are evaluated fo:

{a"m,i’)ﬁf@+az{aﬁ)}}_ [ [Py+Cy] 'Ui,a] o
{dm@+36} J H=123 (30)

stick =
J {Vuﬁvlj} { —[%(Plf -+ CE)] [Oij]

‘where the second order tensor Py; presents the ¢contribution which is independent of the curvature:
Pij;r[IU'_ninj'*' nivujd"] (31)

“The contributions due to the curvature of the obstacle are a function of the gradient of the -
normal to the obstacle V,n:

Cy=~ri+dn)V,nn,  and  Ch= —r(GmV, +8,1,9,n) (32)

Recalling that the gradient of the normal distance V,d" is equivalent to the normal n; at the
respective contact point (see also Reference 16) and taking advantage of the fact, that the imposed
spatial position of a sticking node is independent of the curvature of the obstacle {for more
details see Reference 21), the elemental contribution to the Jacobian matrix of a sticking node

~can be simplified to: - o
g =[[’I ul U"f]] Bj=123 (33)
' ¥ ij} [Oij] -
Analogously, the slip Jacobiah_is evaluated to:
i - |:[er;+ Nikvujnkj [Mij:i

P _ [Mz‘j+%NikVujnk] [HM— 1]

The term which is independent of the obstacles curvature is: o _
My=[n—pt}V, 2"+ pll;;— ny— ;) - (35)

" The supplementary curvature terms can be identified, since they are c':oupled. to the gradient '
V1 (see (34)): .

] =123 (34

Ny=MIn—pt]+ "Iy — (A +rdn— (}vp + rap)np(tftk —Iy)] (36)

. Since the term p(I;;—nm;~t¢;) appearing in (35) vanishes for 2D applications, it can be
identified as the specific 3D term. We mention that (34) does not depend on the geometrical
description of the obstacle. For the particular case that the surface is defined by an implicit
_ functé?rzl,gtglg term NV, can be splitinto an intrinsic curvature term and a coupled 3D-curvature
term” 70T T -
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NUMERICAL EXAMPLE

In the following deep-drawing simulation frictional hardening/softening is taken into account,
but it is emphasized that the phenomenological model used is not based on experimental data.
From a practical point of view, it is very difficult to measure a local variation of the friction
coefficient and experimental data suitable to identify the parameters of the proposed generalised
Coloumb law is not available yet.

- The frictional work hardening/softening curve is defined by a Bernstein polynomial of degree
m=3 using uniform parametrisation (see (13)). For convenience it is imposed that P, =P, and
P,=P,. As a consequence of this, the resulting. curve has an asymptotic behaviour at both
extremes, is antisymmetric with respect the coordinates (6= 1/2, = 1/2(1t];;, + #l..)) and is entirely
defined by three constants, namely an initial friction coefficient for zero frictional work u(0)= ], .,
and a cut off value of the friction coefficient p(1)= ., corresponding to a frictional work of |
{see Figure 4), "

For discretizing the metal sheet eight node solid finite elements had been used. The formulation
is characterized by the following features: updated Lagrangian formulation for small elastic-
finite-plastic strains, Hill’s orthotropic yield function with isotropic hardening and associated
flow rule. In order to avoid locking or hourglassing, a selective reduced integration scheme is
used®!*2_In the following examples, the load step increment is controlled by a R, strategy3!32

- which coansists of adapting automatically the step size in such a way that some limitations on

the increments of internal variables like stresses or rotations are not violated.

Deep drawing of an aluminium square cup ] -

The following deep-drawing simulation of an aluminium square cup has been proposed as
one of the benchmark tests of the NUMISHEET93 conference®**4, The tool dimensions are
illustrated in Figure 5 and a summary of the input data for the numerical simulation is given in
Table 1.

Taking advantage of two symmetry planes, only a quarter of the sheet is discretized into 625
eight node solid finite elements. The blankholder is controlled by a kinematic schedule instead

. of a prescribed global force. This implies that the blankholder force which is applied on the
sheet results from the unknown equilibrium configuration. The initial position of the blankholder
(Le. for zero punch travel) is such that the space in between die and blankholder is equal to the
initial sheet thickness. While the punch is travelling 30 mm downwards, the blankholder is

“moving 0.5 mm upwards such that the space in between blankholder and die is varying linearly
from initially the sheet thickness up to the sheet thickness plus 0.5 mm space at the maximum

punch travel. = : | .
CUCOR O
. ﬁ(ﬂsﬂ) g;nia
o o
Cp(0=1) |
o[ ((2), X(6))]
o[® ] =1

nguré 4 P}ienomenoiogical hibdel of frictional contact with hardening
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Figure 5 Tool dimensions—deep drawing of a square cup
Table I Sumimary of input data—-square cup
Initial sheet geometry:
width/2 - oL 75 mm
iength/2 - L . ©- 75mm |
. thickness : ) . - 0.81 mm
Formutation: ’ i : - " Updated lagrangian
Constitutive equation o * isotropic, elasto-plastic, large transf. .
- ‘Gauss integration pattern .. selective reduced integration (B)
Matemal data:’ ' N :
Young's modulus E, Polsson s rat:o v _ © 7 E=71 GPa, v=033
. Consts. of Swifts law, ¥=Clg,+ &7 ST £0:0.01658, C=:0.576 GPa, n=0.36
Control data of frictional contact: S —_—
Penalty factor. _ 70 Nm
Initial friction coefficient yl;,;, . e 0.16 : .
Cut off friction coefficient i, o001 :
Cut off frictional work Wi - . - . 2 Nm

F or the entire szmulatxon 550 1ncrements have been used correspondmg to 30h CPU time on
a SilconGraphics/Indigo XS 24 computer.

The Figures 5 and 7 show the frictional work dissipated in between the formmg tools and the
deforming blank, each figure for 15mm and 30mm punch travel respectively. In particular
Figure 6 shows the frictional work distribution with respect to the outer side of the square cup,
i.e. the face which is interacting with the die. Analogously Figure 7 presents the distribution of

- the frictional work due to frictional contact of the sheet with the punch and the blank holder

(inner side of the square cup). It should be noted that in order to make apparent the profiles of

the frictional work, different scaling has been used during postprocessing.
- Considering the frictional work distribution- of the inner face of the deformed sheet (see
Figure 7), it can be seen that there are two very small regions where high frictional contact occurs
" .close to. the curved corner of the blank holder. 1t can be stipulated that these regions with high
local frictional contact occur because the sheet tends to build up wrinkles which are prevented
by the blank holder. Further on it can be concluded that fnctzonal contact in between punch
. and sheet occurs exclusively at the punch radius. :
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Figure 6 Frictional work aftér 15 mm and 30 mm punch stroke (in [NmJ}—outside of square cup

Comparing the quantitative values of the frictional work distributions of the outer and inner
side of the sheet, it is observed that the frictional work dissipated between the die and the sheet
'is much higher than inside the square cup due to the interaction of the sheet with the punch.
Referring to Figure 6, it is shown that the highest wear is to be expected at the die radius, in
particular at the straight parts of the die radius, ie. in between the corners of the die.
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-t

Figure 7 Frictional work after 15 mm and 30 mm punch stroke (in [Nm])-~inside of square cup

According to. the phenomeériological model used to describe the evolution of the friction
coefficient, the distribution of the friction coefficient after 15mm and 30 mm punch travel is

shown in Figure 8. It can be seen that the distribution of the friction coefficient corresponds to
the profile of the frictional work (Figure 6). ’
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Figure § Distribution ‘of friction coefficient after 15 mm and 30 mm punch stroke—outside of square cup

CONCLUDING REMARKS :
Inspired from an augmented Lagrangian approach, a mixed formulation for unilateral contact
problems including frictional work hardening/softening has been presented.

Analogous to classical work hardening theory in plasticity, it was assumed that the frictional
work constitutes the internal variable for the evolution of the generalised Coulomb’s cone.
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However, any other phenomena which are of importance for the friction behaviour might be
. included easily in terms of internal variables in the definition of a generalised evolutive friction
convex domain. In the proposed mathematical model, the evolution of the friction coefficient
was defined by a polynomial curve using Bernstein functions as basis. An advantage of this
" choice for the polynomial basis is that also curves of relative high order ¢an be constructed by
~only one curve segment with less tendency to introduce oscillations. Thus friction hardening
and/or softening which might be preliminary to running in to a constant value, can ‘be modelled
easily without need for fitting different polynomial curve segments.

In spite of the generality of the mathematical formulation, being well suited to take into account
4 'wide range of phenomenological models, the lack of available experimental data is a major
_ obstacle for implementing more advanced realistic frictional contact models.

Using a Newton-like-iteration for kinematic and static variables, the solution of the frictional
contact problem is simultaneous. The méthod has proved to be efficient to handle large slips
over curved surfaces even if strong material non-linearities like in the case of elasto-plasticity
_-have to be taken into account. Since the contact algorithm requires no discretization of the-
contact surfaces, it operates directly on parametric polynomial surface patches or geometrical
entities defined by implicit functions, both issued from Computer Aided Geometrical Design.
- In particular if the contact surfaces involve important curvatures, a discretization of the geometry
by linear surfaces has to be avoided. The arguments are that first the number of patches necessary
to describe a curved. geometry would augment considerably, thus resulting in a higher
-computational effort for the contact search and secondly, the requirement for smooth surfaces
with preferably at least C'-continuity can not be fulfilled with linear surface patches.

Three-dimensional simulations of metal forming operations have given promising results and
it is expected that the application of the presented model, fitted with appropnate experimental
data, will improve the quality of numerical simulations.
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