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Abstract. When developing real-time systems, the worst-case execution time
(WCET) is a commonly used measure for predicting and analyzing program and
system timing behavior. Such estimates should preferrably be provided by static
WCET analysis tools. Their analysis is made difficult by features of common
processors, such as pipelines and caches.
This paper examines the properties of single-issue in-order pipelines, based on a
mathematical model of temporal constraints. The key problem addressed is to de-
termine the distance (measured in number of subsequent instructions) over which
an instruction can affect the timing behavior of other instructions, and when this
effect must be considered in static WCET analysis. We characterize classes of
pipelines for which static analysis can safely ignore effects longer than some ar-
bitrary threshold. For other classes of pipelines, pipeline effects can propagate
across arbitrary numbers of instructions, making it harder to design safe and pre-
cise analysis methods.
Based on our results, we discuss how to construct safe WCET analysis meth-
ods. We also prove when it is correct to use local worst-case approximations to
construct an overall WCET estimate.

1 Introduction

The purpose of Worst-Case Execution Time (WCET) analysis is to provide a priori
information about the worst possible execution time of a program before using the pro-
gram in a system. Reliable WCET estimates are necessary when designing and veri-
fying embedded real-time systems, especially when used in safety-critical systems like
vehicles and industrial plants. WCET estimates can be used to perform scheduling and
schedulability analysis, to determine whether performance goals are met for periodic
tasks, to check that interrupts have sufficiently short reaction times, to find performance
bottlenecks, and for many other purposes.

∗ This work is performed within the Advanced Software Technology (ASTEC,
http://www.astec.uu.se/wcet) competence center, supported by the Swedish Na-
tional Innovation Systems’ Administration (VINNOVA, http://www.vinnova.se) and IAR
Systems (http://www.iar.com).



WCET estimates must be safe, i.e. guaranteed not to underestimate the execution
time, and tight, i.e provide acceptable overestimations. The safeness of an estimate is
critical when the estimate is used in the construction of a safety-critical system. The
purpose of static WCET analysis is to generate safe and tight estimates by analyzing
the source code and object code of the program without executing it.

The introduction of hardware features like caches and pipelines in the processors
used for embedded real-time systems complicates static WCET analysis (and the mea-
suring of execution times) by increasing the variability in execution time and by requir-
ing more complex analysis methods.

A variety of concrete analysis methods for pipelines have been proposed, ranging
over cycle-accurate simulators [6, 7, 22], special-purpose models using reservation ta-
bles [4, 9, 14, 21], dependence graphs [15], abstract interpretation of pipeline behavior
[8, 20], and tables of instruction execution times and inter-instruction effects [2, 3].

The timing benefit (effect) of pipelines is to a large extent due to the overlapping of
pairs of adjacent instructions. This has motivated techniques that use the speedup for
pairs of instructions to model the effect of pipelining [2–4, 19, 21]. The WCET is then
calculated by summing execution times of instructions and subtracting the speedups.

For many pipelines, there are also timing effects that only occur for sequences of
three or more instructions; in this case the entire sequence has to be considered in a
precise and safe timing analysis that involves the first instruction. Such long timing
effects (LTEs) are introduced in [7].

In this paper, we investigate general properties of pipelines relevant for static WCET
analysis, in particular the issue of how far away a single instruction in a program can
affect the pipeline behavior of other instructions. Sometimes, it is enough to consider
pairs of adjacent instructions, while other pipelines require that instructions quite far
apart are handled in the same analysis unit. To our knowledge, this is the first work that
explores the theoretical limitations of pipeline analysis. Previous WCET research has
been more focussed on actually building concrete and useable WCET analysis methods
than exploring the limits of analyzability.

The concrete contributions of this paper are the following:

– We define a mathematical model of pipeline behavior, as a basis for investigating
the occurrence of LTEs.

– We give general conditions under which no LTEs occur.
– A central theorem shows that for a class of pipelines, all LTEs are time savings.

This implies that a safe (but not necessarily precise) analysis can be performed by
considering only time savings for short sequences of instructions (typically pairs).

– We demonstrate that in many pipeline structures, there are cases where LTEs may
occur for arbitrarily long sequences, i.e., disturbances can propagate over arbitrary
distances. If such LTEs may add time, then it is hard to construct a safe and precise
analysis.

– We prove that in-order pipelines are not subject to the kind of timing anomalies
described by Lundqvist and Stenström [16]. This indicates that local worst-case
assumptions for each instruction can be used to construct the overall worst case.

We do not address the issues raised by out-of-order processors, so this should only
be considered a first step in our understanding of processor pipelines.
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Paper outline: Section 2 presents the model of execution times, pairwise timing ef-
fects, and long timing effects. Section 3 presents the pipeline model built on constraints.
Section 4 proves and demonstrates properties of pipelines. Section 5 discusses the im-
plications of the properties for static WCET analysis.

2 Timing Model

For the discussion in this paper, we assume that a program is represented by a set of
nodes, each containing one or more instructions. Nodes are connected by edges, and
sequences of nodes can be formed by following the edges. For simplicity, this presen-
tation will assume that each node contains just a single instruction (however, the same
model applies where each node is a basic block).

Our goal is to statically calculate the execution time for a sequence of instructions
I1 . . . Im, which is denoted by T (I1 . . . Im). We define T (I1 . . . Im) as the time from
which I1 enters the first pipeline stage in a state where the pipeline is empty (cold
pipeline) until Im leaves its last pipeline stage. An important assumption is that the
same sequence of instructions always yields the same execution time. This requires that
the hardware is deterministic, and that effects outside the pipeline (like cache hits and
misses, variable-length instructions, etc.) are fixed by extra information in the program
graph. If such information is not known, several nodes might be used to represent the
same code, with different information about its execution. Techniques for such trans-
formations are described in, for example, [6, 8].

The execution time T (I) of a single instruction I is denoted tI . To capture the
timing effect of pipelines, we introduce timing effects δI1...Im

for sequences I1 . . . Im,
defined as follows.

tI = T (I) (1)

δI1...Im = T (I1 . . . Im) − T (I2 . . . Im) − T (I1 . . . Im−1) + T (I2 . . . Im−1) m ≥ 2 (2)

We can then calculate the execution time T (I1 . . . Im) for a sequence I1 . . . Im in terms
of times and timing effects:

T (I1 . . . Im) =
m∑

j=1

tIj
+

∑

1≤i<k≤m

δIi...Ik
(3)

Equation (3) expresses that the execution time for a sequence I1 . . . Im be obtained by
adding the node times tIj

for all nodes in the sequence, and the timing effects δIi...Ik
of

all subsequences (of length ≥ 2) of the sequence.
Intuitively, the timing effects concisely capture the effect of pipelines on the timing

of a sequence of instructions. For pairs of instructions, the pairwise timing effects corre-
spond to the speedup obtained by the pipeline overlap between adjacent instructions, as
illustrated in Figure 1. In general, pairwise effects are negative. For longer sequences of
instructions, we could get long timing effects (LTE). Whenever δI1...Im

�= 0, this is due
to instruction I1 having some effect that disturbs the execution of instruction Im (across
the sequence I2 . . . Im−1). Precisely, the execution of nodes I2 . . . Im in the sequence
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Fig. 1. Pipelining of instruction execution
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Fig. 2. Example long timing effect

I1 . . . Im is different from the execution of the nodes I2 . . . Im starting with node I2

(see Section 4.1 for more details).

Figure 2 shows an example of a LTE, where the execution profile of BC is differ-
ent when executed in isolation and when executed as part of the sequence ABC. Note
that we illustrate pipeline execution using pipeline diagrams, similar to the reservation
tables commonly used to describe the behavior of pipelined processors. Time runs hor-
izontally, with each tick of time corresponding to a processor clock cycle. The pipeline
stages are shown on the vertical axis. Instructions progress from upper left to lower
right, and each cycle of execution is shown as a square.

LTEs can in general be both negative and positive, and must be accounted for by
a static WCET analysis method that wants to be safe and tight. Positive timing effects
add execution time to a program, and are critical to consider since otherwise an under-
estimate of the WCET could result. Negative timing effects indicate potential savings in
execution time, and ignoring them only makes the WCET estimate less tight.

Positive LTEs comprise a central problem for WCET analysis, since they make it
necessary to consider effects across more than just adjacent instructions assumption in
order to create a safe analysis. To prove a particular WCET analysis method safe, it is
necessary to address the question of whether all positive LTEs have been accounted for.
A central issue in this paper is therefore to give sufficient conditions for when LTEs are
guaranteed not to be positive.
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Fig. 3. Constraint model of pipeline execution

3 Pipeline Model

We model the timing behavior of pipelined execution by simple temporal constraints.
This model is only used to describe execution timing, and is not intended as a basis for
building pipeline simulators. It can be used to model all in-order pipelines that do not
use dynamic dispatch, including VLIW processors [6].

For in-order pipelines with a single pipeline, we consider the pipeline to consist of
n pipeline stages. Each instruction Ii is considered as a sequence r1

i . . . rn
i of resource

requirements, where rj
i corresponds to the time the execution of the instruction requires

in stage j. Only one instruction can occupy a pipeline stage at any particular point in
time. Instructions are numbered from 1 to m, all instructions use all pipeline stages, and
use them in the same order. Instructions proceed to the next stage as soon as possible.
Time is discrete and expressed in clock cycles.

Consider the execution of a sequence I1 . . . Im of instructions. For an instruction Ii,
we let pj

i be the point in time at which Ii enters the pipeline stage j. By convention, pn+1
i

is the time at which instruction Ii leaves the last stage of the pipeline. The pipelined
execution of I1 . . . Im is model by the following constraints:

pj+1
i ≥ pj

i + rj
i (1 ≤ i ≤ m, 1 ≤ j ≤ n) (4)

pj
i+1 ≥ pj+1

i (1 ≤ i < m, 1 ≤ j ≤ n) (5)

Equation (4) models the fact that an instruction cannot enter its next stage before
the current stage is completed, and Equation (5) models the fact that the next instruction
cannot enter a certain pipeline stage before the current instruction has started its next
stage.

We can graphically represent this constraint system as a weighted directed acyclic
graph where the nodes correspond to the points pj

i and the arrows correspond to the
constraints between the points. Each instruction Ii is drawn as a column of points
p1

i . . . pn+1
i , with the constraints from Equation (4) shown as vertical arrows. The weight

between pj
i and pj+1

i corresponds to rj
i . For example, Figure 3(a) shows the points for

the instruction A in a three-stage pipeline. p1
A is the point where A enters the pipeline,

and p4
A is the point at which it leaves the pipeline. The constraints from Equation (5) are

drawn as diagonal arrows with no weight, since they have weight zero. An example is
shown in Figure 3(b) (we only show some of the pn

i variables to reduce the clutter).
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Fig. 4. Constraints for branches and data dependences
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Fig. 5. Example in-order pipeline with parallel units

Additional dependences between instructions are represented by adding constraints
to Equations (4) and (5).

– Branch instructions generate dependences between the end of the stage where the
branch is decided (and the target address of the branch computed) and the fetch
of the next instruction. A branch decided in stage j of instruction Ii generates the
constraint

p1
i+1 ≥ pj+1

i (6)

– Data dependences between instructions, which imply that instruction Ii can enter
stage j, only after some previous instruction Ik has completed stage l, generate the
constraints

pj
i ≥ pl+1

k (7)

Examples of constraints for branches and data dependences are shown in Figure 4(a)
and Figure 4(b). Note that these forms of constraints have effect only if they connect
points that are not otherwise transitively connected via the basic constraints from Equa-
tions (4) and (5). Figure 4(c) shows some (irrelevant) data dependences that are sub-
sumed by the basic constraints.

In a processor with multiple parallel pipelines, like the one shown in Figure 5, not all
instructions will use all stages. In the constraint system, each instruction will then only
have points corresponding to its entry into the pipeline (p1

i ), and points corresponding
to the entry into each stage of the pipeline that it actually uses. The constraints Equa-
tions (4) and (5) are then reformulated using the functions previ(i, j) and nexti(i, j)
which report for instruction Ii the previous and next instruction using pipeline stage
j, and the functions prevs(i, j) and nexts(i, j) which report for a certain instruction
Ii and pipeline stage j reports the previous and next pipeline stage used by Ii. The
reformulated constraints are:

6
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Fig. 6. Constraints for multiple pipelines

p
nexts(i,j)
i ≥ pj

i + rj
i (8)

p
prevs(i,j)
nexti(i,prevs(i,j)) ≥ pj

i (9)

Equation (8) corresponds to Equation (4) and Equation (9) corresponds to Equation (5).
Rrom these constraints we can calculate the execution time T (I1 . . . Im) of the se-

quence I1 . . . Im as follows. Define a path from pj
i to pl

k as a sequence of arrows from
pj

i to pl
k in the constraint graph. The length of a path P , denoted length(P ), is the sum

of the weights on the arrows in P . The distance D(pj
i , p

l
k) between two points pj

i and
pl

k is defined as the maximal length of all possible paths from pj
i to pl

k (note that the
distance can only be constructed if pl

k can be reached from pj
i ):

D(pj
i , p

l
k) = max

P∈(all paths from pj
i to pl

k)

(length(P )) (10)

We say that a path P from pj
i to pl

k is a critical path if length(P ) = D(pj
i , p

l
k).

In general, there may be more than one critical path between two points. The central
proposition of this model is the following:

Proposition 1. The execution time T (I1 . . . Im) of a sequence of instructions I1 . . . Im

is the maximal distance from p1
1 to some point in the constraint system.

T (I1 . . . Im) = max
1≤i≤m,1≤j≤n+1

D(p1
1, p

j
i ))

The proof is straight-forward, see [6], and depends on the fact that the constraint
graph is acyclic. Proposition 1 is analogous to a result in scheduling theory, saying that
an ASAP (as-soon-as-possible) schedule always gives an optimal schedule in an acyclic
graph of dependences. It is also analogous to the distance calculations used with simple
temporal constraints [5].

4 Properties of Pipelines

Using the model introduced in Section 3, we can make general characterizations of
when LTEs occur and whether they are positive and negative.
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Fig. 7. Illustrating the principles of Theorem 2 and Theorem 3

4.1 Source of LTEs

Given a sequence I1 . . . Im of instructions, we say that I1 stalls Ii if D(p1
1, p

j
i )) >

D(p1
2, p

j
i ))+ r1

1 . Intuitively, this means that some stage j of some successor instruction
Ii is delayed due to waiting for some corresponding stage of I1 (we assume that the
first stage occurs in all instructions). Note that due to data dependences and parallel
pipelines, such stalls can occur between non-adjacent instructions.

Theorem 1. For a single in-order pipeline, a timing effect δI1...Im
�= 0 can occur for

a sequence of instructions I1 . . . Im,m ≥ 3 only if I1 stalls the execution of some
instruction in I2 . . . Im.

Proof. (Sketch) Intuitively, if I1 does not disturb any of its successor instructions, the
execution of I2 . . . Im will be identical to the case when they are executed starting with
I2. The theorem can be proven by a straight-forward calculation, using the definition of
stalling. A full proof is given in [6, Section 5.2.5] ��

Note that for pipelines that fork, an LTE over I1 . . . Im can occur if I1 uses some
resource that is not used by I2 . . . Im−1, as shown by example in Section 4.3.

4.2 Pipelines without Positive LTEs

The central result of this section is a characterization of pipeline structures that have no
positive LTEs. We say that a pipeline has the crossing critical path (CCP) property if
for any constraint system model of a sequence I1 . . . Im of instructions with m ≥ 3,
there is a critical path P1 between p1

1 and pn+1
m , and a critical path P2 between p1

2 and
pn+1

m−1 such that P1 and P2 have a common point. We assume that there is a common
last step n + 1 in the pipeline (thus, we do not consider forking pipelines here).

We will later give classes of pipelines that have the CCP property. The importance
of CCP is that it guarantees the absence of positive LTEs.

Theorem 2. For a sequence of instructions I1 . . . Im,m ≥ 2, executing on a pipeline
with the CCP property, δI1...Im

≤ 0.
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Proof. (Sketch) Consider the sequence I1 . . . Im and its corresponding constraint sys-
tem. We shall prove that δI1...Im

≤ 0. Introduce the following names for points in the
constraint system (see Figure 7(a)):

– m, corresponding to the start of instruction I1

– n, corresponding to the start of I2

– n′, corresponding to the end of Im−1

– m′, corresponding to the end of Im

The distances between these points form the execution times involved in the δI1...Im

calculation as follows:

T (I1 . . . Im) = D(m,m′)
T (I2 . . . Im−1) = D(n, n′)
T (I1 . . . Im−1) = D(m,n′)

T (I2 . . . Im) = D(n′,m)
δI1...Im

= D(m,m′) + D(n, n′) − D(m,n′) − D(n,m′)

To prove that δI1...Im
≤ 0, we must show that D(m,m′)+D(n, n′) ≤ D(m,n′)+

D(n,m′). Select a critical path P1 from m to m′, shown as a dashed line in Figure 7(a),
and a critical path from n to n′, shown as a solid line in Figure 7(a). By the CCP
property, we can choose P1 and P2 so that they cross at some point q, dividing each
of the two paths into two parts. Label the path segments by a, b, c, and d as in Figure
Figure 7(a). Using the fact that the distance between two points is at least as long as any
path between the points, we get the following inequalities:

D(m,m′) = a + d

D(n, n′) = b + c

D(m,n′) ≥ a + c

D(n,m′) ≥ b + d

We infer that D(m,m′) + D(n, n′) ≤ D(m,n′) + D(n,m′), from which we conclude
δI1...Im

≤ 0. ��
We can now proceed to characterize pipelines with the CCP property.

Theorem 3. A single in-order pipeline has the CCP property if each constraint intro-
duced by branches (Equation (6)) and data dependences (Equation (7)) either

– occurs between adjacent instructions, or
– is subsumed by the basic constraints from Equations (4) and (5), as explained in

Section 3

Proof. (Sketch) For single in-order pipelines without any branch or data dependency,
the CCP property follows from the observation that the corresponding constraint graph
is planar, and hence that critical paths cannot overtake each other without intersecting
at some point. When adding constraints that represent branches and data dependences,
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Fig. 8. Long timing effect in parallel pipelines

the critical issue is whether they may allow critical paths to overtake without intersect-
ing. As illustrated in Figure 7(b), this is not the case for constraints between adjacent
instructions, since such constraints will always be included in the critical path if they
make it longer. ��

Note that if we have data dependences across more than two instructions, the case
in Figure 7(c) can occur, and the two paths can cross without sharing a node.

All branch dependences are between adjacent instructions, so the critical issue for
the applicability of Theorem 3 is whether data dependences appear between non-adjacent
instructions. No such dependences can appear if all data dependences in a pipeline only
reach from a stage j to its predecessor stage j−1. This is thanks to the fact that since the
dependence goes at most two points back in the pipeline, and all dependences beyond
the non-adjacent instructions will be subsumed by the regular constraints (as illustrated
in Figure 4(c)).

In practice, data dependences only between adjacent instructions is a common case,
thanks to data forwarding paths [11] that avoid most data dependences. Examples of
processors with pipelines exhibiting this nice behavior are the ARM9 [1], NEC V850
[17] (not the V850E), Hitachi SH7700 [12], and Infineon C167 [13].

4.3 Parallel Pipelines Cause Positive LTEs

A pipeline that forks into parallel pipelines can exhibit positive long timing effects due
to interference between instructions being sent into one pipeline, if some intervening
instructions are sent to some other pipeline. An example is shown in Figure 8.

There might be pipelines where such effects never actually materialize, but in most
real-life forking pipelines, this type of positive timing effects do occur and have to be
accounted for in WCET analysis. Examples of such processors are the NEC V850E
[18], MIPS R4000 [10], MicroSPARC I [9], and basically any processor employing a
separate floating point pipeline.

4.4 LTEs Across Unbounded Number of Instructions

It is not in general possible to provide a bound on the length of the sequences of in-
structions that can exhibit long timing effects.

10
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Fig. 9. Example of an unbounded positive timing effect

The example in Figure 9 demonstrates that we can get a positive LTE after an un-
bounded number of instructions. There is a data dependence between instructions A and
C, which causes the execution of BCD . . . E to be different depending on whether A is
executed before B or not. After an arbitary number of instructions D, we get a positive
timing effect when instruction E is added, since:

δA...E = 14 + 2n − 12 − 2n − 11 − 2n + 10 + 2n = +1

Thus, we can have LTEs across an arbitrary number of instructions. Note that there
is a timing effect δABC = −1, but no other timing effect until the effect across A . . . E
appears. One should also note that it is possible that several positive timing effects occur
from the same disturbance [6].

4.5 Absence of Timing Anomalies

Using the model in Section 3, we can also establish a different but important property
of in-order pipelines, the absence of timing anomalies, as introduced by Lundqvist and
Stenström [16]. Given a sequence of instructions I1 . . . Im, when we change the execu-
tion time of the first instruction by adding n cycles, we will get a new execution time for
the sequence. If this time is less than the previous time, or the new time is more than n
cycles longer than the previous time, we have a timing anomaly. We translate this prop-
erty into our model by assuming that precisely one pipeline stage for I1 is extended to
take more cycles.

By example, Lundqvist and Stenström demonstrated that out-of-order processors
can suffer from timing anomalies. Here, we show that for pipelines that can be mod-
eled by our constraint systems (in-order pipelines), such effects cannot occur. Note that
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branch prediction coupled with speculative cache fetches can cause timing anomalies,
regardless of the simplicity of the pipeline, as demonstrated for the Coldfire 5307 [8].
To avoid timing anomalies, we require that a processor is free from all kinds of dynamic
scheduling and speculative processing.

The important consequence of timing anomalies is that if anomalies occur, we can-
not use the simplifying assumption that the worst-case execution time for the program
can be derived by assuming worst-case execution times for each individual instruction.
Otherwise, every possible pipeline and/or cache state has to be considered, which is
very complex [8].

Theorem 4. For in-order pipelines, no timing anomalies can appear when we increase
the execution time of an instruction.

Proof. The original execution time for I1 . . . Im corresponds to the critical path in a
constraint system C1. We increase the execution time by increasing the time for I1 to
complete one of its stages, obtaining a new constraint system C2, where some rj

1 is
bigger than in C1.

The new execution time for I1 . . . Im corresponds to some critical path in constraint
system C2. If the arrow with rj

1 was on the critical path before, the execution time will
increase by k cycles, d = k. If it was not, and now is included, the time will increase by
at most k. If it is not on the critical path of either C1 and C2, d = 0. Thus, 0 ≤ d ≤ k,
and no timing anomaly can appear. ��
Theorem 5. For in-order pipelines, no timing anomalies can appear when we decrease
the execution time of an instruction.

Proof. Analogous to the proof of Theorem 4 [6]. ��

5 The Safety of WCET Analysis

To perform safe WCET analysis for pipelines, we need to make sure that no positive
LTEs are missed. If no positive LTEs can occur at all, as is the case for the processors
with the CCP property, any timing model that considers instructions, pairs of instruc-
tions, etc. is safe, since there are no positive LTEs that can be missed. However, for
many types of processors, positive LTEs can occur, and there are several ways of han-
dling them.

For approaches only analyzing adjacent pairs of instructions, the presence of posi-
tive LTEs makes it necessary to use conservative approximations. Such an approximate
model would overestimate the execution time over shorter sequences, in order to make
sure that the total execution time when LTEs are taken into account is not underesti-
mated.

One way to construct such a model is to use reservation tables and consider their
pairwise concatenation, but not allow the instruction profiles to change their shape when
concatenated. This means that stalls will not materialize, as each instruction will execute
as it would in isolation. Thus no long effects can occur within a pipeline, according
to Theorem 1. To avoid the potential of LTEs resulting from parallel pipelines, it is
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Fig. 10. Pairwise conservative model for Figure 8

necessary that each instruction (or basic block) use every pipeline stage, as proposed
in [19] 1. Also, if there are data dependences between non-adjacent instructions it is
necessary to account for the worst possible delay due to data waits, in each pair of
instructions. Note that just concatenating instructions pairwise without stalls [4, 21] is
not necessarily safe for parallel pipelines.

Figure 10 shows how the case in Figure 8 would be modeled with this type of
approximation: node A would not be allowed to completely overlap node B (as shown
for the sequence AB), which makes the timing effect between the nodes −2 instead
of −3. Thus, the positive timing effect of the interference between A and C is taken
early, on the edge between A and B, which is safe but pessimistic. If a processor has
instructions that can execute for quite a long time in parallel to other instructions, this
type of approximation is likely to give very high overestimations.

In our WCET analysis method based on examining sequences of nodes [6, 7], it is
critical to define correct criteria for the termination of the search that finds all (positive)
LTEs. If those criteria are wrong, we might get an underestimated WCET. In practice,
this type of analysis works very well for simple processors.

Another approach maintains multiple pipeline states for each basic block, and in
each step tries to prune the states that cannot result in the longest execution time [14].
This pruning operator has to consider the potential of LTEs to be correct.

There are some analysis approaches where the pipeline behavior is modeled along
paths consisting of many basic blocks [9, 22] (usually, this means that several different
paths between two points in the code are analyzed). Inside each path, LTEs are absorbed
with perfect precision, but where paths are concatenated, approximations that cover all
possible LTEs have to be used.

A different philosophy is to maintain all possible states of the pipeline for each
node in the analysis, without attempting to prune the set of pipeline states [8, 20]. In
such approaches, the presence of LTEs will mean an increased analysis complexity (as
each instruction will be subject to more different states). This approach is not dependent
on the absence of timing anomalies and should find all LTEs. The resulting analysis is
very expensive, however [8].

1 The placement of such extra pipeline stages is qiute important to achievable precision, and has
to be carefully considered for each pipeline
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6 Conclusions

In this paper, we have presented a mathematical model of instruction execution on in-
order single-issue pipelined processors. We have used this model to examine the tim-
ing of instructions from the perspective of static worst-case execution time (WCET)
analysis, especially considering timing effects between non-adjacent instructions (long
timing effects, LTEs). There are negative LTEs, which can be safely ignored, and pos-
itive LTEs that add instruction time to a sequence of instructions, and that have to be
accounted for in a safe analysis.

Even simple pipelines can exhibit LTEs across arbitrary numbers of instructions,
which makes it necessary for static WCET analysis to consider more than pairs of in-
structions. For many pipelines, all LTEs are negative, which means that they can be
ignored safely, at the cost of lower precision. Measurements indicate that (we have ex-
perimented with the NEC V850E processor) ignoring all negative LTEs can give over-
estimations of up to 20% of the execution time of a program [6]. For processors with
parallel floating point pipelines, the effect could be much greater.

Another result obtained using our pipeline model is that in-order single-issue pro-
cessors are not subject to timing anomalies, which indicates that it is possible to use
local worst-case assumptions to derive a global worst-case execution time. This allows
for efficient static analysis, since we do not have to consider all possible execution times
for each instruction in order to find the WCET.

The results in this paper indicates that certain processors are better suited for use in
predictable systems. For example, the timing of a processor without timing anomalies
and only negative LTEs is very easy to analyze compared to a processor with positive
LTEs and timing anomalies. It would be interesting to try to design a high-performance
high-predictability processor for embedded real-time systems.

In conclusion, we reached a better understanding of how to construct safe static
WCET analysis methods for pipelined processors, and have identified some non-trivial
problems related to the achievable safety and precision of WCET analysis. This pro-
vides static WCET analysis with a firmer theoretical background, which will help us
build better analysis methods. We hope to continue this work by extending the pipeline
model to more classes of pipelines and continue the investigation into pipeline proper-
ties.
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