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Abstract. Sound and durable concrete mixtures are essential in environments where microbial induced 
corrosion (MIC) is a concern. In this study three concrete mixtures prepared with different binders 
(ordinary portland cement (OPC), calcium aluminate cement (CAC) and alkali-activated cement (AAC) 
were petrographically examined after exposure to laboratory-controlled MIC conditions. Analytical 
techniques included reflected light microscopy, polarized and fluorescent transmitted light microscopy 
(FLM) and scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer 
(SEM/EDX). SEM/EDX analyses obtained from the same areas provided information on chemical and 
mineralogical alteration, while quantitative image analysis with FLM affords an opportunity to quantify 
the variation in capillary porosity of the paste within alteration zonation. The microscopic observations 
indicate that the change in normalized capillary porosity coincide broadly with different alteration 
zones, which are in turn dependent on the type of binder. The OPC concrete shows the greatest 
deterioration where the paste is largely replaced by gypsum and high capillary porosity is lined to 
leaching of a calcium. The formation of ettringite densifies the paste and lowers the capillary porosity 
inboard of the gypsum zone in the OPC concrete. The CAC and AAC mixtures show better resistance to 
leaching than the OPC mixture, which explains their superior resistance to MIC. These findings are 
consistent with independent macroscopic observations that indicate the OPC mixture deteriorated more 
rapidly and severely than the CAC and AAC mixtures. 

Keywords: Microstructure, Fluorescence Microscopy, Microbial Induced Corrosion, Cementitious 
Materials, Image Analysis. 

1 Introduction 
Microbial Induced Corrosion (MIC) is a significant concern for the condition of concrete 
infrastructure elements in a variety of environments (Grengg et al., 2015). There is a 
longstanding recognition that one of the most significant of these environments include 
wastewater treatment plants (WWTP) and sewer lines, where biological activity from bacteria 
such as Acidithiobacillus thiooxidans lead to rapid rates of deterioration as hydrogen sulfide 
gas forms sulfuric acid on concrete surfaces above flow lines in sewers and in digesting basins 
within WWTP (Parker, 1945). In the United States, much of the concrete WWTP infrastructure 
was built in the 1970s and is approaching its design life of ~ 50 years. Prolonging the use of 
these facilities and the sustainability of the built infrastructure requires the use of sound and 
durable repair materials. Because these repairs are often the responsibility of local 
municipalities with limited financial resources, repair and remediation strategies and materials 
must also be economically viable. 

This study assesses the resistance of three of the most commonly used and widely available 
(and therefore economic) materials for WWTP facilities: ordinary portland cement (OPC), 
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calcium aluminate cement (CAC), and alkali activated fly ash and slag (AAC). Optical and 
electron microscopical methods are used to characterize the response of these materials to MIC 
simulated in a biogenic corrosion chamber. In particular, we use fluorescence light microscopy 
to measure the evolution of the capillary porosity of the different binders as they undergo MIC. 

2 Mixtures and Experimental Procedures 

2.1 Mixtures 
This study investigates three concrete mixtures made with different binders: ordinary portland 
cement (OPC), calcium aluminate cement (CAC), and alkali activated fly ash and slag (AAC). 
Table 1 summarizes the mixture proportions used to produce specimens that were cast in molds 
measuring 400 mm by 100 mm by 100 mm. The specimens were demolded after 24 hrs and 
then cured in a moist room for OPC concrete, in water for CAC concrete and in a regular room 
for AAC concrete. All of the specimens were cured for 28 days at 22 ± 1 °C. Coupons that 
measure 100 mm by 70 mm by 70 mm were cut for the biogenic acid exposure testing. 

Table 1. Mixture Proprotions of three concretes (kg/m3). 

 OPC concrete CAC concrete AAC concrete 
Binder 450 450 450 

Coarse aggregate 1025 1035 1045 
Fine aggregate 730 768 790 

Water 160 189 195 
w/b 0.36 0.42 0.43 

2.2 Experimental Procedures 
The exposed surface of each coupon was pre-treated to facilitate the growth of the acidophilic 
microorganisms prior to placement in the corrosion chamber. This involved spraying the surface 
with sulfuric acid (H2SO4) to reduce the surface pH to 2 – 4. The coupons were then partially 
submerged in real sewage water in an enclosed chamber at 25 °C and 100% relative humidity 
(RH). The exposure test lasted for 12 months. The coupons were then removed from the 
chamber and washed to remove loose material. Measurements of the mass of the coupons 
before, during and after the exposure testing indicated the most significant mass loss and 
deterioration on a macroscopic scale in the OPC, followed by the CAC and then the AAC. 

A slab representing a cross section of each coupon was cut, lapped and polished with 
progressively finer diamond-embedded pads following procedures outlined in ASTM C457. 
The polished slabs were oven dried overnight at ~ 40°C and examined using Nikon® SMZ-25 
stereomicroscope following ASTM C856. 

A billet measuring 40 mm by 25 mm in area was cut from the remaining portion of each 
coupon. The billets were rinsed in an aqueous solution, oven dried overnight at ~ 40°C and then 
vacuum impregnated with an epoxy containing a fluorescent dye. Thin sections were prepared 
from the impregnated billets using a Pelcon® Automatic Thin Section Machine. The thin 
sections were examined using a Nikon® E-Pol 600 petrographic microscope. Images were 
obtained in fluorescence mode and image analysis software (Image J) was used to create gray-
scale images and make measurements of the capillary of the paste.  
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Another billet impregnated with fluorescent epoxy was cut and polished for examination 
using a FEI™ Quanta 250 Environmental Scanning Electron Microscope (ESEM) coupled with 
an EDAX® Apollo X Silicon Drift energy dispersive X-ray spectrometer (EDX). The specimens 
were examined under low vacuum conditions (~ 70 Pa) with an accelerating voltage of 15 kV, 
a spot size of 5 and a working distance of ~ 10 mm. 

3 Results and Discussions 

3.1 OPC Concrete 
Leemann et al. (2006) used fluorescence microscopy to investigate variations in porosity across 
the interfacial transition zone (ITZ) in self consolidated concrete. A similar analysis is 
performed in this paper to measure changes in capillary porosity across alteration zones. As a 
benchmark, the grey level histograms of paste (in Fig. 1a) and a void (in Fig.1b) were analyzed 
and statistically fitted assuming normal distributions, as shown in Fig. 1c. Since the void in Fig. 
1b is filled with epoxy containing a fluorescent dye and has 100% porosity, a “normalized 
capillary porosity” of the paste is proposed by normalize the mean grey level of the paste to that 
of the air void. The standard deviation is used as the error bar, as shown in Fig. 2g. 

Optical and scanning electron microscopical examination of the sample revealed several 
distinct mineralogical and chemical alteration zones (Fig. 2a-2e). The alteration zones are as 
follows, moving inward from the exposed surface: (a) coarse-grained gypsum; (b) medium-
grained gypsum; (c) a transition zone with ettringite and iron oxide staining; (d) a carbonated 
zone; and (e) a zone of calcium leaching. Fluorescent transmitted light microscopy reveals 
changes in the capillary porosity of the paste in these zones (Fig. 2f-2g). 

The alteration of the OPC concrete is typical of biogenic sulfuric acid attack commonly 
observed in OPC concretes exposed to MIC. Menéndez et al. (2013) described a sequence of 
reactions typical of these environments. The formation of gypsum (CaSO4•2H2O) consumes 
calcium hydroxide (Ca(OH)2) and calcium silicate hydrates (CSH) in the paste matrix. The 
leaching of cementitious phases and deposition of gypsum produces a higher capillary porosity 
in Zone (a) and Zone (b). In particular, because Zone (a) is in contact with an acidic solution, 
there is widespread dissolution of CSH and a dramatic increase in capillary porosity (Fig. 2g). 
Ettringite forms in Zone (c) because the pH sufficiently high to stabilize it this far inboard of 
the exposed surface. The iron staining in Zone (c) is due to the oxidization of iron-bearing 
accessory minerals in the aggregate that is mainly basalt and andesite. These reactions are 
expansive, which lowers the capillary porosity inboard of the outer alteration zones, compared 
to that of the intact paste (Fig. 2g). The carbonated zone, which is relatively thin, also shows 
decreased capillary porosity. Inboard of the carbonated zone, the leaching of Ca2+ in Zone (e) 
results in a slight increase in capillary porosity, compared to the intact paste (Fig. 2g). 
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Figure 1. Determination of normalized capillary porosity in OPC: (a) paste; (b) voids; (c) grey level histograms 
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Figure 2. Alteration zones in OPC. (a) Reflected light photomicrograph of the polished surface; (b) transmitted 

plane-polarized light photomicrograph of the thin section; (c) backscatter electron image of alteration zones; (d)-
(e) EDX elemental maps for S and Ca, respectively; (f) transmitted fluorescent light photomicrograph of the thin 

section; (g) Line plot showing changes in grey level and capillary porosity of the paste in the alteration zones 

3.2 CAC Concrete 
Fig. 3a-3d shows the alteration of the CAC concrete exposed to MIC revealed by optical and 
electron microscopy. The alteration zones are as follows (inwards from the exposure surface): 
(a) a zone of pervasive cracking with deposition of gypsum (in Fig. 3a), which was lost on the 
thin section during the sample preparation (in Fig.3b); (b) a transition zone that contains 
gypsum, ettringite and iron oxide staining; and (c) sulfate diffusion zone. As shown in Fig. 3f, 
the capillary porosity of the paste decreases from the intact paste to Zone (b). This indicates the 
sulfate attack lowers the capillary porosity to some extent before there is sufficient internal 
expansion to crack the concrete. 

The main hydration products of the CAC concrete depend on the curing conditions (RH and 
T), w/b ratio and curing time (Schmitt et al., 2000). The main hydration products of CAC 
concrete (cured in water at 22 ± 1 °C) include hydrogarnet (3CaO×Al2O3×6H2O, C3AH6) and 
gibbsite (Al(OH)3, AH3). Khan et al. (2019) described the alteration of CAC in such 
environments. The most significant reactions involve the formation of gypsum and gibbsite 
from hydrogarnet in the presence of sulfuric acid. These reactions are expansive and lead to 
cracking in Zone (a). In the transition Zone (b), gypsum reacts with hydrogarnet to form 
ettringite (Khan et al., 2019), which densifies the microstructure of the paste before the internal 
stress cracks the concrete. This explains the lower capillary porosity in Zone (b) and Zone (c), 

(e) 

(f) (g) 
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compared to the intact paste (Khan et al., 2019; Nishikawa et al., 1992). 

  

  

  
Figure 3. Alteration zones in the CAC concrete. (a) Reflected light photomicrograph of the polished surface; (b) 
transmitted plane-polarized light photomicrograph of the thin section; (c) backscatter electron image of alteration 
zones; (d) EDX elemental map for S; (e) transmitted fluorescent light photomicrograph of thin section; (f) Line 

plot showing changes in grey level and capillary porosity of the paste in the alteration zones. 

3.3 AAC Concrete 
Fig. 4a-4d shows the alteration zones observed in the AAC concrete exposed to sulfate attack. 
Similar to the alteration observed in CAC concrete, the alteration in AAC concrete involves the 

(a) (b) 

(e) (f) 

(c) (d) 
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following: (a) a zone of pervasive gypsum deposition and cracking; (b) a transition zone that 
contains a mixture of gypsum, ettringite and iron oxide staining; and (c) a sulfate diffusion zone. 
Calcium (alkali) aluminosilicate hydrate (C-(N)-A-S-H) and monosulfate (AFm) are two of the 
main hydration products in AAC concrete (Myers et al., 2017). These react with H2SO4 to form 
gypsum, which results in pervasive gypsum deposition, leaching of the paste and cracking in 
Zone (a). Higher capillary porosity was observed in Zone (a) compared to that of the intact paste 
(Fig. 4e-4f). In the transition Zone (b) and diffusion Zone (c), the formation of ettringite from 
AFm densifies the microstructure and a lower capillary porosity, compared to that of the intact 
paste, is observed. 

  

  

  
Figure 4. Observations of alteration zones in the AAC. (a) Reflected light photomicrograph of the polished 

surface; (b) transmitted plain-polarized light photomicrograph of the thin section; (c) Backscatter electron image 
of alteration zones; (d) EDX elemental map for S; (e) transmitted fluorescent light photomicrograph of the thin 
section; (f) Line plot showing changes in grey level and capillary porosity of the paste in the alteration zones. 

(a) (b) 
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4 Conclusions 
Petrographic examination of three concrete mixtures prepared with different binders and 
subjected to MIC under controlled laboratory conditions provides insight toward the durability 
of these materials in WWTP environments. Observations obtained from optical and electron 
microscopy clearly delineate alteration zones characterized not only by distinct mineralogy, but 
also by distinct changes in the capillary porosity or density of the paste.  The OPC mixture 
shows the great deterioration where the outer alteration zones show both increased capillary 
porosity of the paste associated with the leaching of Ca(OH)2 and CSH and zones of significant 
cracking associated with the pervasive deposition of gypsum. Inboard of these zones the 
formation of ettringite actually densifies the OPC paste. The CAC and AAC mixtures show 
greater resistance to the sulfuric acid conditions associated with MIC than the OPC mixture. 
The outermost alteration zones in these mixtures have markedly lower capillary porosity than 
the OPC mixture. As such, the alteration zones are more cohesive and remain adhered to the 
intact paste, which explains why these samples show lower mass loss in macroscopic testing. 
The higher resistance is consistent with better resistance to leaching than the OPC mixtures, 
which is in turn due to the lack of Ca(OH)2 and CSH in these materials.  
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