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Abstract

A stabilized semi-implicit fractional step finite element method for solving cou-
pled fluid-structure interaction problems involving free surface waves is presented.
The stabilized governing equations for the viscous incompressible fluid and the
free surface are derived at a differential level via a finite calculus procedure. A
mesh updating technique based on solving a fictitious elastic problem on the mov-
ing mesh is described. Examples of the efficiency of the stabilized semi-implicit
algorithm for the analysis of fluid-structure interaction problems in totally or
partially submerged bodies is presented.

1 Introduction

Accurate prediction of the fluid-structure interaction effects for a totally or par-
tially submerged body in a flowing liquid including a free surface is a problem
of great relevance in civil and offshore engineering and naval architecture among
many other fields.

The difficulties in accurately solving the coupled fluid-structure interaction prob-
lem in this case are mainly due to the following reasons:

1. The difficulty of solving numerically the incompressible fluid dynamic equa-
tions which typically include intrinsic nonlinearities except for the simplest
and limited potential flow model.

The obstacles in solving the constraint equation stating that the fluid parti-
cles remain on the free surface boundary which position is in turn unknown.

N

3. The difficulties in predicting the motion of the submerged body due to
the interaction forces while minimizing the distortion of the finite elements
discretizing the fluid domain, thus reducing the need for remeshing.



This paper extends recent work of the authors [1-5] to derive a stabilized finite
element method which overcomes the above three obstacles. The starting point
are the modified governing differential equations for the incompressible viscous
flow and the free surface condition incorporating the necessary stabilization terms
via a finite calculus (FIC) procedure developed by the authors [6-11]. The FIC
approach has been successfully applied to the finite element and meshless solution
of a range of advective-diffusive transport and fluid flow problems [1-13].

The stabilized governing equations are written in an arbitrary Lagrangian-Eulerian
(ALE) form to account for the effect of relative movement between the mesh and
the fluid points. These equations are solved in space-time using a semi-implicit
fractional step approach and the finite element method (FEM). Free surface wave
boundary effects are accounted for in the flow solution either by moving the free
surface nodes in a Lagrangian manner, or else via the introduction of a prescribed
pressure at the free surface computed from the wave height.

The movement of a fully or partially submerged body within the fluid due to the
interaction forces is treated by solving a structural dynamic problem using the
fluid forces as input loads. A method to update the mesh in the fluid domain
following the movement of the submerged body with minimum element distortion
is presented. The mesh update procedure is based on the finite element solution
of a linear elastic problem on the mesh domain, where fictitious elastic properties
are assigned so that elements suffering a larger straining are stiffer [14].

The content of the paper is structured as follows. First, details of the stabilized
form of the governing equations for a viscous flow and the free surface using a finite
calculus procedure are given. The semi-implicit fractional step approach using the
FEM is then described. Details of the computation of the stabilization parameters
are also given. Next the mesh updating procedure is presented. Finally, the
efficiency of the method proposed is shown in the 3D analysis of the standard
square cavity problem and of several fluid-structure interaction problems with
free surface waves.

2 Finite calculus formulation of fluid-flow and
free surface equations

The finite element solution of the incompressible Navier-Stokes equations with
the classical Galerkin method may suffer from numerical instabilities from two
main sources. The first is due to the advective-diffusive character of the equations
which induces oscillations for high values of the velocity. The second source has
to do with the mixed character of the equations which limits the choice of finite
element interpolations for the velocity and pressure fields.

Solutions for these two problems have been extensively sought in the last years.
Compatible velocity-pressure interpolations satisfying the inf-sup condition em-



anating from the second problem above mentioned have been used [15-17]. In
addition, the advective operator has been modified to include some “upwind-
ing” effects [18-25]. Recent procedures based on Galerkin Least Square (GLS)
[26,27], Characteristic Galerkin [28,29], Variational Multiscale [30-32] and Resid-
ual Free Bubbles [33-35] techniques allow equal order interpolation for velocities
and pressure by introducing a Laplacian of pressure term in the mass balance
equation, while preserving the upwinding stabilization of the momentum equa-
tions. Most of these methods lack enough stability in the presence of sharp layers
transversal to the velocity. This deficiency is usually corrected by adding new
“shock capturing” stabilization terms to the already stabilized equations [36-37].
The computation of the stabilization parameters in all these methods is typically
based on “ad hoc” generalizations of the parameters for the 1D linear advective-
diffusive-reactive problem [38,39)].

Applications of stabilized GLS FEM to fluid-structure interaction problems, mainly
of aerolastic type, have been reported in [41-50].

Introduction of the free surface boundary condition in the flow equations increases
considerably the difficulty of solving fluid-structure interation problems using
FEM. A review of these difficulties and some solution procedures can be found
in [51]. Another successful application of stabilized FEM to free surface wave
problems was reported in [52].

This paper presents a different approach for deriving stabilized finite element
methods for incompressible flow problems with a free surface. The starting point
is the stabilized form of the governing differential equations derived via a finite
calculus (FIC) procedure. This technique first presented in [6,7] is based on
writting the different balance equations over a domain of finite size and retaining
higher order terms. These terms incorporate the ingredients for the necessary
stabilization of any transient and steady state numerical solution already at the
differential equations level. Application of the standard Galerkin formulation to
the consistently modified differential equations for the fluid flow problem leads
to a stabilized system of discretized equations which overcomes the two problems
above mentioned (i.e. the advective type instability and that due to lack of
compatibility between the velocity and pressure fields). Application of the FIC
method to the free surface wave problem leads to a new stabilized governing
equation for the free surface which again can be solved numerically by standard
Galerkin FEM. In addition, the modified differential equations can be used to
derive a numerical scheme for iteratively computing the stabilization parameters
[7-9].

Ilinca et al. [40] have recently proposed a stabilized FEM for incompressible
advective-diffusive transport and fluid flow problems based on applying the stan-
dard Galerkin technique to the modified governing differential equations obtained
by expanding the residuals around a known finite element solution using Taylor se-
ries. The set of modified equations ressembles those obtained by the FIC method
using a conceptually different procedure.
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Initial applications of the FIC method to solve free surface ship wave problems
were reported in [1-5]. Idelsohn et al. [51] have shown that starting from the
stabilized FIC form of the free surface equation allows the identification of a
number of stabilized upwinding finite difference schemes traditionally used for
solving free surface problems in naval architecture.

The FIC formulation presented in this paper for incompressible flows with a free
surface can be considered an extension of that recently developed in [10] for finite
element analysis of incompressible Navier-Stokes flows. A new formulation of the
stabilized governing differential equations via the FIC method is here presented
which holds for the viscous (Stokes) and zero viscosity (Euler) limit cases. The
stabilized fluid flow equations are completed with the FIC form of the free surface
wave equation following the ideas first presented in [2]. The set of stabilized
governing equations is first discretized in time and then solved in space using a
Galerkin finite element method.

A semi-implicit fractional step procedure is used for the momentum and mass
balance equations allowing for equal order linear interpolations of the velocity
and pressure variables over tetrahedral elements. Examples of application of
the new stabilized finite element formulation to the standard square cavity flow
problem and to a number of free surface ship-wave problems, including coupled
fluid-structure interaction situations, are presented.

For the sake of preciseness, the basic ideas of the FIC method are given next.

2.1 Basic concepts of the finite calculus (FIC) method

Let us consider a sourceless transient problem over a one dimensional domain
AB of length L (Figure 1). The balance of flux ¢ over a domain of finite size
belonging to L can be written as

ga—gq =0 (1)

where A and B are the end points of the finite size domain of length h. As usual
g4 and ¢p represent the values of the flux ¢ at points A and B, respectively.

For instance, in an 1D advective-diffusive problem the flux ¢ = —cu¢ + k%‘f,
where ¢ is the transported variable (i.e. the temperature in a thermal problem),
u is the advective velocity and ¢ and k are the advective and diffusive material

parameters, respectively.

The flux g4 can be expressed in terms of the values at point B by the following
Taylor series expansion

dq h? d%q
QA=QB_h5;B+?w|B+Oh3 (2)



Substituting (2) into (1) gives after simplification and neglecting cubic terms in
h
e ®)

where all terms are evaluated at the arbitrary point B.

Eq. (3) is the finite form of the balance equation over the domain AB. The
underlined term in eq.(3) introduces the necessary stabilization for the discrete
solution of eq.(3) using any numerical technique. Distance A is the characteristic
length of the discrete problem and its value depends on the parameters of the
discretization method chosen (such as the grid size [6—1(?). Note that for A — 0

the standard infinitesimal form of the balance equation (% = 0) is recovered.

dz
The above process can be extended to derive the stabilized balance differencial
equations for any problem in fluid or solid mechanics as

=0 (4)

where 7; is the standard form of the ith differential equation for the infinitesimal
problem, h; are the dimensions of the domain where balance of fluxes, forces,
etc. is enforced, and j = 1,2, 3 for 3D problems. It is important to note that the
numerical solution of eq.(4) (together with the appropriate stabilized boundary
conditions) using Galerkin FE or central finite difference schemes leads to stable
results [6-11]. Details of the derivation of eq.(4) for steady-state and transient
advective-diffusive and fluid flow problems can be found in [6]. Applications of
the FIC approach to the solution of these problems using Galerkin finite element
and meshless procedures are reported in [1-13].

The underlined stabilization terms in eqs.(3) and (4) are a consequence of accept-
ing that the infinitesimal form of the balance equations is an unreachable limit
within the framework of a discrete numerical solution. Indeed eqs.(3) or (4) are
not longer valid for obtaining an analytical solution following traditional integra-
tion methods from infinitesimal calculus theory. The meaning of the new stabi-
lized equations makes sense only in the context of a discrete numerical method
yielding approximate values of the solution at a finite set of points within the
analysis domain. Convergence to the ezact analytical value at the points will
occur only for the limit case of zero grid size (except for some simple 1D prob-
lems [6,11]) which also implies naturally a zero value of the characteristic length

parameters.

2.2 FIC formulation of viscous flow and free surface equa-
tions

We consider the motion around a body of a viscous incompressible fluid including
a free surface.



The stabilized FIC form of the governing differential equations for the three di-
mensional (3D) problem can be written in Arbitrary Lagrangian-Eulerian (ALE)
form as [2,3,10]

Momentum

Mass balance

Free surface

1, Org 1 Org _
Tﬁ—ihﬁj%—ﬁvﬁ_o OIlng _]—1,2 (7)
where
B Ju,; Ou; Op  Omy
Ty = R { ot v a—zJJ dz; Oz, (8)
aui .
Ty = . i=1,23 (9)
_ 9B, o .
rg = o +'Uza—zi*'U3 1=1,2 (10)
and ,
Vo= U — U (11)

Above, u; is the velocity along the ith global reference axis, u™ is the velocity of
the mesh nodes and v; is the relative velocity between the moving mesh and the
fluid point i, p is the (constant) density of the fluid, p is the dynamic pressure
defined as p = %pa — gx3 where p, is the absolute pressure and z3 is the vertical
coordinate, § is the wave elevation (measured with respect to a reference flat
surface) and 7;; are the viscous stresses related to the viscosity u by the standard

expression
Ou;  Ouy; 1 Ouy,
b = — = — ;- 12
Ty = H <8:Ej + Ox; 738&%) (12)
where d,; is the Kronecker delta.

The boundary conditions for the stabilized problem are written as

1
njﬂj -+ ti + ahmjnjrmi ={ ol Ft <13)
u; —uf =0 on I, (14)



where n; are the components of the unit normal vector to the boundary and ¢;
and u} are prescribed tractions and displacements on the boundaries T'; and T,
respectively.

The underlined terms in eqs.(5)—(7) introduce the necessary stabilization for the
approximated numerical solution.

The characteristic length distances h,,; and hg represent the dimensions of the
finite domain where balance of momentum and mass is enforced. On the other
hand, the characteristic distances hg; in eq.(7) represent the dimensions of a finite
domain surrounding a point where the velocity is constrained to be tangent to
the free surface. The signs before the stabilization terms in eqs.(5)—(7) and (13)
ensure a positive value of the characteristic length distances. The parameters ¢§
and v in egs.(5) and (7) have dimensions of time. Details of the derivation of egs.
(5)—(7) can be found in [2,6,10]. As an example, the stabilized equation for the
free surface (eq.(7)) is derived in the Appendix.

Eqgs.(5-14) are the starting point for deriving a variety of stabilized numerical
methods for solving the incompressible Navier-Stokes equations with a free sur-
face. It can be shown that a number of standard stabilized finite element methods
allowing equal order interpolations for the velocity and pressure fields can be re-
covered from the modified form of the momentum and mass balance equations
given above [6,10].

Remark 1

In reference [10] a modified version of the Dirichlet condition (14) is used includ-
ing an additional stabilization term. This term is not strictly necessary for the
subsequent derivation and will be neglected here.

2.3 Alternative form of the mass balance equation

Taking the first derivative of eq.(12) gives (assuming the viscosity x to be con-

stant) 5 5
Tij K OTq
= pAu; + £

Ozvj

(15)

where A = 0:1:?221- is the Laplacian operator. Substituting eq.(15) into (5) gives

after algebraic rearrangement,

no sum in 2

(16)

org ([ p N PURm, - [F _ him, O, N PUiRm, Ora 6 OTim,
Oz;  \3 2 ™2 Oz 2 Oz, 2 Ot

where
1 Org

ga.’ﬂi

(17)

Tm; = Tm; +



and 7,,, is given by eq.(8).
Inserting eq.(16) into eq.(6) gives

T4+ C (fmi = h;"’v 8(97;:: PUithi g;cj _ gig:) =0 nosumin % (18)
with .
g = <32T;: + E%"*) no sum in % (19)
Extracting the pressure terms from the brackets in (18) gives
’p
Td — Qiim +r,=0 (20)
with
Tp = Cifm, — gij“g_ (rm — b @> Pisfim; O _ 0 O, no sum in i (21)
0z, Oz, 2 Oz, 2 0Ot
where

4p 2puihm,
9ij =

-1
Shahm, | Bl > no sum in % (22)

Note that for A,,, = ha, = h where h is a typical grid dimension (i.e. the average
element size), the value of g;; is simply

(4 2pui>‘1
9= <3h2 R

The stabilization parameter g;; has now the form traditionally used in the GLS
formulation for the viscous (Stokes) limit (u; = 0) and the inviscid (Euler) limit
(u = 0) and deduced from ad-hoc extensions of the 1D advective-diffusive prob-
lems [18-28]. Note, however, that the general form of the stabilization parameter
gi; is deduced here from the general FIC formulation without further extrinsic

assumptions.

Indeed, the precise computation of the characteristic length values is crucial for
the practical application of above stabilized expressions. This problem is dealt
with in a later section.

3 Fractional step approach

The momentum equations (5) are first discretized in time using the following
scheme

At ou} Op* Ot  hp, O, 6"Or,

& T p PYj 8:vj+8xi Oz, 2 Oz 2 Ot (23)




Eq.(23) is now split into the two following equations

At Ou; 0Ty Py OT, 6 Orm. 1™
ik = n —_ . — S 2 . i | 2
i i p [pvj dz; 0% 2 Oz, 2 Ot J (24)
, At Op™
n+1l __ R —
Uy = U p axi (25)

Note that the sum of eqs.(24) and (25) gives the original form of eq.(23).

Substituting eq.(25) into the stabilized mass balance equation (20) gives the stan-
dard Laplacian of pressure form

At o\ 0% .
<'—p—' + gii> a.'L',ia[L'i = Td + Tp (26@)
where
. oy

Standard fractional step procedures neglect the contribution from the terms in-
volving g;; in eq. (26a). These terms have an additional stabilization effect which
improves the numerical solution when the values of At are small. Also the influ-
ence of the stabilization term g;; has proven to be essential for obtaining a fully
converged solution in steady state problems (see the square cavity example in a
next section). Indeed accounting for this additional stabilization term has lead
to improved numerical solutions in all problems solved. Similar conclusions have

been reached in a recent work by Codina [59].
2

Note that the cross-derivative terms have been kept within the term s

z;0%;
in the r.h.s. of eq.(26a). The influence of these terms should be studied in more
detail in the future.

The stabilized free surface wave equation (7) is discretized in time to give

W08° . hg Or 40D
on 9T _ v 9Ts

i é)a:l- A 2 aiZIj 2 at b= 1,2 (27)

frH = g — At |v

A typical solution in time includes the following steps.
Step 1. Solve explicitely for the so called fractional velocities u; using eq. (24).

Step 2. Solve for the dynamic pressure field p™ solving the Laplacian equation
(26a). The dynamic pressures at the free surface computed from step 6 below, in
the previous time step, are used as boundary conditions for solution of eq.(26a).

Step 3. Compute the velocity field u™ at the updated configuration for each
mesh node using eq.(25)



Step 4. Compute the new position of the free surface elevation 87! in the fluid
domain by using eq.(27).

Step 5. Compute the movement of the submerged body by solving the dynamic
equations of motion in the body subjected to the pressure field p™ and the viscous
stresses 73t

Step 6. Compute the new position of mesh nodes in the fluid domain at time
n + 1 by using the mesh update algorithm described in the next section. The
updating process can also include the free surface nodes, although this is not

strictly necessary.

Assuming air is at rest, the absolute pressure at the free surface at time n + 1
obtained from the stress equilibrium condition (neglecting surface tension effects)
as

Pa = T33 (28a)

The dynamic pressure at the free surface is computed by

- n+1
oo -

where g is the gravity constant.

As already mentioned, the effect of changes in the free surface elevation are in-
troduced in step 2 of the flow solution as a prescribed dynamic pressure acting
on the free surface. Note that eq.(28b) allows to take into account the changes
in the free surface without the need of updating the free surface nodes. A higher
accuracy in the solution of the flow problem can however be obtained if the free
surface nodes are updated after a number of time steps.

4 Finite element discretization

Spatial discretization is carried out using the finite element method [15]. The
stabilized formulation described allows an equal order interpolation of velocities
and pressure [10,15]. A linear interpolation over four node tetrahedra for both wu;
and p is chosen in the examples shown in the paper. Similarly, linear triangles
are chosen to interpolate [ on the free surface mesh. The velocity and pressure
fields are interpolated within each element in the standard finite element manner

as
w=3, Nj(us), (29a)

pi = ZNj(iﬁj) (290)

where N; are the linear shape functions interpolating the velocity and pressure
fields, respectively, and (-) denote nodal values [15].
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Similarly the wave height is discretized as
8= Y Ny, (%) (30)
J

where N, are linear shape functions defined over the three node triangles dis-
cretizing the free surface.

The discretized integral form in space is obtained by applying the standard
Galerkin procedure to eqgs.(24),(25),(26a) and (27) and the boundary conditions
(13). Solution of the discretized problem follows the pattern given below.

Step 1. Solve for the nodal fractional velocities

4" = M~HP (31)
with
£, " n
f2 fkl
fn == : ) fl? = f/cQ (33)
f‘n Jks
At Ou;  hm, OT, 00T, \ 1"
[ o B0 2 S0
flci /Q k{u P <pvja$j 2 0$k 2 Ot ) -
At ON, At
/_ SrndQ— | = Nypdl , i=1,2,3 (34)
Qp 0:133- rL p

The solution of eq.(31) can be speeded up by diagonalizing matrix M. Alter-
natively a simple Jacobi iteration procedure can be used and this has proved to
converge in very few iterations.

No boundary condition is applied when solving for the fractional velocities u} in
eq.(31) as these velocities can be interpreted as a predicted value of the actual
velocities. The kinematic boundary conditions (14) are applied in step 3 as shown
below.

Step 2. Solve for the nodal pressures at time n

Hp" =q" (35)
[ ON, (At ) ON,
Hy = /Q T, <7+gii> 52, 0 (36)

kil



aNk p At ‘
i ’.‘dQ—/N."dQ / P2 )
Qk /S; axi ul Q kTP + r Nk At ( ,0 + gzz) ’U,2 n dP (37)

The last integral in eq.(37) can be neglected in solid walls and stationary free
surfaces where the normal velocity is zero.

Recall that the dynamic pressures computed from step 6 are used as a boundary
condition for solution of eq.(35).

Step 3. Solve for the nodal velocities at time n+1

At = M~ (38)

where M is given by eq.(35) and

do (39)

The kinematic boundary conditions on the nodal velocities (eq.(14)) are imposed
when solving eq.(38).

Step 4. Solve for the new free surface height at the time n+1

The new free surface elevation 8"*! in the fluid domain is computed as

,Bn+1 _ MElsn (40)
with
M; = /F NINdl (41)
8
apr v Org hg, ONjg,
{3 1a™ — At [ 2= — n_ 7B j] /_J Bi
" s Na {6 <Uk Oz, BT > al'+ s 2 Oz redl’ (42)

In the derivation of eq.(42) the assumption that rg = 0 at the boundary line of
the free surface domain has been made.

Steps 5 and 6 follow the process described in the previous section.

5 Computation of the stabilization parameters

Accurate evaluation of the stabilization parameters is one of the crucial issues in
stabilized methods. Most of existing methods use expressions which are direct ex-
tensions of the values obtained for the simplest 1D case. It is also usual to accept
the so called SUPG assumption, i.e. to admit that vector h,, has the direction of
the velocity field [6,10]. This unnecessary restriction leads to instabilities when
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sharp layers transversal to the velocity direction are present. This additional defi-
ciency is usually corrected by adding a shock capturing or crosswind stabilization
term [36-38].
Let us first assume for simplicity that the stabilization parameters for the mass
balance equations are the same as those for the momentum equations. This
implies

by = B (43)
The problem remains now finding the value of the characteristic length vectors
h,,. Indeed, the components of h,, can introduce the necessary stabilization along
both the streamline and transversal directions to the flow.

Excellent results have been obtained in all problems solved using linear tetrahedra
with the same value of the characteristic length vector for the three momentum
equations defined by

u Vu
he——
T

where u = |u| and hs and h, are the “streamline” and “cross wind” contributions

hy =k

7

i=1,2,3 (44)

o=
U

given by

hs = max(l]u)/u (45)
he = max(l] Vu)/|Vu| , j=1,n, (46)

where 1; are the vectors defining the element sides (n, = 6 for tetrahedra).

An alternative method for computing vector h,, in a more consistent manner is
explained in the next section.

As for the free surface equation the following value of the characteristic length
vector hg has been taken

LY SRY/A (47)

hg = h, .
Py T v

The streamline parameter has been obtained by eq.(45) using the value of the
velocity vector u over the 3 node triangles discretizing the free surface and n, = 3.

The cross wind parameter has been computed by

- 1

he = max[IIV(]— , j=1,2,3 48
Note that the cross-wind terms in eqs.(44) and (47) account for the effect of
the gradient of the solution in the stabilization parameters. This is a standard
assumption in most “shock-capturing” stabilization procedures [36-39)].

Regarding the time stabilization parameters ¢ and 7 in egs.(5) and (7) the value
§ = v = At has been taken for solution of the problems presented in the paper. A
more consistent evaluation following the diminishing residual technique described
next is described in [9] for transient advective-diffusive problems.
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5.1 Computation of the characteristic length parameters
via a diminishing residual procedure

The idea of this technique first presented in [6] and tested in [7-9,11] for advective-
diffusive problems is the following. Let us assume that a finite element solution
for the velocity and pressure fields has been found for a given mesh. The point
wise residual of the momentum equation corresponding to this particular solution
is (assuming § = 0 in eq.(5))

1 e
1 m;
mi = Tm; — =Hm. 49
T 1 T 7 2 ] azj ( )
The average residual over an element can be defined as
1) — 1 R 9) (50)
™00 Jae ™

Let us assume now that an enhanced numerical solution has been found for the
same mesh and the same approximation (i.e., neither the number of elements nor
the element type have been changed). This enhanced solution could be based,
for instance, in a superconvergent recovery of derivatives [15,53,54]. The element
residual for the enhanced solution is denoted by 27"7(7‘2. The element residuals must
obviously tend to zero as the solution improves and the following condition must
be satisfied

trle) _2p(e) > (51)

m;

The above equation applies for 'r{&) > 0. Clearly for 'r{2) < 0 the inequality in
eq.(51) should be changed to < 0.

Substituting eq.(49) into (51) and applying the identity condition in eq.(51) gives
the following system of equations for each element which unknowns are the char-
acteristic length parameters for the element

Ahl® = £ (52)
with
29r(e)  19p(e)
A, = 2 LLC A e 53
g [c‘)x] 0117]} ( )

fi = W10 (54)

The following “adaptive” algorithm can be proposed for obtaining a stabilized
solution:
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1. Solve for the numerical values of nodal velocities and pressure, for an initial
value h(® = °h(®). Compute r{®)

i

2. Evaluate the enhanced velocity and pressure fields. Compute 2T£53.
3. Compute the updated value of h{®) solving eq.(52).

4. Repeat steps (1)—(3) until a stable solution is found.

The above strategy can be naturally incorporated into the transient solution
scheme previously described by simply updating the value of h(®) after the solution
for each time step has been found.

The assumption hy = h,, can be relaxed and an independent value of the char-
acteristic length vector hy for the mass balance equation can be found following
a similar approach as described above for computing h,,.

6 A simple algorithm for updating the mesh
nodes

Different techniques have been proposed for dealing with mesh updating in fluid-
structure interaction problems. The general aim of all methods is to prevent
element distortion during mesh deformation [41-51].

Chiandussi, Bugeda and Ofiate [14] have recently proposed a simple method
for the movement of mesh nodes ensuring minimum element distortion. The
method is based on the iterative solution of a fictious linear elastic problem on
the mesh domain. In order to minimize mesh deformation the “elastic” properties
of each mesh element are appropiately selected so that elements suffering greater
movements are stiffer. The basis of the method is given below.

Let us consider an elastic domain with homogeneous isotropic elastic properties
characterized by the Young modulus E and the Poisson coefficient v. Once a
discretized finite element problem has been solved using, for instance, standard
C° linear triangles (in 2D) or linear tetraedra (in 3D), the principal stresses 'o;
at the center of each element are obtained as

‘o, =Ele; —v(e; +e)] 4,5=1,2,3 for 3D (55)
where ¢; are the principal strains.

Let us assume now that a uniform strain field ¢; = & throughout the mesh is
sought. The principal stresses are then given by

20, = FE&(1—2v) i=1,2,3 for 3D (56)

where E is the unknown Young modulus for the element.
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A number of criteria can be now used to find the value of £. The most effective
approach found in [14] is to equate the element strain energies in both analysis.
Thus

Ui = ‘oiei=E[(e] + &5 +€3) — 2v(e1en + e9e3 + £163))] (57)
Uy = 208, =3E8%(1-2v) (58)

Equaling eqs.(57) and (58) gives the sought Young modulus E as

E

E=mn-w)

[(8% + E% + Eg) — 21/(6162 + E9€3 + 5163)] (59)

Note that the element Young modulus is proportional to the element deformation
as desired. Also recall that both F and € are constant for all elements in the mesh.

The solution process includes the following two steps.

Step 1. Consider the finite element mesh as a linear elastic solid with homogeneous
material properties characterized by F and v. Solve the corresponding elastic
problem with imposed displacements at the mesh boundary.

Step 2. Compute the principal strains and the values of the new Young modulus
in each element using eq.(59) for a given value of Z. Repeat the finite element
solution of the linear elastic problem with prescribed boundary displacements
using the new values of £ for each element.

The movement of the mesh nodes obtained in the second step ensures a quasi uni-
form mesh distortion. Further details on this method including other alternatives
for evaluating the Young modulus £ can be found in [14].

The previous algorithm for movement of mesh nodes is able to treat the movement
of the mesh due to changes in position of fully submerged and semi-submerged
bodies. Note however that if the floating body intersects the free surface, the
changes in the analysis domain geometry can be very important. From one time
step to other emersion or inmersion of significant parts of the body can occur.

A possible solution to this problem is to remesh the analysis domain. However,
for most problems, a mapping of the moving surfaces linked to mesh updating
algorithm described above can avoid remeshing (Figure 2).

The surface mapping technique used in this work is based on transforming the 3D
curved surfaces into reference planes. This makes it possible to compute within
each plane the local (in-plane) coordinates of the nodes for the final surface mesh
accordingly to the changes in the floating line. The final step is to transform
back the local coordinates of the surface mesh in the reference plane to the final
curved configuration which incorporates the new floating line [5].
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7 Examples

All the examples shown next have been solved in a standard PC Pentium IT 450
Mhz with a memory of 128 Mb.

7.1 Example 1. Square cavity problem

The purpose of this example is to test the stabilized formulation presented in
the solution of a standard benchmark problem solved by a number of authors
[22,23,40,59]. Figure 3 shows the definition of the problem solved with an un-
structured mesh of 7395 linear tetrahedra for a Reynolds number value of 1.

The steady-state solution was sought using the stabilized fractional step algorithm
previously described. Results in Figure 4a,b are tabulated for the horizontal ve-
locity along the vertical centerline of the mid-section and for vertical velocity and
pressure along the horizontal centerline of the same section. Numerical results
are fully stable and agree well with similar solutions reported in the mentioned
reference. The effect of the stabilization term g;; in the pressure equation (see
eq.(26a)) is seen clearly in Figure 4c. The curves in this figure show the conver-
gence towards steady state of the Loo norm of the nodal pressures with time.
The curve listed as “standard” is obtained neglecting the stabilization term g;;
in eq.(26a), whereas the second curve shows the convergence when this term is
taken into account. The difference between the two curves is noticeable as the
error obtained with the fully stabilized solution is several orders of magnitude
smaller than that obtained neglecting the term g;;.

7.2 Example 2. Submerged NACA 0012 profile

A 2D submerged NACAO0012 profile at oo = 5° angle of attack is studied. This
configuration was tested experimentally by Duncan [55] for high Reynolds num-
bers (Re=400000) and modelled numerically using the Euler equations by several
authors [50,51,52,56]. The submerged depth of the airfoil is equal to the chord
and this was used as the length (L) for normalizing the problem. The Froude

number for all the cases tested was set to Fr = I = 0.5672 where u is the
incoming flow velocity at infinity.

The stationary free surface and the pressure distribution in the domain are shown
in Figure 5. The non-dimensional wave heights compare well with the experimen-
tal results of [55].

7.3 Example 3. Sphere falling in a tube filled with liquid

The movement of a sphere falling by gravity in a cylindrical tube filled with liquid
is studied. The relationship between the diameters of the sphere and the tube is
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1:4. The Reynolds number for the stationary speed is 100. The mesh has 85765
elements with 13946 nodes (Figure 6).

Figures 6 and 7 show the mesh deformation and contours of the mesh deformation
and of the velocity in the domain for different times, respectively. The evolution
of the falling speed is shown in Figure 7c. Note the good agreement with the
so called Stokes velocity computed by equaling the weight of the sphere with
the resistance to the movement of the sphere expressed in terms of the velocity.
Obviously, this value is slightly greater than the actual one as frictional effects
are neglected.

A similar problem for a much greater number of spheres has been solved by
Johnson and Tezduyar [47].

7.4 Example 4. Movement of a submerged sphere in an
open channel

Figure 8 shows the geometry of the channel and the position of the sphere of 2m
diameter with a weight of 1000 N and a rotational inertia of 1000 kgm?. A mesh
of 19870 linear tetrahedra with 4973 nodes has been used for the analysis.

The problem has been analyzed for values of Reynolds number = 200 and Froude
number = 0.71, corresponding to a velocity of 1m/s at the inlet.

It is assumed that the sphere can only move vertically and rotate around the
global y axes due to the forces induced by the fluid. The vertical displacement
is constrained by a spring linking the sphere to the ground. An initial vertical
velocity of 1m/s for the sphere has been taken.

Figure 8 shows a plot of the time evolution of the vertical displacement of the
sphere. The contours of the velocity module in the fluid on two perpendicular
planes at different times is shown in Figure 8b. The deformation of the free
surface at t = 0.47 s. and 3.16 s. is shown in Figure 8c.

7.5 Example 5. Interaction of a rigid vertical cylinder
with a moving stream

The definition of the problem is clearly seen in Figure 9a. The cylinder diameter
is 2 m and the stream speed is 1 m/s. The Froude and Reynolds numbers are 1.0
and 200, respectively. The walls of the cylinder are assumed to be rigid in this
case. A mesh of 35567 tetrahedra and 4670 nodes is used for the analysis.

Figure 9b shows the contours of the velocity module and the vertical displacement
in the mesh for a time t = 4.57 s. Note the important deformation of the free
surface in this problem.
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Experimental | Numerical
Test 1 5.2 1073 491073
Test 2 5.2 1073 5.3 102
Test 3 49103 5.1 10—3

Table 1: Wigley Hull. Total resistance coefficient

7.6 Example 6. Wigley hull

The last case considered here is the well known Wigley Hull, given by the ana-
lytical formula y = 0.5B(1 — 422)(1 — 22/D?) where B and D are the beam and
the draft of the ship hull at still water.

The same configuration was tested experimentally in [57] and modelled numer-
ically by several authors [50,51,52,58]. We use here an unstructured 3D finite
element mesh of 65434 linear tetrahedra, with a reference surface of 7800 trian-
gles, partially represented in Figure 10.

Figure 10 also shows the results of the viscous analysis of the Wigley model in
three different cases (L,, = 6m, F, = 0.316, 4 = 103K g/m.s). In the first case
the volume mesh was considered fixed, not allowing free surface nor ship move-
ments. Secondly, the volume mesh was updated due to free surface movement,
considering the model fixed. The third case corresponds to the analysis of a real
free model including the mesh updating due to free surface evaluation and ship
movement (sinkage and trim). A Smagorinsky turbulence model was used in all
the cases.

Table 1 shows the obtained total resistance coefficient in the three cases studied
compared with the experimental data.

In the study of the free model the numerical values of sinkage and trim were
-0.1% and 0.035, respectively, while experiment gave -0.15% and 0.04.

Figure 10a shows the pressure distribution obtained near the Wigley hull for the
free model. A number of streamlines have also been plotted in the figure. The
obtained mesh deformation in this case is also presented in Figure 10b.

Comparisons of the obtained body wave profile with the experimental data for
the free and fixed models are shown in Figure 10b. Significant differences are
found close to stern in the case of the fixed model.

The free surface contours for the truly free ship motion are shown in Figure 10c.

8 Conclusions

The finite calculus method makes it possible to derive stabilized forms of the
governing differential equations for a viscous fluid with a free surface. Solution of
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the new stabilized equations written in ALE form with a semi-implicit fractional
step finite element method provides a straight-forward and stable algorithm for
fluid-structure interaction analysis.

The mesh-moving scheme presented ensures minimum mesh distortion for large
mesh displacements. The stabilized finite element method developed is adequate
for solving large scale fluid-structure interaction problems in naval architecture
and offshore engineering.

An academic version of the software developed using the formulation presented
can be freely downloaded from www.cimne.upc.es/shyne.
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APPENDIX

A Derivation of stabilized equations for the free
surface condition

Let us consider a 2D free surface wave problem. Figure A.1 shows a typical free
surface segment line AB. The vertical velocity at the mid-point C' is defined as

_vat+vp  v(z—ht—7v)+uvp

(Ve 5 5 (Al)
A simple first order expansion leads to
h dv v Ov
Uc—UB—Ea—m|B—§5%"B (A~2)
The vertical velocity at point B is defined in the standard manner
Dy
=2 A3
UB= 5 p |B (A.3)

where y is the vertical coordinate defining the free surface height. The time
derivative at point B will be computed now using information from the upstream
point A as follows

Y v

UB

In egs. (A.1)-(A.4) h is the projection of the segment AB over the z axis and v
is an arbitrary time increment (Figure A.1).

The term y(z — h,t — ) in eq.(A.4) can be now expanded in Taylor series.
Retaining second order terms in h and +, eq.(A.4) can be rewritten as

r—3dTVr =0 (A.5)
Oy Oy
= 5{ + LLEE v
— o a1
T — —

Eq. (A.5) is the stabilized form of the free surface wave condition, where h and
~ are the stabilization parameters in space and time domains respectively. Note
that index B has been suppressed from all terms as point B is arbitrary. The
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standard infinitesimal form of the the free surface condition is simply obtained
making h =y =0 in eq.(A.5), giving

oy 0
A simpler stabilized form can be derived from eq.(A.5) by retaining the second

order space term only. This gives

dy Oy uhd%y _

This can be interpreted as the usual addition of an “artificial” diffusion term
where “Q—h plays the role of the new balancing diffusion coefficient.

Extension to 3D problems

The finite calculus approach can be easily extended to derive the stabilized form
of the free surface wave condition for a 3D fluid flow problem. The final stabilized
equations can be written in identical form to eq.(A.5) with

0z
r = E—i—v Vz—-w
v = [u,v]T , dz[hm,hy,’y]T
v_[22] g_[2 2 ]
|9z’ oy ’ |0z’ oy’ ot (A.9)

Above, z is the wave height, h, and h, are the dimensions of the finite domain used
for the definition of the vertical velocity w at point B. The distances h, and h,
are termed characteristic length distances and play the role of space stabilization
parameters. Finally, in eq.(A.9), v is the time stabilization parameter.
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Figure A.1 Definition of free surface geometry.
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falling speed. Straight line indicates the theoretical Stokes speed (1.195 m/s).
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Figure 8. Submerged sphere. a) Geometry of the channel with submerged sphere.
b) Contours of velocity module in the fluid on two perpendicular planes at different
times. ¢) Evolution of the vertical displacement of the sphere.
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Figure 9. Vertical Cylinder. a) CAD definition of the vertical cylinder problem.
Contours of velocity and of vertical deformation of the mesh for t =4.5 s.
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Figure 10. Wigley hull. a) Pressure distribution and mesh deformation

wigley hull (free model). b) Numerical and experimental body wave profiles.

c) Free surface contours for the truly free ship motion.




