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With rapid development of technology and improvement of living standards, the per capita holding of automobiles greatly increases,
and the amount of end-of-life vehicles (ELVs) becomes larger and larger such that it is valuable to investigate an effective strategy
for recycling ELVs from the viewpoints of environmental protection and resource utilization. In this paper, an optimization model
with fuzzy and stochastic parameters is built to formulate the transportation planning problems of recycling ELVs in polymorphic
uncertain environment, where the unit processing and transportation costs, the selling price of reused items, and the fixed cost are
all fuzzy, while the demand in secondarymarket and the production capacity are random owing to features underlying the practical
data. For this complicated polymorphic uncertain optimization model, a unified compromising approach is proposed to hedge the
uncertainty of this model such that some powerful optimization algorithms can be applied tomake an optimal recycling plan.Then,
an interactive algorithm is developed to find a compromising solution of the uncertain model. Numerical results show efficiency
of the algorithm and a number of important managerial insights are revealed from the proposed model by scenario analysis and
sensitivity analysis.

1. Introduction

1.1. Background. With rapid development of technology and
improvement of living standards, the per capita holding of
automobiles greatly increases. In China, as the largest devel-
oping country with a population of around 1.3 billion, huge
amount of end-of-life vehicles (ELVs) is bringing enormous
pressure on its environment and human life. Actually, the
civilian car ownership in China has reached 137 million in
2013, and has been almost doubling every four years. If the
average lifespan of a car is 8-9 years, then the number of ELVs
will exceed 14 million in 2020 [1]. In the world, it is estimated
that the number of vehicles will rise to 1.85 billion by 2030,
and the scrap generated from the ELVs will be 3.71 billion
tonnes [2]. In an era of resources shortage and environmental
deterioration, recycling the ELVs can give birth to new-style
industry as a typical low-carbon and sustainable production
approach [3, 4].

It is well known that the ELVs contain a great amount
of reusable components and materials such as steel, copper,
rubber, etc. Therefore, recycling the ELVs offer considerable
economic and environmental benefits [5]. This fact has been
paid great attention either by governments, by industry or by
academia. Actually, the European Union (EU) has established
legal regulation that manufacturers are responsible for take-
back of ELVs from end-users, dismantling, shredding, and
recycling of ELVs [6]. Directive 2000/53/EC required that,
no later than 1 January 2015, for all the ELVs, the reuse and
recovery rate shall be increased to a minimum of 95% by an
average weight per vehicle and year. Within the same time
limit, the reuse and recycling rate shall be increased to a
minimum of 85% by an average weight per vehicle and year.
Japan had an ELV recovery rate of 85% in 2002, its attained
target reached 95% by 2015 [7].

In China, a series of relevant policies and regulations
have been issued to improve the management mechanism
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for the ELV recycling industry since 2001. The “automotive
products recycling technology policy” was implemented in
2006, which specifies utilization rate targets of the recyclable
products in China [8]. The established China automotive
material data system (CAMDS) in 2009 has played an impor-
tant role in implementing the automotive products recyclable
rate and the managing the ELVs. Chinese government has
legislated that “yellow label cars” (heavily polluting vehicles)
must be eliminated by 2017 [3]. Automotive components
remanufacturing, as an essential part in automotive life-cycle
development, has become a prominent direction to promote
sustainable planning of automobile industry in China [9].
Actually, these policies are bringing a great of economic and
environmental benefits to China.

1.2. Literature Review. In recent years, recovery of used prod-
ucts has become increasingly important owing to economic
reasons and growing environmental or legislative concern
[10]. Particularly, the ELV recycling plays an important role
for sustainable development. For example, each remanufac-
tured engine could save 68-83% of the energy required to
manufacture a new engine, and decrease carbon dioxide
emissions by 73-87%.The coolants and batteries in ELVs can
also be recycled, and it reduces emissions of greenhouse gases
and gases that lead to acidification. The main ingredient of
coolant is Solid CO2, and the electrolyte of lead accumulator
is lead accumulator [1]. Recyclingmetals from the ELVs could
decrease the amounts of resources consumed building new
cars. If all the vehicle materials can be recycled to produce
new vehicles, about 30% of the energy consumption can be
saved [11].

Summarily, the ELVs contain a great quantity of reusable
components and materials such as steel, copper, rubber, plas-
tics, etc. which can be reused or remanufactured. Thus, the
remanufacturing industry of ELVs necessarily has strategic
significance as it better utilizes resources and creates higher
values. Especially, recycling ELVs can play an important role
in realizing the country’s sustainable development goals. In
2003, China has introduced extended producer responsi-
bility (EPR), which requires that any manufacturer should
participate in ELV take-back, dismantling, remanufacturing,
and so on [12]. The “automotive product recycling technol-
ogy policy” in China requires carmakers to improve the
design of vehicles, spare parts, and raw materials, as well as
reduce the use of lead and other environmentally hazardous
substances. Actually, this policy is an encouragement to the
carmakers such that more recycled materials from the ELVs
are used [13].

It is easy to see that recycling the ELVs depends on
establishment of an efficient ELV recycling network, which
not only can reduce the impact on the environment during
the recycling process, but also can facilitate the effective
reuse of recycled resources [14]. Furthermore, construction
of optimization models for production planning problems of
recycling the ELVs is helpful to provide the decision-makers
an optimal plan for the practical operation of the recycling
system [15].

In this connection, Cruz-Rivera et al. developed a reverse
logistics network design for collection of the ELVs in Mexico

[16]. Demirel et al. proposed a deterministic mixed integer
linear programming (MILP) model for the ELV recycling
network design, where all of the end-users, collection centers,
dismantlers, shredders, landfills, recycling facilities, and sec-
ondary markets are included [6]. On the basis of [6], Demirel
et al. in 2017 developed a closed-loop supply chain for
the ELVs recycling, where some reusable components after
processing are sold to suppliers for remanufacturing [17].
Finally, new vehicles with the remanufactured components
will flow to consumers. Ene et al. considered refurbishment
in ELVs recycling network; the reusable parts must be
refurbished before they could be sold to secondary markets
[18]. Phuc et al. designed inspection centers in the ELVs recy-
cling system; those ELVs passing inspection is repaired in
the repair centers and then is sold to the used vehicle
markets [19]. Additionally, in [2], municipal solid waste
incinerator and advanced thermal treatment measures are
applied to dispose autoshredder residue (ASR) besides land-
filling.

In some of the existing models for recycling the ELVs,
various kinds of uncertainties have also been considered. It
suggests in [20] that uncertainty seems to be the key factor
influencing the management of ELVs. Özkır et al. stated that
the selling price of products can be described by trapezoidal
fuzzy sets such that both seller’s and buyer’s satisfaction levels
are reflected [21]. In [19], the fixed cost, the transportation
cost and the processing cost were also regarded as trapezoidal
fuzzy sets in a reverse ELV recovery network. In [22], the
capacities of sorting entities for recycling the ELVs were
observed as random parameters, while the procurement
cost, the transportation cost, the processing cost, and the
storage cost were assumed to be interval parameters. In a
global supply chain management model proposed by Wan
et al., the demand of products for retailers is assumed
to be stochastic and depends on the price of products
[23].

Very recently, a polymorphic uncertain equilibrium
model (PUEM) was developed by Wan et al. for the prob-
lem of decentralized supply chain management, where the
demand of consumers was regarded as a continuous ran-
dom variable, and the holding cost of the retailer and the
transaction cost between the manufacturer and retailer were
described by fuzzy sets [24]. Then, for the PUEM, a deter-
ministic equivalent formulation (DEF) was first derived by
compromise programming approach such that the existing
powerful algorithms in the standard smooth optimization
were employed to find an approximate equilibrium point for
the uncertain problem. It is also noted that there are many
different approaches to removing uncertainty in the uncer-
tain model. For example, expectation method was applied
in [19] to deal with the fuzzy objective such that the fuzzy
objective can be converted into a deterministic one. Chance-
constrained programming method was adopted in [22] to
deal with the random constraints.

However, in the existing results for optimizing the system
of recycling the ELVs, there are still some deficiencies, which
can be briefly summarized as follows.(1) Polymorphic uncertainty is rarely considered in this
special reverse logistics network. Especially, randomness of
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Figure 1: Structure of the ELV recovery network.

the demand in the secondary markets of reusable compo-
nents has not been taken account into design of an optimal
ELV recovery network.(2) To hedge fuzziness of the objective function, the
expectation method is often applied to transform the fuzzy
objective into a deterministic one. Clearly, this method can
not address the feature of variance in a fuzzy set. A more
reasonable method should capture all information in a fuzzy
objective function, which includes the lower and upper
variances of a fuzzy set, as well as its center value.

1.3. Motivation of �is Research. From the above literature
review, it is necessary to build a new polymorphic uncer-
tain optimization model for a more efficient system of the
ELV recovery management. In particular, this model should
simultaneously capture fuzziness and randomness of model
parameters in a ELV recovery network design. Then, as done
in [24], a unified compromising programming approach
should be presented to convert the PUOM into a deter-
ministic one such that the existing powerful optimization
algorithms can be applied to find an approximately optimal
strategy for recycling the ELVs.

In this paper, just like the mentioned reasons in [19,
21, 23, 24], we suppose that all of the fixed cost, the unit
transportation cost, the unit processing cost, and the unit
selling price of reused parts are fuzzy model parameters,
and both of the capacity and the demand are regarded to be
random variables. Then, our investigation proceeds along the
following three subsequent steps.

Step 1. In a polymorphic uncertain environment, we con-
struct a new optimization model to formulate the production
planning problems of ELV recovery system.

Step 2. To hedge uncertainty of the model, a unified com-
promising programming approach will be proposed, which
is associated with the following two phases: (1) in the first
phase, the original problem is converted into an auxiliary
crisp multiple-objective mixed integer linear programming
problem; (2) in the second phase, a novel interactive fuzzy
programming approach is proposed to find a preferred
compromising solution through an interaction between the

decision-maker with preference and the rational model
[25].

Step 3. To answer what is the practical significance of the
new model and the developed algorithm in this paper, we
will reveal some important managerial insights from the
proposed model by scenario analysis and sensitivity analysis.

The rest of the paper is organized as follows. Next section
is devoted to the description of problem and construction of
model. In Section 3, an interactive algorithm is developed.
In Section 4, numerical results of case study are reported. In
Section 5, sensitivity analysis is conducted, and some practi-
calmanagerial implications are revealed from the constructed
model. Some conclusions and suggestions on future research
are presented in the last section.

2. Problem Description and Formulation

2.1. Problem Description. Similar to the setting in [6], the
network structure of ELV recovery system to be addressed in
this paper is shown in Figure 1.

As shown in Figure 1, the network nodes basically consist
of the ELV sources such as the last owners, insurance compa-
nies and abandoned vehicles, the collection centers, the dis-
mantlers, the shredders, the recycling facilities, the secondary
markets, and the landfills.

Specifically, the process flow of the recycling network
can be stated as follows. All of the ELVs must be treated
in formal dismantling companies. The collection centers or
dismantlers first procure the ELVs from the ELV sources.
Then, the ELVs in the collection centerswill all be transported
to the dismantlers. In the dismantlers, it is first required
to remove and store separately the fuel, the motor oil, the
oil from transmission system, the hydraulic oil, the cooling
liquid, the liquid from the brake system, and other liquids and
hazardous substances if any. Subsequently, the components
or materials removed from the scrap car are considered
for reuse and recycling. Reusable ferrous and nonferrous
components are sold to the secondary market, while the
recycling materials, such as batteries, tyres, glass, plastics, and
waste oil, are sold to the recycling factories. The remaining
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hulks are shipped to the shredders for further recycling. In
the shredders, some materials can be mechanically recycled
by shredder, air suction, magnetic sorters, and eddy current
sorters. Finally, the hulks are divided into ferrous material,
nonferrous material, and autoshredder residue (ASR). The
sorted metals will be allocated to steel mills or nonferrous
smelteries for further recycling, while ASR will be directly
transported to the landfill.

In the recycling network in [6], all of the end-users,
collection centers, dismantlers, shredders, landfills, recycling
facilities, and secondary markets are the nodes of this
network, and it is assumed that the last owners must return
their vehicles to one of the collection centers or dismantlers.
Different from the network in [6], Figure 1 indicates that (1)
only ferrous and nonferrous components for reusing are sold
to the secondary markets in our network; (2) there is no need
to build the recycling facilities for processing the battery, tyre,
glass, and plastics; instead, all of them are separately sold to
the existent factories which have equipment for recycling;(3) our network is more in accordance with the suggested
recycling system in China by [26, 27].

The goal of this paper is to formulate the above recycling
network such that the total recycling cost isminimized, which
is associated with the costs of transportation, processing, dis-
posal, and the fixed opening costs in a multistage production
plan. In order to build an optimization model that is more
realistic than those available in the literature, uncertainty in
recycling system must be incorporated into construction of
model. Actually, due to incompleteness and unavailability
of desired data, it is inappropriate to assume that the fixed
opening cost, the unit transportation cost, the unit processing
cost, the unit selling price of reconditioned parts, the capacity,
and demand are all fixed constants. An acceptable approach
is to describe these parameters by uncertain mathematical
concepts from the theory of stochastic or fuzzy mathematics.
Especially, in this paper, we assume that the fixed opening
cost, the unit transportation cost, the unit processing cost,
and the unit selling price of reconditioned parts are fuzzy sets,
and the capacity levels of dismantlers, shredders, landfills,
and the demand of secondary markets are random variables.

For simplicity, we suppose that the membership function
of the relevant fuzzy sets is subject to possibility distribution
(see Figure 2). Mathematically, any trapezoidal fuzzy number𝑐 is given by a membership function 𝜇𝑐 : 𝑅 󳨀→ [0, 1], where
for any 𝑐,

𝜇𝑐 (𝑐) =

{{{{{{{{{{{{{{{{{{{{{{{{{

0, 𝑐 ≤ 𝑐𝑝,
𝑐 − 𝑐𝑝𝑐𝑚1 − 𝑐𝑝 , 𝑐𝑝 ≤ 𝑐 ≤ 𝑐𝑚1 ,

1, 𝑐𝑚1 ≤ 𝑐 ≤ 𝑐𝑚2 ,
𝑐0 − 𝑐𝑐0 − 𝑐𝑚2 , 𝑐𝑚2 ≤ 𝑐 ≤ 𝑐𝑜,

0, 𝑐 ≥ 𝑐𝑜,

(1)

𝑐𝑝, 𝑐𝑚1 , 𝑐𝑚2 , and 𝑐𝑜 are given constants. Different values
of 𝑐𝑝, 𝑐𝑚1 , 𝑐𝑚2 , and 𝑐𝑜 define various fuzzy sets. From this
viewpoint, any fuzzy number can be denoted by a quaternion𝑐 = (𝑐𝑝, 𝑐𝑚1 , 𝑐𝑚2 , 𝑐𝑜). For fuzzy number 𝑐, we call (𝑐𝑚1 − 𝑐𝑝)

c
1

cp cm1 cm2 co

Figure 2: The trapezoidal possibility distribution of fuzzy number𝑐.
its the upper variance, call (𝑐𝑜 − 𝑐𝑚2) its lower variance, and(𝑐𝑚1 + 𝑐𝑚2) the center value.
2.2. Notations. Before construction of model, we first intro-
duce the following notations for readability.

Indexes

𝑖: the labels of ELV sources, 𝑖 = 1, 2, . . . , 𝐼.𝑗: the labels of collection centers, 𝑗 = 1, 2, . . . , 𝐽.𝑘: the labels of dismantlers, 𝑘 = 1, 2, . . . , 𝐾.𝑙: the labels of shredders, 𝑙 = 1, 2, . . . , 𝐿.𝑠: the labels of secondary markets, 𝑠 = 1, 2, . . . , 𝑆.𝑚: the labels of steel mills, 𝑚 = 1, 2, . . . ,𝑀.𝑛: the labels of nonferrous smelteries, 𝑛 = 1, 2, . . . , 𝑁.𝑝: the labels of oil recycling factories, 𝑝 = 1, 2, . . . , 𝑃.𝑞: the labels of battery recycling factories, 𝑞 =1, 2, . . . , 𝑄.𝑟: the labels of rubber recycling factories, 𝑟 =1, 2, . . . , 𝑅.
V: the labels of glass recycling factories, V = 1, 2, . . . , 𝑉.𝑤: the labels of plastics recycling factories, 𝑤 =1, 2, . . . ,𝑊.𝑢: the labels of landfills, 𝑢 = 1, 2, . . . , 𝑈.𝑡: the processing periods, 𝑡 = 1, 2, . . . , 𝑇.

Parameters

𝑅𝑖𝑡: the amount of ELVs returned from ELV source 𝑖
in period 𝑡 (ton).
𝑓𝑘𝑡: the fixed opening cost for dismantler 𝑘 in period𝑡 (yuan).
𝑓𝑙𝑡: the fixed opening cost for shredder 𝑙 in period 𝑡
(yuan).𝑝𝑐𝑘𝑡: the unit cost of dismantling at dismantler 𝑘 in
period 𝑡 (yuan/ton).𝑝𝑐𝑙𝑡: the unit cost of shredding at shredder 𝑙 in period𝑡 (yuan/ton).𝑝𝑐𝑢𝑡: the unit cost of disposal at landfill 𝑢 in period 𝑡
(yuan/ton).𝑠1𝑡: the unit price of selling of dismantler for ferrous
components for reusing in period 𝑡 (yuan/ton).
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𝑠2𝑡: the unit price of selling of dismantler for nonfer-
rous components for reusing in period 𝑡 (yuan/ton).
𝑠3𝑡: the unit price of selling of dismantler for oil for
recycling in period 𝑡 (yuan/ton).
𝑠4𝑡: the unit price of selling of dismantler for battery
for recycling in period 𝑡 (yuan/ton).
𝑠5𝑡: the unit price of selling of dismantler for tyre for
recycling in period 𝑡 (yuan/ton).
𝑠6𝑡: the unit price of selling of dismantler for glass for
recycling in period 𝑡 (yuan/ton).
𝑠7𝑡: the unit price of selling of dismantler for plastics
for recycling in period 𝑡 (yuan/ton).
𝑧̃1𝑡: the unit price of selling of shredder for ferrous
material for recycling in period 𝑡 (yuan/ton).
𝑧̃2𝑡: the unit price of selling of shredder for nonferrous
material for recycling in period 𝑡 (yuan/ton).
𝑡𝑐𝑖𝑗𝑡: the unit cost of transportation between ELV
source 𝑖 and collection center 𝑗 for ELV in period 𝑡
(yuan/ton⋅km).
𝑡𝑐𝑖𝑘𝑡: the unit cost of transportation between ELV
source 𝑖 and dismantler 𝑘 for ELV in period 𝑡
(yuan/ton⋅km).
𝑡𝑐𝑗𝑘𝑡: the unit cost of transportation between collec-
tion center 𝑗 and dismantler 𝑘 for ELV in period 𝑡
(yuan/ton⋅km).
𝑡𝑐𝑘𝑙𝑡: the unit cost of transportation between dis-
mantler 𝑘 and shredder 𝑙 for hulk in period 𝑡
(yuan/ton⋅km).
𝑡𝑐𝑙𝑢𝑡: the unit cost of transportation between shredder𝑙 and landfill 𝑢 for ASR in period 𝑡 (yuan/ton⋅km).
𝑑𝑖𝑗: the distance between ELV source 𝑖 and collection
center 𝑗 (km).
𝑑𝑖𝑘: the distance between ELV source 𝑖 and dismantler𝑘 (km).
𝑑𝑗𝑘: the distance between collection center 𝑗 and
dismantler 𝑘 (km).
𝑑𝑘𝑙: the distance between dismantler 𝑘 and shredder 𝑙
(km).
𝑑𝑙𝑢: the distance between shredder 𝑙 and landfill 𝑢
(km).
𝑐𝑎𝑗𝑡: the capacity of collection center 𝑗 in period 𝑡
(ton).
𝑐𝑎𝑘𝑡: the capacity of dismantler 𝑘 in period 𝑡 (ton).
𝑐𝑎𝑙𝑡: the capacity of shredder 𝑙 in period 𝑡 (ton).
𝑐𝑎𝑢𝑡: the capacity of landfill 𝑢 in period 𝑡 (ton).
𝑑𝑒1𝑠𝑡: the demand of secondary market 𝑠 for reusable
ferrous components in period 𝑡 (ton).
𝑑𝑒1𝑠𝑡: the demand of secondary market 𝑠 for reusable
nonferrous components in period 𝑡 (ton).
𝛼: the weight percentage of hulk in ELV.

𝛽1: the weight percentage of reusable ferrous compo-
nents in ELV.𝛽2: the weight percentage of reusable nonferrous
components in ELV.𝛽3: the weight percentage of oil in ELV.𝛽4: the weight percentage of batteries in ELV.𝛽5: the weight percentage of tyres in ELV.𝛽6: the weight percentage of glass in ELV.𝛽7: the weight percentage of plastics in ELV.𝜂: the weight percentage of ASR in hulk.𝜂1: the weight percentage of ferrous material in hulk.𝜂2: the weight percentage of nonferrous material in
hulk.

Decision Variables

𝐵𝑖𝑗𝑡: the amount of ELVs transported fromELV source𝑖 to collection center 𝑗 in period 𝑡.𝐶𝑖𝑘𝑡: the amount of ELVs transported from ELV
source 𝑖 to dismantler 𝑘 in period 𝑡.𝐷𝑗𝑘𝑡: the amount of ELVs transported from collection
center 𝑗 to dismantler 𝑘 in period 𝑡.𝐸𝑘𝑙𝑡: the amount of hulk transported from dismantler𝑘 to shredder 𝑙 in period 𝑡.𝐹𝑙𝑢𝑡: the amount of ASR transported from shredder 𝑙
to landfill 𝑢 in period 𝑡.
𝑄1𝑘𝑠𝑡: the amount of ferrous components transported
from dismantler 𝑘 to secondary market 𝑠 in period 𝑡.
𝑄2𝑘𝑠𝑡: the amount of nonferrous components trans-
ported from dismantler 𝑘 to secondary market 𝑠 in
period 𝑡.
𝑄3𝑘𝑝𝑡: the amount of oil transported from dismantler𝑘 to oil recycling factory 𝑝 in period 𝑡.
𝑄4𝑘𝑞𝑡: the amount of batteries transported from
dismantler 𝑘 to battery recycling factory 𝑞 in period𝑡.𝑄5𝑘𝑟𝑡: the amount of tyres transported from disman-
tler 𝑘 to rubber recycling factory 𝑟 in period 𝑡.
𝑄6𝑘V𝑡: the amount of glass transported from disman-
tler 𝑘 to glass recycling factory V in period 𝑡.𝑄7𝑘𝑤𝑡: the amount of plastics transported from dis-
mantler 𝑘 to plastics recycling factory 𝑤 in period 𝑡.𝑄8𝑙𝑚𝑡: the amount of ferrous material transported
from shredder 𝑙 to steel mill 𝑚 in period 𝑡.𝑄9𝑙𝑛𝑡: the amount of nonferrous material transported
from shredder 𝑙 to nonferrous smeltery 𝑛 in period 𝑡.
𝑂𝑘𝑡: if dismantler 𝑘 is opened in period 𝑡, 𝑂𝑘𝑡 = 1;
otherwise, 𝑂𝑘𝑡 = 0.
𝑂𝑙𝑡: if shredder 𝑙 is opened in period 𝑡, 𝑂𝑙𝑡 = 1;
otherwise, 𝑂𝑙𝑡 = 0.
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2.3. Construction of Model for the ELV Recycling. We now
formulate the objective function of the ELV recovery system
in a centralized decision-makingmode, being referred as to𝜋.
The objective is tominimize the total cost of recycling system.
It is associated with the fixed opening cost, the transportation
cost, the processing cost, and the revenue from the sale
income of the recycled resources. Therefore, the total cost
function is written as

𝜋̃ = 𝐹𝐶 + 𝑃𝐶 + 𝑇𝐶 − 𝑅𝐸, (2)

where the total fixed opening cost is

𝐹𝐶 = ∑
𝑘

∑
𝑡

𝑓𝑘𝑡𝑂𝑘𝑡 + ∑
𝑙

∑
𝑡

𝑓𝑙𝑡𝑂𝑙𝑡, (3)

the total transportation cost on each arc of the network reads

𝑇𝐶 = ∑
𝑖

∑
𝑗

∑
𝑡

𝑡𝑐𝑖𝑗𝑡𝐵𝑖𝑗𝑡𝑑𝑖𝑗 + ∑
𝑖

∑
𝑘

∑
𝑡

𝑡𝑐𝑖𝑘𝑡𝐶𝑖𝑘𝑡𝑑𝑖𝑘
+ ∑

𝑗

∑
𝑘

∑
𝑡

𝑡𝑐𝑗𝑘𝑡𝐷𝑗𝑘𝑡𝑑𝑗𝑘 + ∑
𝑘

∑
𝑙

∑
𝑡

𝑡𝑐𝑘𝑙𝑡𝐸𝑘𝑙𝑡𝑑𝑘𝑙
+ ∑

𝑙

∑
𝑢

∑
𝑡

𝑡𝑐𝑙𝑢𝑡𝐹𝑙𝑢𝑡𝑑𝑙𝑢
+ ∑

𝑘

∑
𝑠

∑
𝑡

𝑡𝑐𝑘𝑠𝑡𝑑𝑘𝑠 (𝑄1𝑘𝑠𝑡 + 𝑄2𝑘𝑠𝑡)
+ ∑

𝑘

∑
𝑝

∑
𝑡

𝑡𝑐𝑘𝑝𝑡𝑄3𝑘𝑝𝑡𝑑𝑘𝑝
+ ∑

𝑘

∑
𝑞

∑
𝑡

𝑡𝑐𝑘𝑞𝑡𝑄4𝑘𝑞𝑡𝑑𝑘𝑞
+ ∑

𝑘

∑
𝑟

∑
𝑡

𝑡𝑐𝑘𝑟𝑡𝑄5𝑘𝑟𝑡𝑑𝑘𝑟
+ ∑

𝑘

∑
V
∑
𝑡

𝑡𝑐𝑘V𝑡𝑄6𝑘V𝑡𝑑𝑘V
+ ∑

𝑘

∑
𝑤

∑
𝑡

𝑡𝑐𝑘𝑤𝑡𝑄7𝑘𝑤𝑡𝑑𝑘𝑤
+ ∑

𝑙

∑
𝑚

∑
𝑡

𝑡𝑐𝑙𝑚𝑡𝑄8𝑙𝑚𝑡𝑑𝑙𝑚
+ ∑

𝑙

∑
𝑛

∑
𝑡

𝑡𝑐𝑙𝑛𝑡𝑄9𝑙𝑛𝑡𝑑𝑙𝑛,

(4)

the total processing cost of dismantlers, shredders, and
landfills is

𝑃𝐶 = ∑
𝑖

∑
𝑘

∑
𝑡

𝑝𝑐𝑘𝑡𝐶𝑖𝑘𝑡 + ∑
𝑗

∑
𝑘

∑
𝑡

𝑝𝑐𝑘𝑡𝐷𝑗𝑘𝑡

+ ∑
𝑘

∑
𝑙

∑
𝑡

𝑝𝑐𝑙𝑡𝐸𝑘𝑙𝑡 + ∑
𝑙

∑
𝑢

∑
𝑡

𝑝𝑐𝑢𝑡𝐹𝑙𝑢𝑡, (5)

and the income from the sale of isolated materials is

𝑅𝐸 = ∑
𝑘

∑
𝑠

∑
𝑡

(𝑠1𝑡𝑄1𝑘𝑠𝑡 + 𝑠2𝑡𝑄2𝑘𝑠𝑡)
+ ∑

𝑘

∑
𝑝

∑
𝑡

𝑠3𝑡𝑄3𝑘𝑝𝑡 + ∑
𝑘

∑
𝑞

∑
𝑡

𝑠4𝑡𝑄4𝑘𝑞𝑡
+ ∑

𝑘

∑
𝑟

∑
𝑡

𝑠5𝑡𝑄5𝑘𝑟𝑡 + ∑
𝑘

∑
V
∑
𝑡

𝑠6𝑡𝑄6𝑘V𝑡
+ ∑

𝑘

∑
𝑤

∑
𝑡

𝑠7𝑡𝑄7𝑘𝑤𝑡 + ∑
𝑙

∑
𝑚

∑
𝑡

𝑧̃1𝑡𝑄8𝑙𝑚𝑡
+ ∑

𝑙

∑
𝑛

∑
𝑡

𝑧̃2𝑡𝑄9𝑙𝑛𝑡.

(6)

Remark 1. Note that, in (3), (4), (5), and (6), the opening cost,
the unit transportation cost, the unit sale prices of all the
reused components from the ELVs, and the unit processing
cost for dismantling, shredding, and disposal at landfill are
all supposed to be fuzzy model parameters. The advantage
of this assumption is that these fuzzy parameters can reflect
uncertain information of cost or revenue which can not be
precisely calculated by statistical (financial) data. Actually, it
is often that depreciation degree of the production tools can
only be described as higher or lower, and market reputation
of the reused products can only be said to be more credible.
A fuzzy set is the most appropriate mathematical concept
to characterize these uncertain language evaluations such as
high, low, and credible.

Next, we present some practical constraints in minimiza-
tion of the total recycling expense.

The first type of constraints is on material flow balance of
network. It reads

∑
𝑗

𝐵𝑖𝑗𝑡 + ∑
𝑘

𝐶𝑖𝑘𝑡 = 𝑅𝑖𝑡, ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, (7)

∑
𝑖

𝐵𝑖𝑗𝑡 = ∑
𝑘

𝐷𝑗𝑘𝑡, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (8)

∑
𝑙

𝐸𝑘𝑙𝑡 = 𝛼(∑
𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡) ,
∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,

(9)

∑
𝑠

𝑄1𝑘𝑠𝑡 = 𝛽1 (∑
𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡) ,
∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,

(10)

∑
𝑠

Q2𝑘𝑠𝑡 = 𝛽2 (∑
𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡) ,
∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,

(11)
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∑
𝑝

𝑄3𝑘𝑝𝑡 = 𝛽3 (∑
𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡) ,
∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,

(12)

∑
𝑞

𝑄4𝑘𝑞𝑡 = 𝛽4 (∑
𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡) ,
∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,

(13)

∑
𝑟

𝑄5𝑘𝑟𝑡 = 𝛽5 (∑
𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡) ,
∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,

(14)

∑
V
𝑄6𝑘V𝑡 = 𝛽6 (∑

𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡) ,
∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,

(15)

∑
𝑤

𝑄7𝑘𝑤𝑡 = 𝛽7 (∑
𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡) ,
∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,

(16)

∑
𝑢

𝐹𝑙𝑢𝑡 = 𝜂∑
𝑘

𝐸𝑘𝑙𝑡, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, (17)

∑
𝑚

𝑄8𝑙𝑚𝑡 = 𝜂1∑
𝑘

𝐸𝑘𝑙𝑡, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, (18)

∑
𝑢

𝑄9𝑙𝑛𝑡 = 𝜂2∑
𝑘

𝐸𝑘𝑙𝑡, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇. (19)

The second type of constraints is on capacities of collection
centers, dismantlers, shredders, and landfills. Owing to ran-
domness of capacities, it says that the following stochastic
inequalities should be satisfied:

∑
𝑖

𝐵𝑖𝑗𝑡 ≤ 𝑐𝑎𝑗𝑡, ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (20)

∑
𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡 ≤ 𝑐𝑎𝑘𝑡 ⋅ 𝑂𝑘𝑡, ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, (21)

∑
𝑘

𝐸𝑘𝑙𝑡 ≤ 𝑐𝑎𝑙𝑡 ⋅ 𝑂𝑙𝑡, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, (22)

∑
𝑙

𝐹𝑙𝑢𝑡 ≤ 𝑐𝑎𝑢𝑡, ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇, (23)

The third type of constraints is on the limited demands
in secondary markets for the used components. Since the
demands are random, the following stochastic inequalities
hold:

∑
𝑘

𝑄1𝑘𝑠𝑡 ≤ 𝑑𝑒1𝑠𝑡, ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, (24)

∑
𝑘

𝑄2𝑘𝑠𝑡 ≤ 𝑑𝑒2𝑠𝑡, ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇. (25)

The last type of constraints is on nonnegativity of decision
variables and binary variables:

𝐵𝑖𝑗𝑡, 𝐶𝑖𝑘𝑡, 𝐷𝑗𝑘𝑡, 𝐸𝑘𝑙𝑡, 𝐹𝑙𝑢𝑡, 𝑄1𝑘𝑠𝑡, 𝑄2𝑘s𝑡, 𝑄3𝑘𝑝𝑡, 𝑄4𝑘𝑞𝑡, 𝑄5𝑘𝑟𝑡,
𝑄6𝑘V𝑡, 𝑄7𝑘𝑤𝑡, 𝑄8𝑙𝑚𝑡, 𝑄9𝑙𝑛𝑡 ≥ 0,

∀𝑖, 𝑗, 𝑘, 𝑙, 𝑠, 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, V, 𝑤, 𝑢, 𝑡,
(26)

𝑂𝑘𝑡, 𝑂𝑙𝑡 ∈ {0, 1} , ∀𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇. (27)

Consequently, we obtain a polymorphic uncertain optimiza-
tionmodel (PUOM) for themanagement problem of the ELV
recovery system:

min 𝜋̃
subject to (7) − (27) . (28)

Remark 2. Note that in (20)-(23), the capacities for the col-
lection centers, dismantlers, shredders, secondary markets,
and landfill are supposed to be random. This assumption
is based on the given probability distribution inferred from
statistical data of capacity, especially after long-term practical
production. In [20], the capacity of sorting entities for
recycling the ELVs was also assumed to be random.

Remark 3. Compared with the deterministic model built in
[18], PUOM (28) takes into account the fuzziness of cost
and selling price, as well as the randomness of capacity and
demand. Instead of simply describing the unit cost and selling
price by interval parameters as done in [22], we characterize
them by fuzzy sets which can contain more uncertain infor-
mation, especially those perceptual evaluations of decision-
makers in practice. Consequently, the proposed PUOM (28)
in this paper is a polymorphic uncertain programming
problem.

Remark 4. Since any uncertain optimization problem has
no any optimal solution from the viewpoint of standard
optimization theory, we have to make an optimal decision
by a compromising programming approach, as done in [24].
Specifically, chance-constrained and multiobjective opti-
mization approach will be first proposed to transform the
polymorphic uncertain optimization problem into a deter-
ministic equivalent formulation in Section 3.1.Then, an inter-
active algorithm will be developed to find a compromising
solution for the original uncertain optimization model on the
basis of analytic tools and the existing powerful algorithms in
the classical optimization theory.

3. Unified Compromising Programming
Approach and an Interactive Algorithm

In this section, we intend to develop a unified compromising
programming approach to treat the PUOM (28).

Our basic idea can be stated as follows. By chance-
constrained programming approach, we first hedge random-
ness of constraints in PUOM (28) such that the obtained
model is only involved with fuzzy parameters. Then, we con-
struct an auxiliary multiple-objective optimization problem
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(MOOP) to convert the fuzzy model into a mixed integer
linear programmingmodel. Finally, we develop an interactive
algorithm to find the compromising solution of the MOOP.

3.1. Unified Compromising Programming Approach. For sim-
plicity of statement, we now only consider a linear stochastic
constraint

𝑎𝑇𝑥 ≤ 𝑏̂, (29)

where 𝑥 ∈ 𝑅𝑒 is a vector of decision variables, 𝑎 ∈ 𝑅𝑒 is given
crisp vector of coefficients, and 𝑏̂ is a random variable with
probability distribution function 𝐹𝑏(⋅).

Based on the idea of chance-constrained programming
approach, equivalent deterministic formulation of (29) can be
obtained (see, for example, [22–24, 28, 29]). Specifically, for a
given confidence level 1 − 𝛿 (𝛿 ∈ [0, 1]), (29) is equivalent to
that the following inequality:

𝑃𝑟 (𝑎𝑇𝑥 ≤ 𝑏̂) ≥ 1 − 𝛿 (30)

always holds for any 𝛿 ∈ [0, 1], where 𝑃𝑟(⋅) represents the
probability that a stochastic inequality holds. The constraint
(30) can be replaced by

𝐹𝑏 (𝑎𝑇𝑥) ≤ 𝛿. (31)

Thus, by definition of probability distribution function, (31)
can be approximated by an ordinary crisp constraint:

𝑎𝑇𝑥 ≤ 𝐹−1
𝑏̂

(𝛿) (32)

for a given violation degree 𝛿. Particularly, the random
parameter 𝑏̂ is subject to normal distribution, i.e., 𝑏̂ ∼𝑁(𝜇𝑏̂, 𝜎2𝑏̂), where 𝜇𝑏̂ and 𝜎𝑏̂ are the mean and standard devi-
ation, respectively. Let Φ(⋅) express the standard normal
distribution function. Then, (32) reads

𝑎𝑇𝑥 ≤ 𝜇𝑏̂ + Φ−1 (𝛿) ⋅ 𝜎𝑏̂. (33)

Let 𝐹𝑐𝑎𝑗𝑡 (⋅), 𝐹𝑐𝑎𝑘𝑡(⋅), 𝐹𝑐𝑎𝑙𝑡 (⋅), 𝐹𝑐𝑎𝑢𝑡(⋅), 𝐹𝑑𝑒1𝑠𝑡(⋅), and 𝐹𝑑𝑒2𝑠𝑡(⋅) be
the probability distribution functions of the randomvariables𝑐𝑎𝑗𝑡, 𝑐𝑎𝑘𝑡, 𝑐𝑎𝑙𝑡, 𝑐𝑎𝑢𝑡, 𝑑𝑒1𝑠𝑡, and 𝑑𝑒2𝑠𝑡, respectively. From (32),
it follows that, for a given violation degree 𝛿, the constraints
(20)-(25) are replaced by

∑
𝑖

𝐵𝑖𝑗𝑡 ≤ 𝐹−1𝑐𝑎𝑗𝑡 (𝛿) , ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (34)

∑
𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡 ≤ 𝐹−1𝑐𝑎𝑘𝑡 (𝛿) ⋅ 𝑂𝑘𝑡, ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, (35)

∑
𝑘

𝐸𝑘𝑙𝑡 ≤ 𝐹−1𝑐𝑎𝑙𝑡 (𝛿) ⋅ 𝑂𝑙𝑡, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, (36)

∑
𝑙

𝐹𝑙𝑢𝑡 ≤ 𝐹−1𝑐𝑎𝑢𝑡 (𝛿) , ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇, (37)

∑
𝑘

𝑄3𝑘𝑠𝑡 ≤ 𝐹−1
𝑑𝑒1𝑠𝑡

(𝛿) , ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, (38)

∑
𝑘

𝑄4𝑘𝑠𝑡 ≤ 𝐹−1
𝑑𝑒2𝑠𝑡

(𝛿) , ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇. (39)

If all the probability distributions are normal, then from (33),
we know that (20)-(25) can be further rewritten as

∑
𝑖

𝐵𝑖𝑗𝑡 ≤ 𝜇𝑐𝑎𝑗𝑡 + Φ−1 (𝛿) ⋅ 𝜎𝑐𝑎𝑗𝑡 ,
∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (40)

∑
𝑖

𝐶𝑖𝑘𝑡 + ∑
𝑗

𝐷𝑗𝑘𝑡 ≤ (𝜇𝑐𝑎𝑘𝑡 + Φ−1 (𝛿) ⋅ 𝜎𝑐𝑎𝑘𝑡) ⋅ 𝑂𝑘𝑡,
∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇,

(41)

∑
𝑘

𝐸𝑘𝑙𝑡 ≤ (𝜇𝑐𝑎𝑙𝑡 + Φ−1 (𝛿) ⋅ 𝜎𝑐𝑎𝑙𝑡) ⋅ 𝑂𝑙𝑡,
∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, (42)

∑
𝑙

𝐹𝑙𝑢𝑡 ≤ 𝜇𝑐𝑎𝑢𝑡 + Φ−1 (𝛿) ⋅ 𝜎𝑐𝑎𝑢𝑡 ,
∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇, (43)

∑
𝑘

𝑄3𝑘𝑠𝑡 ≤ 𝜇𝑑𝑒1𝑠𝑡 + Φ−1 (𝛿) ⋅ 𝜎𝑑𝑒1𝑠𝑡 ,
∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, (44)

∑
𝑘

𝑄4𝑘𝑠𝑡 ≤ 𝜇𝑑𝑒2𝑠𝑡 + Φ−1 (𝛿) ⋅ 𝜎𝑑𝑒2𝑠𝑡 ,
∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇. (45)

We are now in a position to treat the fuzzy objective
function in PUOM (28).

Since it is assumed that all the fuzzy parameters in 𝜋̃
are subject to trapezoidal membership functions, 𝜋̃ is a
trapezoidal fuzzy set as a sum of trapezoidal fuzzy ones
(see [25, 30, 31]). Denote 𝜋̃ = (𝜋𝑝, 𝜋𝑚1 , 𝜋𝑚2 , 𝜋𝑜). Instead
of minimizing (𝜋𝑝 + 𝜋𝑚1 + 𝜋𝑚2 + 𝜋𝑜)/4 as in [19, 32,
33], we replace minimization of a fuzzy objective 𝜋̃ by
minimizing an integrated crisp objective function, defined
by the membership functions of fuzzified 𝜋𝑚1 + 𝜋𝑚2), (𝜋𝑜 −𝜋𝑚2), and (𝜋𝑚1 − 𝜋𝑝) (see model (57). To minimize the total
cost and capture the uncertain (fuzzy) information in the
total cost function, we first need to construct an auxiliary
multiobjective optimization problem as follows:

min 𝑍1 = 𝜋𝑚1 + 𝜋𝑚2
max 𝑍2 = 𝜋𝑚1 − 𝜋𝑝
min 𝑍3 = 𝜋𝑜 − 𝜋𝑚2
s.t. (7) − (19) , (26) − (27) , (34) − (39) ,

(46)

where

𝑍1 = ∑
𝑘

∑
𝑡

(𝑓𝑚1
𝑘𝑡 + 𝑓𝑚2

𝑘𝑡 ) 𝑂𝑘𝑡 + ∑
𝑙

∑
𝑡

(𝑓𝑚1
𝑙𝑡 + 𝑓𝑚2

𝑙𝑡 ) 𝑂𝑙𝑡

+ ∑
𝑖

∑
𝑗

∑
𝑡

(𝑡𝑐𝑚1𝑖𝑗𝑡



Journal of Advanced Transportation 9

+ 𝑡𝑐𝑚2𝑖𝑗𝑡 ) 𝐵𝑖𝑗𝑡𝑑𝑖𝑗 + ∑
𝑖

∑
𝑘

∑
𝑡

(𝑡𝑐𝑚1𝑖𝑘𝑡 + 𝑡𝑐𝑚2𝑖𝑘𝑡 ) 𝐶𝑖𝑘𝑡𝑑𝑖𝑘
+ ∑

𝑗

∑
𝑘

∑
𝑡

(𝑡𝑐𝑚1𝑗𝑘𝑡
+ 𝑡𝑐𝑚2𝑗𝑘𝑡)𝐷𝑗𝑘𝑡𝑑𝑗𝑘 + ∑

𝑘

∑
𝑙

∑
𝑡

(𝑡𝑐𝑚1𝑘𝑙𝑡 + 𝑡𝑐𝑚2𝑘𝑙𝑡 ) 𝐸𝑘𝑙𝑡𝑑𝑘𝑙
+ ∑

𝑙

∑
𝑢

∑
𝑡

(𝑡𝑐𝑚1𝑙𝑢𝑡
+ 𝑡𝑐𝑚2𝑙𝑢𝑡 ) 𝐹𝑙𝑢𝑡𝑑𝑙𝑢 + ∑

𝑖

∑
𝑘

∑
𝑡

(𝑝𝑐𝑚1𝑘𝑡 + 𝑝𝑐𝑚2𝑘𝑡 ) 𝐶𝑖𝑘𝑡

+ ∑
𝑗

∑
𝑘

∑
𝑡

(𝑝𝑐𝑚1𝑘𝑡
+ 𝑝𝑐𝑚2𝑘𝑡 )𝐷𝑗𝑘𝑡 + ∑

𝑘

∑
𝑙

∑
𝑡

(𝑝𝑐𝑚1𝑠𝑡 + 𝑝𝑐𝑚2𝑠𝑡 ) 𝐸𝑘𝑙𝑡

+ ∑
𝑙

∑
𝑢

∑
𝑡

(𝑝𝑐𝑚1𝑢𝑡
+ 𝑝𝑐𝑚2𝑢𝑡 ) 𝐹𝑙𝑢𝑡
+ ∑

𝑘

∑
𝑠

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑠𝑡 + 𝑡𝑐𝑚2𝑘𝑠𝑡 ) 𝑑𝑘𝑠
− (𝑠𝑚11𝑡 + 𝑠𝑚21𝑡 )) 𝑄1𝑘𝑠𝑡
+ ∑

𝑘

∑
𝑠

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑠𝑡 + 𝑡𝑐𝑚2𝑘𝑠𝑡 ) 𝑑𝑘𝑠
− (𝑠𝑚12𝑡 + 𝑠𝑚22𝑡 )) 𝑄2𝑘𝑠𝑡
+ ∑

𝑘

∑
𝑝

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑝𝑡 + 𝑡𝑐𝑚2𝑘𝑝𝑡) 𝑑𝑘𝑝
− (𝑠𝑚13𝑡 + 𝑠𝑚23𝑡 ))𝑄3𝑘𝑝𝑡
+ ∑

𝑘

∑
𝑞

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑞𝑡 + 𝑡𝑐𝑚2𝑘𝑞𝑡) 𝑑𝑘𝑞
− (𝑠𝑚14𝑡 + 𝑠𝑚24𝑡 ))𝑄4𝑘𝑞𝑡
+ ∑

𝑘

∑
𝑟

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑟𝑡 + 𝑡𝑐𝑚2𝑘𝑟𝑡) 𝑑𝑘𝑟
− (𝑠𝑚15𝑡 + 𝑠𝑚25𝑡 )) 𝑄5𝑘𝑟𝑡
+ ∑

𝑘

∑
V
∑
𝑡

((𝑡𝑐𝑚1𝑘V𝑡 + 𝑡𝑐𝑚2𝑘V𝑡) 𝑑𝑘V
− (𝑠𝑚16𝑡 + 𝑠𝑚26𝑡 )) 𝑄6𝑘V𝑡
+ ∑

𝑘

∑
𝑤

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑤𝑡
+ 𝑡𝑐𝑚2𝑘𝑤𝑡) 𝑑𝑘𝑤 − (𝑠𝑚17𝑡 + 𝑠𝑚27𝑡 ))𝑄7𝑘𝑤𝑡
+ ∑

𝑙

∑
𝑚

∑
𝑡

((𝑡𝑐𝑚1𝑙𝑚𝑡 + 𝑡𝑐𝑚2𝑙𝑚𝑡) 𝑑𝑙𝑚

− (𝑧𝑚11𝑡 + 𝑧𝑚21𝑡 )𝑄8𝑙𝑚𝑡
+ ∑

𝑙

∑
𝑛

∑
𝑡

((𝑡𝑐𝑚1𝑙𝑛𝑡 + 𝑡𝑐𝑚2𝑙𝑛𝑡 ) 𝑑𝑙𝑛
− (𝑧𝑚12𝑡 + 𝑧𝑚22𝑡 ))𝑄9𝑙𝑛𝑡,

(47)

𝑍2 = ∑
𝑘

∑
𝑡

(𝑓𝑚1
𝑘𝑡 − 𝑓𝑝

𝑘𝑡)𝑂𝑘𝑡 + ∑
𝑙

∑
𝑡

(𝑓𝑚1
𝑙𝑡 − 𝑓𝑝

𝑙𝑡 )𝑂𝑙𝑡

+ ∑
𝑖

∑
𝑗

∑
𝑡

(𝑡𝑐𝑚1𝑖𝑗𝑡
− 𝑡𝑐𝑝𝑖𝑗𝑡) 𝐵𝑖𝑗𝑡𝑑𝑖𝑗 + ∑

𝑖

∑
𝑘

∑
𝑡

(𝑡𝑐𝑚1𝑖𝑘𝑡 − 𝑡𝑐𝑝𝑖𝑘𝑡)𝐶𝑖𝑘𝑡𝑑𝑖𝑘
+ ∑

𝑗

∑
𝑘

∑
𝑡

(𝑡𝑐𝑚1𝑗𝑘𝑡
− 𝑡𝑐𝑝𝑗𝑘𝑡)𝐷𝑗𝑘𝑡𝑑𝑗𝑘 + ∑

𝑘

∑
𝑙

∑
𝑡

(𝑡𝑐𝑚1𝑘𝑙𝑡 − 𝑡𝑐𝑝𝑘𝑙𝑡) 𝐸𝑘𝑙𝑡𝑑𝑘𝑙
+ ∑

𝑙

∑
𝑢

∑
𝑡

(𝑡𝑐𝑚1𝑙𝑢𝑡
− 𝑡𝑐𝑝𝑙𝑢𝑡) 𝐹𝑙𝑢𝑡𝑑𝑙𝑢 + ∑

𝑖

∑
𝑘

∑
𝑡

(𝑝𝑐𝑚1𝑘𝑡 − 𝑝𝑐𝑝𝑘𝑡)𝐶𝑖𝑘𝑡

+ ∑
𝑗

∑
𝑘

∑
𝑡

(𝑝𝑐𝑚1𝑘𝑡
− 𝑝𝑐𝑝𝑘𝑡)𝐷𝑗𝑘𝑡 + ∑

𝑘

∑
𝑙

∑
𝑡

(𝑝𝑐𝑚1𝑠𝑡 − 𝑝𝑐𝑝𝑠𝑡) 𝐸𝑘𝑙𝑡

+ ∑
𝑙

∑
𝑢

∑
𝑡

(𝑝𝑐𝑚1𝑢𝑡
− 𝑝𝑐𝑝𝑢𝑡) 𝐹𝑙𝑢𝑡
+ ∑

𝑘

∑
𝑠

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑠𝑡 − 𝑡𝑐𝑝𝑘𝑠𝑡) 𝑑𝑘𝑠
− (𝑠𝑚11𝑡 − 𝑠𝑝1𝑡))𝑄1𝑘𝑠𝑡
+ ∑

𝑘

∑
𝑠

∑
𝑡

(𝑡𝑐𝑚1𝑘𝑠𝑡 − 𝑡𝑐𝑝𝑘𝑠𝑡) 𝑑𝑘𝑠 − (𝑠𝑚12𝑡 − 𝑠𝑝2𝑡))𝑄2𝑘𝑠𝑡)
+ ∑

𝑘

∑
𝑝

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑝𝑡 − 𝑡𝑐𝑝𝑘𝑝𝑡) 𝑑𝑘𝑝
− (𝑠𝑚13𝑡 − 𝑠𝑝3𝑡))𝑄3𝑘𝑝𝑡
+ ∑

𝑘

∑
𝑞

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑞𝑡 − 𝑡𝑐𝑝𝑘𝑠𝑡) 𝑑𝑘𝑞
− (𝑠𝑚14𝑡 − 𝑠𝑝4𝑡))𝑄4𝑘𝑞𝑡
+ ∑

𝑘

∑
𝑟

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑟𝑡 − 𝑡𝑐𝑝𝑘𝑟𝑡) 𝑑𝑘𝑟
− (𝑠𝑚15𝑡 − 𝑠𝑝5𝑡))𝑄5𝑘𝑟𝑡
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+ ∑
𝑘

∑
V
∑
𝑡

((𝑡𝑐𝑚1𝑘V𝑡 − 𝑡𝑐𝑝𝑘V𝑡) 𝑑𝑘V
− (𝑠𝑚16𝑡 − 𝑠𝑝6𝑡))𝑄6𝑘V𝑡
+ ∑

𝑘

∑
𝑤

∑
𝑡

((𝑡𝑐𝑚1𝑘𝑤𝑡 − 𝑡𝑐𝑝𝑘𝑤𝑡) 𝑑𝑘𝑤
− (𝑠𝑚17𝑡 − 𝑠𝑝7𝑡))𝑄7𝑘𝑤𝑡
+ ∑

𝑙

∑
𝑚

∑
𝑡

((𝑡𝑐𝑚1𝑙𝑚𝑡 − 𝑡𝑐𝑝𝑙𝑚𝑡) 𝑑𝑙𝑚
− (𝑧𝑚11𝑡 − 𝑧𝑝1𝑡))𝑄8𝑙𝑚𝑡
+ ∑

𝑙

∑
𝑛

∑
𝑡

((𝑡𝑐𝑚1𝑙𝑛𝑡 − 𝑡𝑐𝑝𝑙𝑛𝑡) 𝑑𝑙𝑛
− (𝑧𝑚12𝑡 − 𝑧𝑝2𝑡))𝑄9𝑙𝑛𝑡

(48)

and

𝑍3 = ∑
𝑘

∑
𝑡

(𝑓𝑜
𝑘𝑡 − 𝑓𝑚2

𝑘𝑡 ) 𝑂𝑘𝑡 + ∑
𝑙

∑
𝑡

(𝑓𝑜
𝑙𝑡 − 𝑓𝑚2

𝑙𝑡 ) 𝑂𝑙𝑡

+ ∑
𝑖

∑
𝑗

∑
𝑡

(𝑡𝑐𝑜𝑖𝑗𝑡 − 𝑡𝑐𝑚2𝑖𝑗𝑡 ) 𝐵𝑖𝑗𝑡𝑑𝑖𝑗
+ ∑

𝑖

∑
𝑘

∑
𝑡

(𝑡𝑐𝑜𝑖𝑘𝑡 − 𝑡𝑐𝑚2𝑖𝑘𝑡 ) 𝐶𝑖𝑘𝑡𝑑𝑖𝑘
+ ∑

𝑗

∑
𝑘

∑
𝑡

(𝑡𝑐𝑜𝑗𝑘𝑡 − 𝑡𝑐𝑚2𝑗𝑘𝑡)𝐷𝑗𝑘𝑡𝑑𝑗𝑘
+ ∑

𝑘

∑
𝑙

∑
𝑡

(𝑡𝑐𝑜𝑘𝑙𝑡 − 𝑡𝑐𝑚2𝑘𝑙𝑡 ) 𝐸𝑘𝑙𝑡𝑑𝑘𝑙
+ ∑

𝑙

∑
𝑢

∑
𝑡

(𝑡𝑐𝑜𝑙𝑢𝑡 − 𝑡𝑐𝑚2𝑙𝑢𝑡 ) 𝐹𝑙𝑢𝑡𝑑𝑙𝑢
+ ∑

𝑖

∑
𝑘

∑
𝑡

(𝑝𝑐𝑜𝑘𝑡 − 𝑝𝑐𝑚2𝑘𝑡 ) 𝐶𝑖𝑘𝑡

+ ∑
𝑗

∑
𝑘

∑
𝑡

(𝑝𝑐𝑜𝑘𝑡 − 𝑝𝑐𝑚2𝑘𝑡 )𝐷𝑗𝑘𝑡

+ ∑
𝑘

∑
𝑙

∑
𝑡

(𝑝𝑐𝑜𝑠𝑡 − 𝑝𝑐𝑚2𝑠𝑡 ) 𝐸𝑘𝑙𝑡

+ ∑
𝑙

∑
𝑢

∑
𝑡

(𝑝𝑐𝑜𝑢𝑡 − 𝑝𝑐𝑚2𝑢𝑡 ) 𝐹𝑙𝑢𝑡
+ ∑

𝑘

∑
𝑠

∑
𝑡

((𝑡𝑐𝑜𝑘𝑠𝑡 − 𝑡𝑐𝑚2𝑘𝑠𝑡 ) 𝑑𝑘𝑠 − (𝑠𝑜1𝑡 − 𝑠𝑚21𝑡 )) 𝑄1𝑘𝑠𝑡
+ ∑

𝑘

∑
𝑠

∑
𝑡

((𝑡𝑐𝑜𝑘𝑠𝑡 − 𝑡𝑐𝑚2𝑘𝑠𝑡 ) 𝑑𝑘𝑠 − (𝑠𝑜2𝑡 − 𝑠𝑚22𝑡 )) 𝑄2𝑘𝑠𝑡
+ ∑

𝑘

∑
𝑝

∑
𝑡

((𝑡𝑐𝑜𝑘𝑝𝑡 − 𝑡𝑐𝑚2𝑘𝑝𝑡) 𝑑𝑘𝑝 − (𝑠𝑜3𝑡 − 𝑠𝑚23𝑡 ))
⋅ 𝑄3𝑘𝑝𝑡

+ ∑
𝑘

∑
𝑞

∑
𝑡

((𝑡𝑐𝑜𝑘𝑞𝑡 − 𝑡𝑐𝑚2𝑘𝑞𝑡) 𝑑𝑘𝑞 − (𝑠𝑜4𝑡 − 𝑠𝑚24𝑡 ))𝑄4𝑘𝑞𝑡
+ ∑

𝑘

∑
𝑟

∑
𝑡

((𝑡𝑐𝑜𝑘𝑟𝑡 − 𝑡𝑐𝑚2𝑘𝑟𝑡) 𝑑𝑘𝑟 − (𝑠𝑜5𝑡 − 𝑠𝑚25𝑡 )) 𝑄5𝑘𝑟𝑡
+ ∑

𝑘

∑
V
∑
𝑡

((𝑡𝑐𝑜𝑘V𝑡 − 𝑡𝑐𝑚2𝑘V𝑡) 𝑑𝑘V − (𝑠𝑜6𝑡 − 𝑠𝑚26𝑡 ))𝑄6𝑘V𝑡
+ ∑

𝑘

∑
𝑤

∑
𝑡

((𝑡𝑐𝑜𝑘𝑤𝑡 − 𝑡𝑐𝑚2𝑘𝑤𝑡) 𝑑𝑘𝑤 − (𝑠𝑜7𝑡 − 𝑠𝑚27𝑡 ))
⋅ 𝑄7𝑘𝑤𝑡
+ ∑

𝑙

∑
𝑚

∑
𝑡

((𝑡𝑐𝑜𝑙𝑚𝑡 − 𝑡𝑐𝑚2𝑙𝑚𝑡) 𝑑𝑙𝑚 − (𝑧𝑜1𝑡 − 𝑧𝑚21𝑡 )) 𝑄8𝑙𝑚𝑡
+ ∑

𝑙

∑
𝑛

∑
𝑡

((𝑡𝑐𝑜𝑙𝑛𝑡 − 𝑡𝑐𝑚2𝑙𝑛𝑡 ) 𝑑𝑙𝑛 − (𝑧𝑜2𝑡 − 𝑧𝑚22𝑡 )) 𝑄9𝑙𝑛𝑡.
(49)

Clearly, the first objective in (46) is to minimize the total cost
and the last two objectives are used to capture the uncertain
information in the total cost as much as possible. In addition,
if (34)-(39) in model (46) are replaced by (40)-(45), then we
get a special case of model (46) under assumption of normal
distribution.

Remark 5. With the proposed unified compromising pro-
gramming approach, the randomness of constraints in
PUOM (28) first vanishes by chance-constrained program-
ming method. It is possible that the feasible region of
PUOM (28) is empty if the choice of violation degree 𝛿
is very small [24]. In other words, a suitable choice of
violation degree is important to the unified compromising
programming approach, which will be further addressed in
Section 4. It is also noted that the constraint of PUOM (28) is
involved with the inverse of distribution function. So, there
does not exist an explicit expression of such a constraint
in the case that it is difficult to calculate the inverse of
distribution function. Consequently, many powerful algo-
rithms in standard optimization theory can not be applied to
solve PUOM (28). Under assumption of normal distribution,
explicit expressions of the constraints can be obtained (see the
case study in Section 4).

Remark 6. Similar to [25, 31], we construct an auxiliary mul-
tiobjective optimization model (46) to hedge the fuzziness of
the objective function in (28). Intuitively, the reason why we
transform a fuzzy objective function into a three-objective
one is that it can push the trapezoidal possibility distribution
of the fuzzy total cost to the left as far as possible (see
Figure 3).

Actually, the first objective in (46) implies the total
cost, especially the part with degree of membership 1, is to
be minimized by minimizing the center value. The third
objective in (46) can minimize the area of the region (II)
in Figure 3 so as to reduce the risk of higher cost, while the
second objective in (46) can maximize the area of region
(I) in Figure 3 so as to increase the possibility of obtaining
lower cost. Clearly, the crisp model (46) is a deterministic
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Figure 3: Principle of three-objective optimization approach.

equivalent formulation of the PUOM (28). To the best of our
knowledge, it is the first time that the management problem
of ELV recovery is treated by this approach in a polymorphic
uncertain environment. For example, an expectation method
was recently presented to convert the fuzzymodel into a crisp
one in [19].

3.2. Interactive Algorithm. With the preparation in
Section 3.1, we now develop an interactive algorithm to
find a compromising solution of PUOM (28), different from
the hybrid heuristic algorithm developed in [24].

Algorithm 1.

Step 1. Choose an acceptable violation degree 𝛿 for the
random constraints. Solve the following three mixed integer
linear programming problems (MILP):

min 𝑍1

s.t. (7) − (19) , (26) − (27) , (34) − (39) , (50)

max 𝑍2

s.t. (7) − (19) , (26) − (27) , (34) − (39) , (51)

min 𝑍3

s.t. (7) − (19) , (26) − (27) , (34) − (39) . (52)

Denote𝑥1∗ ,𝑥2∗, and𝑥3∗ by the optimal solutions of (50), (51),
and (52), respectively. The corresponding optimal values of
the three objective functions are referred to as 𝑍𝑙

1, 𝑍𝑢
2 , and𝑍𝑙

3, respectively. Compute

𝑍𝑢
1 = max {𝑍1 (𝑥2∗) , 𝑍1 (𝑥3∗)} ,

𝑍𝑙
2 = min {𝑍2 (𝑥1∗) , 𝑍2 (𝑥3∗)} ,

𝑍𝑢
3 = max {𝑍3 (𝑥1∗) , 𝑍3 (𝑥2∗)} .

(53)

Clearly, 𝑍𝑙
𝑖 and𝑍𝑢

𝑖 are the upper and lower bounds of the 𝑖-th
objective function, 𝑖 = 1, 2, 3.
Step 2. With 𝑍𝑙

𝑖 and 𝑍𝑢
𝑖 , formulate a trapezoidal membership

function for the objective function 𝑍𝑖. Specifically, we fuzzify
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Figure 4: Fuzzification of the three objective functions.

𝑍1 and 𝑍2 and 𝑍3 by specifying their membership functions
(also see Figures 4(a) and 4(b)):

𝜇𝑍1 (𝑍1) =
{{{{{{{{{{{

1, 𝑍1 ≤ 𝑍𝑙
1𝑍𝑢

1 − 𝑍1𝑍𝑢
1 − 𝑍𝑙

1

, 𝑍𝑙
1 ≤ 𝑍1 ≤ 𝑍𝑢

1

0, 𝑍1 ≥ 𝑍𝑢
1 ,

(54)

𝜇𝑍2 (𝑍2) =
{{{{{{{{{{{

0, 𝑍2 ≤ 𝑍𝑙
2

𝑍2 − 𝑍𝑙
2𝑍𝑢

2 − 𝑍𝑙
2

, 𝑍𝑙
2 ≤ 𝑍2 ≤ 𝑍𝑢

2

1, 𝑍2 ≥ 𝑍𝑢
2 ,

(55)

and

𝜇𝑍2 (𝑍3) =
{{{{{{{{{{{

1, 𝑍3 ≤ 𝑍𝑙
3𝑍𝑢

3 − 𝑍3𝑍𝑢
3 − 𝑍𝑙

3

, 𝑍𝑙
3 ≤ 𝑍3 ≤ 𝑍𝑢

3

0, 𝑍3 ≥ 𝑍𝑢
3 ,

(56)

respectively.

Step 3. The decision-maker decides a compensation coeffi-
cient 𝛾 and a weight 𝜃ℎ for the ℎ-th objective function, ℎ =1, 2, 3. Then, an integrated model is defined by

max 𝜆 (𝑥) = 𝛾𝜆0 + (1 − 𝛾) 3∑
ℎ=1

𝜃ℎ𝜇𝑍ℎ (𝑥)
s.t. 𝜆0 ≤ 𝜇𝑍ℎ (𝑥) , ℎ = 1, 2, 3,

(7) − (19) , (26) − (27) , (34) − (39) ,
(57)

where 𝜆0 is an auxiliary variable.



12 Journal of Advanced Transportation

Input parameters of PUOM (28)

Analytically express Model (46) by compromising approach

Solve Subproblems (50), (51) and (52) to get Zu
1 , Z l

2 , Zu
3 by (53)

Choose a compensation coefficient and three weights to get the integrated Model (57)

Solve Model (57) for a given violation degree

Is solution of Model (57) satisfactory?

Reduce violation degree

Update compensation coefficient

Is the feasible region of Model (57) empty?

Output the satisfactory solution

yes

no

yes
no

Use and to fuzzify by (54), (55) and (56), h = 1, 2, 3Zu
1 , Z l

2 Zu
3 Zℎ

Figure 5: Logic chat of Algorithm 1.

Step 4. Select a violation degree 𝛿∗ as small as possible to
ensure solution existence of the deterministic model (57).

Step 5. Solve model (57). Denote 𝑥∗ and 𝜆∗0 the optimal
solution of (57). Clearly, corresponding to 𝛿∗, the satisfaction
degree of the three objective functions at least attains 𝜆∗0 .
Step 6. If the decision-maker is satisfied with this current
compromising solution, go to Step 7. Otherwise, update the
value of compensation coefficient by 𝛾 =: 𝛾 + Δ𝛾, where1 − 𝛾 > Δ𝛾 > 0. Return to Step 5.

Step 7. Choose a smaller 𝛿∗. If the feasible region of (57)
is empty for 𝛿∗, then the algorithm stops and the decision-
maker determines the most satisfactory 𝛿∗, 𝑥∗ and 𝜆∗0
amongst all of the previous numerical results. Otherwise,
return to Step 5.

The logic of Algorithm 1 can be demonstrated by the
flowchart in Figure 5.

Remark 7. In Step 2, the three membership functions defined
by (54), (55), and (56) are degenerate trapezoidal functions.

Since our aim is to minimize 𝑍1, smaller values of 𝑍1 than𝑍𝑙
1 are always preferable.Thus, it is nature to make the degree

of membership equal to 1 for any value of 𝑍1 less than 𝑍𝑙
1.

In this case, the left side of the membership function 𝜇𝑍1(𝑍1)
is degenerate. The similar reason can be used to explain the
definitions of 𝜇𝑍2(𝑍2) and 𝜇𝑍3(𝑍3).
Remark 8. In Step 3, as done in [34], a fuzzy programming
approach is employed to convert a multiobjective optimiza-
tion problem into a single-objective problem such that an
interactive algorithm is developed to find a compromising
solution of the PUOM (28). Clearly, by maximizing the
integrated degree of membership 𝜆 in model (57), we obtain
a compromising solution such that both the total cost and
its variance (the decision-making risk) become as smaller as
possible. Actually, the first term in the objective function of
model (57) describes the lower bound of the membership
degree of all the three fuzzy objectives; greater lower bound
means higher degree of overall satisfaction, with which the
three objectives are simultaneously improved. The second
term in the objective function ofmodel (57)makes a trade-off
between the overall satisfaction and the individual one.
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Figure 6: Recovery network in Hunan province.

Remark 9. In [34], an interactive algorithm was developed to
solve a problem of purchasing, production, and distribution,
which is involved in multiple suppliers, one manufacturer,
and multiple distribution centers. It is shown that this algo-
rithm always generates unbalanced and balanced solutions
based on the decision-maker’s preferences. Similar to [34],
we develop Algorithm 1 to find a compromising solution of
the polymorphic uncertain recycling problems of ELVs in
this paper. Numerical experiments in Sections 4 and 5 will
show that Algorithm 1 can reveal more valuable managerial
insights from the proposedmodel (2) than the solution meth-
ods available in the literature. Especially, by our algorithm, we
can show how to choose an optimal compensation coefficient
and a violation degree (see Section 4).

4. Case Study with Different
Algorithmic Parameters

In this section, we will apply the presented model and
algorithm in Sections 2 and 3 to solve practical ELV recovery
management problems in Hunan, China.

4.1. Case Description. According to [3], China has built a
number of ELV recycling enterprises. In this case study, we
attempt to deal with the end-of-life car recovery management
problem of the five key cities (Changsha, Zhuzhou, Xiangtan,
Hengyang, and Shaoyang) in Hunan (see Figure 6), consid-
ering that the data can be collected completely.

For convenience, the centers of the five cities are regarded
as the ELV sources, and all of the relevant collecting enters,
dismantlers, shredders, landfills, secondary markets, and
recycling factories are distributed in these cities with given
locations (see Figure 6(b) and Tables 1–6). It is noted that, for
some cities, there are more than one dismantler, secondary
market, oil, or glass factory, or there is no any landfill,
secondary market, rubber, or plastics factory in practice.

A part of available data on unit costs of transportation
and processing, selling price and material weight percentages
of ELVs are deregistered from [6] (see Tables 7–11). For
simplifying this case study, we only consider a single-period
recycling problem. Referring to the government data on
scrapped vehicles [12], the amount of ELVs from the five
sources are estimated by

𝑅1 = 1073,
𝑅2 = 587,
𝑅3 = 418,
𝑅4 = 1087,
𝑅5 = 1077.

(58)

The aimof this case study is to answer the following questions:(1) How to determine an optimal transportation plan for
the ELV recycling network?
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Table 1: Size of the decision variables.

𝐼 𝐽 𝐾 𝐿 𝑈 𝑆 𝑃 𝑄 𝑅 𝑉 𝑊 𝑀 𝑁
5 5 6 5 2 2 2 2 2 2 2 2 2

Table 2: Sites of all items.

Changsha Zhuzhou Xiangtan Hengyang Shaoyang
Resource 1 2 3 4 5
Collection center 1 2 3 4 5
Dismantler 1 2,3 4 6 5
Shredder 2 1 3 5 4
Landfill 2 - 1 - -
Secondary market 1,2 - - - -
Steel mill 1,2 - - - -
Non-ferrous smeltery 1 - - 2 -
Oil factory 1,2 - - - -
Battery factory 1 - - 2 -
Rubber factory - 1 - - 2
Glass factory 1,2 - - - -
Plastics factory - - 1 - 2

Table 3: Distance between areas (km).

Resources Collection centers
1 2 3 4 5 1 2 3 4 5

Dismantlers
1 12.8 39.7 40 150.1 186.1 21.8 59.8 46.4 150.9 153.1
2 56.9 11.1 23.7 114.1 178.4 60.2 13.8 36.3 116.4 138.7
3 46.3 5.7 18.5 120.3 177.6 49.8 22.9 31.9 122.2 139.2
4 126.3 82.9 82.4 44 148.4 124.9 64.8 81.8 48.8 105.1
5 157.3 146 134.1 90.1 28.2 148.8 143.3 121.6 84.3 15.5
6 149.6 118.9 111.5 22.5 93.4 144.2 107.3 103.6 16.6 53.3

Collection centers
1 10 49.8 43.7 147.6 170.2 - - - - -
2 67.4 20.2 27.2 100.7 170.5 - - - - -
3 46.9 26.9 13.4 104.8 146.8 - - - - -
4 152 117 111.4 6.1 109.9 - - - - -
5 148.3 133.6 122.1 75.5 43.5 - - - - -

(2)What are the impacts of violation degree𝛿 on the three
objectives 𝑍1,𝑍2, and𝑍3 for a fixed compensation coefficient𝛾? (3)What are the influences of compensation coefficient 𝛾
on the least satisfaction degree 𝜆0?
4.2. Numerical Solution of the ELV Recycling Model. We
choose the weights of the three objectives 𝜃1 = 0.4, 𝜃2 =0.3, and 𝜃3 = 0.3, respectively. Then, we solve model (57)
by Algorithm 1. The optimal values of the decision variables
are reported in Table 12 in the case that 𝛿 = 0.1 and𝛾 = 0.5.

Table 12 indicates the follow-ing:(1) All the ELVs from the five sources are transported to
collection centers 1, 2, 4, and 5, while the quantities of trans-
portation between the ELV sources and collection centers 3
and 6 are zeros.

(2) The most admissive quantity of ELVs from the ELV
sources is 1935, which is actualized by the first collection
center. The minimal quantity of transportation occurred to
the second collection center (229 units of ELV).(3) From the optimal results, all the 4242 ELVs are
transported to the collection centers from the ELV sources.
That is to say, there is no direct transportation between the
ELV sources and the dismantlers.(4) All the ELVs at collection centers 1, 2, 4, and 5 are
transported to Dismantlers 1, 5, and 6.(5) All the hulks are transported from the dismantlers
to Shredders 2, 3, and 5. Then, from the shredders, the total
2630 tons of ferrous material and 169.68 tons of nonferrous
material are sold to the steel mills and the nonferrous
smelteries, respectively.(6)Thetotal disposal quantity is 637.3 tons and all theASR
are disposed in the two landfills.
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Table 4: Continued Table 3.

Shredders Secondary markets
1 2 3 4 5 1 2

Dismantlers
1 123.2 25.1 39.1 194.6 42.0 10.2 2.3
2 75.3 50.7 33.4 182.8 21.9 39.5 46.7
3 85.8 42.6 27.2 183.0 17.8 28.8 36.1
4 40.4 129.2 87.1 145.2 80.1 111.6 119.8
5 160.2 185.1 128.4 31.7 134.1 155.2 160.8
6 100.7 165.6 110.9 87.1 110.3 140.1 147.7

Landfills
1 148.7 39.4 59.5 204.0 65.3 - -
2 88.1 50.9 14.4 170.2 4.7 - -

Steel mills
1 117.8 33.0 29.7 185.1 33.8 - -
2 114.7 33.3 27.2 184.0 30.8 - -

Non-ferrous smelteries
1 149.4 33.0 65.3 214.1 69.3 - -
2 75.7 156.5 106.2 113.9 102.7 - -

Table 5: Continued Table 4.

Oil Battery Rubber Glass Plastics
1 2 1 2 1 2 1 2 1 2

Dismantlers
1 12.8 8.7 6.6 177.7 36.1 200.6 7.6 5.5 43.3 164.6
2 53.4 53.8 42.7 143.54 17.3 191.5 40.6 51.3 29.0 144.2
3 42.8 43.6 32.1 149.3 9.8 191.2 30.1 41.0 24.5 146.3
4 121.9 129.2 115.2 72.9 85.6 157.5 115.3 126.2 81.0 98.2
5 153.6 171.4 157.5 86.9 142.9 39.9 161.9 168.5 128.1 31.5
6 145.1 158.6 143.4 30.7 118.5 100.2 145.7 155.4 107.1 39.8

Table 6: Probability distribution of capacity/demand (ton).

𝑐𝑎𝑗 𝑐𝑎𝑘 𝑐𝑎𝑙 𝑐𝑎𝑢 𝑑𝑒1𝑠 𝑑𝑒2𝑠𝑁(2000, 502) 𝑁(2000, 502) 𝑁(1500, 452) 𝑁(500, 202) 𝑁(200, 102) 𝑁(100, 52)
Table 7: The fixed opening cost (×106 yuan).
𝑓𝑘 𝑓𝑙

(1.235,1.245,1.255,1.26) (4.975,4.99,5.01,5.02)

Table 8: Unit processing cost (yuan/ton).

𝑝𝑐𝑘 𝑝𝑐𝑙 𝑝𝑐𝑢
(1820,1920,2000,2080) (240,260,280,300) (440,480,520,550)

4.3. Impacts of Violation Degree. It is easy to see that the
feasible region of model (57) is closely related to the violation
degree 𝛿. For a smaller violation degree, the feasible region
becomes smaller because a decreasing 𝛿 implies higher
restriction on capacities or demands. Thus, it is useful to
analyze the impacts of violation degree on the optimal solu-
tion for the presented unified compromising optimization

approach in this paper. For this, we change the violation
degree 𝛿 with a step length of 0.01.

In Table 13, numerical results are given for different
violation degrees with a fixed 𝛾 = 0.5.

Table 13 demonstrates the following:(1) With an increasing violation degree, satisfactory
degree of the solution by the proposed unified compromising
optimization method becomes greater. On the other hand,
from 𝜆0 > 0.5, it follows that the satisfaction degree of the
compromising method can give a more satisfactory solution
than the expectation method in the literature.(2) Both of the center value and the lower deviation of
the fuzzy objective function, 𝑍1 and 𝑍3, are increasing as
the violation degree takes a smaller value, while the upper
deviation 𝑍2 is decreasing.(3) Since variations of the center value, the lower and
upper deviations, seem to be greater within the same change
of violation degree, it suggests that decision-makers should
choose a violation degree as small as possible in practice,



16 Journal of Advanced Transportation

Table 9: Unit transportation cost of each item (yuan/ton⋅km).

𝑡̃𝑐𝑖𝑗 ,̃𝑡𝑐𝑖𝑘 𝑡̃𝑐𝑗𝑘 𝑡̃𝑐𝑘𝑙 𝑡̃𝑐𝑙𝑢
(1.8,1.92,2.02,2.1) (0.7,0.76,0.82,0.86) (0.3,0.37,0.44,0.5) (0.9,0.97,1.04,1.1)𝑡̃𝑐𝑘𝑠 𝑡̃𝑐𝑘𝑝 ,̃𝑡𝑐𝑙𝑚 ,̃𝑡𝑐𝑙𝑛 𝑡̃𝑐𝑘𝑞 𝑡̃𝑐𝑘𝑟 ,̃𝑡𝑐𝑘V ,̃𝑡𝑐𝑘𝑤
(1.4,1.47,1.54,1.6) (0.6,0.67,0.74,0.8) (0.5,0.57,0.64,0.7) (0.4,0.47,0.54,0.6)

Table 10: Unit selling price of each item type (×103yuan/ton).
𝑠1𝑡 𝑠2𝑡 𝑠3𝑡 𝑠4𝑡
(2.1,2.3,2.5,2.65) (10.5,11.3,12.3,13) (3.5,3.7,3.9,4.0) (0.56,0.6,0.64,0.67)𝑠5𝑡 𝑠6𝑡 𝑠7𝑡 𝑧̃1𝑡
(0.14,0.145,0.15,0.155) (0.3,0.4,0.5,0.58) (5,5.6,6.2,6.6) (0.44,0.48,0.52,0.55)𝑧̃2𝑡
(1.4,1.47,1.54,1.6)

Table 11: Weight percentage of each item.

𝛼 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝜂 𝜂1 𝜂2
0.81 0.06 0.04 0.017 0.013 0.03 0.015 0.015 15/81 62/81 4/81

Table 12: Numerical solution in the case that 𝛿 = 0.1 and 𝜆 = 0.5.
Variable Value Variable Value Variable Value Variable Value𝐵1,4 1073 𝐸1,3 431.2 𝑄26,1 77.4 𝑄66,1 29.025𝐵2,5 587 𝐸5,3 301.3 𝑄31,2 32.895 𝑄73,2 29.025𝐵3,5 418 𝐸6,3 125 𝑄35,1 6.324 𝑄75,2 5.58𝐵4,1 1087 𝐸6,5 144.23 𝑄36,1 32.895 𝑄72,1 29.025𝐵5,1 848 𝐹2,1 210.3975 𝑄41,1 25.155 𝑄82,2 869.6𝐵5,2 229 𝐹3,2 158.8043 𝑄45,1 4.836 𝑄83,2 656.4𝐷1,6 1935 𝐹5,2 267.0982 𝑄46,2 25.155 𝑄85,2 1104𝐷2,5 229 𝑄11,2 116.1 𝑄51,1 58.0 𝑄92,1 56.1065𝐷4,1 930 𝑄15,1 22.32 𝑄55,2 11.16 𝑄93,1 42.3478𝐷4,5 143 𝑄16,1 116.1 𝑄56,2 58.05 𝑄95,1 71.2262𝐷5,1 1005 𝑄21,2 77.4 𝑄61,2 29.025𝐸1,2 1136.1 𝑄25,1 14.88 𝑄65,1 5.58

Table 13: Optimal solutions of different violation degree (𝛾 = 0.5).
𝛿 𝜆 𝜆0 𝑍1 𝑍2 𝑍3 ∇𝑍1 ∇𝑍2 ∇𝑍3

0.15 0.58486327 0.5061525 50622457.1 342850.6 269717.2 – – –
0.14 0.58485733 0.5061454 50622502.3 342849.1 269718.2 45.2 -1.5 1.0
0.13 0.58485261 0.5061407 50622650.9 342848.2 269718.9 14.9 -0.1 0.7
0.12 0.58484835 0.5061360 50622728.4 342847.2 269719.6 58.4 -1.0 0.7
0.11 0.58484195 0.5061289 50622844.6 342845.7 269720.6 106.2 -1.5 1.0
0.10 0.58483555 0.5061218 50622960.9 342844.2 269721.7 116.3 -1.5 1.1
0.09 0.58482881 0.5061139 50623026.2 342842.6 269722.8 65.3 -1.6 1.1
0.08 0.58482275 0.5061077 50623193.4 342841.3 269723.7 167.1 -1.3 0.9
0.07 0.58481635 0.5061006 50623309.9 342839.8 269724.8 116.5 -1.5 1.0
0.06 0.58480776 0.5060912 50623475.2 342837.8 269726.1 165.3 -2.0 1.4
0.05 0.58479702 0.5060794 50623681.1 342835.4 269727.8 205.9 -2.5 1.7
0.04 0.58478627 0.5060676 50623888.4 342832.9 269729.6 207.3 -2.5 1.7
0.03 0.58477089 0.5060503 50624126.1 342829.3 269732.1 237.7 -3.6 2.5
0.02 0.58475481 0.5060323 50624386.1 342825.5 269734.7 260.0 -3.8 2.6
0.01 0.58473918 0.5060109 50624154.1 342821.0 269737.8 -231.9 -4.5 3.1
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Table 14: Impacts of different compensation coefficient (𝛿 = 0.02).
𝛾 𝜆 𝜆0 𝑍1 𝑍2 𝑍3

0.1 0.6477901 0.5051697 50571344.3 342645.3 269860.4
0.2 0.6319046 0.5056313 50605879.4 342741.7 269793.2
0.3 0.6162438 0.5060323 50624386.1 342825.5 269734.7
0.4 0.6004978 0.5059748 50618897.1 342813.5 269743.1
0.5 0.5847548 0.5060323 50624386.1 342825.5 269734.7
0.6 0.5690160 0.5060412 50624749.2 342827.4 269733.4
0.7 0.5532663 0.5060345 50624774.6 342826.0 269734.4
0.71 0.5516919 0.5060346 50624774.7 342826.1 269734.3
0.72 0.5502479 0.5156469 52976829.1 344834.1 268333.4
0.73 0.5490104 0.5156425 52976206.2 344833.2 268334.1
0.74 0.5479271 0.5330710 57636118.5 348474.4 265793.9
0.8 0.5444988 0.5330710 57636113.5 348474.3 265793.9
0.9 0.5387847 0.5330708 57636081.8 348474.3 265794.0

provided that the feasible region of model (57) is nonempty.
In other words, one can obtain a better return with the same
violation by this way.

4.4. Impacts of Compensation Coefficient. Since the compen-
sation coefficient (𝛾) reflects importance of the least satisfac-
tion degree in model (57), a suitable choice of compensation
coefficient is necessary to any decision-maker. Actually, a
higher value for 𝛾 implies that more attention is paid to a
greater lower bound of satisfaction degree, corresponding to
more balanced compromising solutions [25].

We are in a position to study how the compensation
coefficient affects the satisfaction degree. For this, we solve
model (57) by changing the value of compensation coefficient
with a step length of 0.01. Additionally, from the results in
Section 4.3, we fix 𝛿 = 0.02. Numerical results are listed in
Table 14.

From Table 14, it follows that(1) With an increasing compensation coefficient, the
value of 𝜆0 becomes greater, while the value of 𝜆 becomes
smaller. When 𝛾 > 0.71, the least satisfaction degree 𝜆0,
the center value 𝑍1, the upper deviations 𝑍2, and the lower
deviations 𝑍3 all generate great changes.(2) Both of the center value and the upper deviation of
the fuzzy objective function, 𝑍1 and 𝑍2, are increasing as
the compensation coefficient takes a greater value, while the
lower deviation 𝑍3 is decreasing. This phenomenon implies
that the membership degrees of the three objective functions
not always become larger or smaller simultaneously.(3) If the decision-maker prefers to a higher satisfaction
degree 𝜆0, he/she could choose a relatively higher value of𝛾 for an optimal solution. Table 14 shows that there exists a
threshold value (𝛾 = 0.74 or so for the given scenario).

5. Sensitivity Analysis of Model Parameters

In this section, by sensitivity analysis of model parameters,
we attempt to reveal some valuable managerial implications
from our model and algorithm. Specifically, we will address
the following issues:

(1) How do the standard deviations (ST) of random
coefficients and the variances of fuzzy coefficients affect the
optimal strategy of the ELV recovery system?(2) What are the impacts of the above deviations and
variances on the satisfaction degree∑3

ℎ=1 𝜃ℎ𝜇𝑍ℎ (𝑥), the center
value 𝑍1, and the deviations 𝑍2 and 𝑍3?

5.1. Impacts of Fuzzy Cost Coefficients. Since the cost coeffi-
cients in model (2) are fuzzy, we conduct sensitivity analysis
by changing the variance of fuzzy sets so as to reveal what are
their impacts on the optimal solution.

A change of cost coefficients often influences enterprise’s
decision. So, an interesting question is to answer whether
there exist some differences among different types of cost
coefficients or not.

We change the dispersion levels of different fuzzy cost
coefficients in model (2) by a step length of 5% increment.
An addition of 30 scenarios is conducted in order to obtain a
generalization of the proposed model. The 30 scenarios are
the combination of the 10 different levels of the fixed cost,
10 different levels of the transportation cost, and 10 different
levels of the processing cost.Then, we implementAlgorithm 1
to solve the corresponding models. Numerical results are
presented in Tables 15, 16, and 17 and in Figure 7.

From Tables 15, 16, and 17 and Figure 7, it is clear that

(i) FromTables 15, 16, and 17, the increment in dispersion
level of fixed and processing cost coefficients causes
a change in choice of opening sites of dismantlers
and shredders. But the increment in dispersion level
of transportation cost coefficients only influences the
choice of opening sites for the dismantlers. In any
scenario, the number of opening points is not affected
by the dispersion levels of fuzzy cost coefficients.

(ii) A larger dispersion level leads to a lower satisfaction
degree ∑3

ℎ=1 𝜃ℎ𝜇𝑍ℎ (𝑥). In Figure 7(a), it is seen that
the processing cost has obvious influence on the
satisfaction degree, compared with the fixed cost and
the transportation cost in the range of 10%-25%.
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Table 15: Impact of fixed cost coefficients’ variance on choice of opening sites.

Open or not 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
K1 1 1 1 1 1 1 1 1 1 1
K2 0 0 0 0 0 0 0 0 0 0
K3 1 0 0 0 0 0 0 0 0 0
K4 0 1 1 0 0 0 1 0 0 1
K5 0 1 1 1 1 1 1 1 1 1
K6 1 0 0 1 1 1 0 1 1 0
L1 0 0 0 0 0 0 0 0 1 1
L2 1 1 1 1 1 1 1 1 1 1
L3 1 1 1 1 1 1 1 1 0 1
L4 0 0 0 0 0 0 0 0 0 0
L5 1 1 1 1 1 1 1 1 1 0

Table 16: Impact of processing cost coefficients’ variance on choice of opening sites.

Open or not 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
k1 NA 1 1 1 1 0 0 1 1 1
k2 NA 1 0 0 0 1 1 1 1 0
k3 NA 1 0 1 0 1 0 0 0 0
k4 NA 0 1 0 1 1 1 1 0 0
k5 NA 0 1 0 0 0 0 0 0 1
k6 NA 0 0 1 1 0 1 0 1 1
L1 NA 0 0 1 0 1 1 0 0 0
L2 NA 1 0 0 0 0 0 1 1 1
L3 NA 1 1 1 1 1 1 1 1 1
L4 NA 0 1 0 1 0 0 0 0 0
L5 NA 1 1 1 1 1 1 1 1 1

Table 17: Impact of transportation cost coefficients’ variance on choice of opening sites.

Open or not 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
K1 1 1 1 1 1 1 1 1 1 1
K2 0 1 0 0 1 0 0 1 1 0
K3 1 0 1 1 0 1 1 0 0 1
K4 1 1 1 1 1 1 1 0 0 0
K5 0 0 0 0 0 0 0 0 0 0
K6 0 0 0 0 0 0 0 1 1 1
L1 0 0 0 0 0 0 0 0 0 0
L2 1 1 1 1 1 1 1 1 1 1
L3 1 1 1 1 1 1 1 1 1 1
L4 0 0 0 0 0 0 0 0 0 0
L5 1 1 1 1 1 1 1 1 1 1

Beyond a threshold value (25% or so for the given
scenario), their impacts on the satisfaction degree∑3
ℎ=1 𝜃ℎ𝜇𝑍ℎ (𝑥) have no sharp distinction.

(iii) From Figures 7(b), 7(c), and 7(d), the increment in
cost dispersion level brings about the increase of the
center value 𝑍1 and the deviations 𝑍2 and 𝑍3, no
matter it is the fixed cost, the processing cost, or the
transportation cost. The contribution from the pro-
cessing costs is greater than those from the fixed cost

and the transportation cost.Therefore, we suggest that
it is the most important measure to improve the ELV
recovery efficiency by adopting advanced processing
technology and machinery equipment, which can
raise the entire satisfaction degree and reduce the
system cost.

5.2. Impacts of Fuzzy Selling Prices. Since the selling prices in
model (2) are also fuzzy, we similarly conduct the sensitivity
analysis of selling price by changing the variance of fuzzy
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(d) Impact on 𝑍3

Figure 7: Sensitivity of fuzzy cost coefficients’ variance.

Table 18: Impact of nonferrous components’ selling price on choice of opening sites.

Open or not 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
K1 1 1 1 1 1 1 1 1 1 1
K2 0 0 0 0 0 0 0 0 0 0
K3 0 0 0 0 0 0 0 0 0 0
K4 1 0 0 0 0 0 0 0 1 0
K5 1 1 1 1 1 1 1 1 1 1
K6 0 1 1 1 1 1 1 1 0 1
L1 0 0 0 0 1 1 1 1 0 0
L2 1 1 1 1 1 1 1 0 1 1
L3 0 0 0 0 0 0 0 1 1 1
L4 1 1 1 1 0 0 0 0 0 0
L5 1 1 1 1 1 1 1 1 1 1

sets so as to reveal what are its impacts on the optimal solu-
tion.

By changing the dispersion level of the fuzzy selling prices
in model (2) with a step length of 5% increment, 40 scenarios
are generated, which consist of 10 different levels of the selling
price of ferrous components, 10 different levels of the selling
price of nonferrous components, 10 different levels of the
selling price of ferrous material, and 10 different levels of the
selling price of nonferrous material.

Implement Algorithm 1 to solve the corresponding mod-
els. From the results of numerical experiments, it is found that
only the selling price of ferrous and nonferrous components

generates serious impact on choice of opening sites. For this
reason, we only present the numerical results on fuzzy selling
prices of nonferrous components and ferrous materials in
Tables 18 and 19, while those on the fuzzy selling prices of
ferrous components and nonferrous materials are omitted. In
Figure 8, we further present the impacts of their variances on∑3
ℎ=1 𝜃ℎ𝜇𝑍ℎ(𝑥), 𝑍1, 𝑍2, and 𝑍3, respectively.
From Tables 18 and 19, and Figure 8, it is easy to see that

(i) Tables 18 and 19 show that the increment in dispersion
level of selling price of nonferrous components and
ferrous material generates a change in choice of
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Table 19: Impact of ferrous material’ selling price on choice of opening sites.

Open or not 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
K1 1 1 1 1 1 1 1 1 1 1
K2 0 0 0 0 0 0 0 0 0 0
K3 0 0 0 0 0 0 0 0 0 0
K4 1 0 1 1 1 0 0 0 1 0
K5 1 1 1 1 1 1 1 1 1 1
K6 0 1 0 0 0 1 1 1 0 1
L1 0 1 0 1 0 1 1 0 1 0
L2 1 1 1 1 0 0 0 1 0 1
L3 0 1 0 1 1 1 1 1 1 1
L4 1 0 1 0 1 0 0 0 0 0
L5 1 0 1 0 1 1 1 1 1 1
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Figure 8: Sensitivity of selling price’s variance.

opening sites for the dismantlers and shredders. In
any scenario, the number of opening sites is not
affected by the dispersion levels of fuzzy selling
price.

(ii) Larger dispersion level leads to greater satisfaction
degree ∑3

ℎ=1 𝜃ℎ𝜇𝑍ℎ (𝑥). From Figure 8(a), it is clear
that, with increasing variances, the satisfaction degree∑3
ℎ=1 𝜃ℎ𝜇𝑍ℎ (𝑥) becomes greater. The selling price of

nonferrous components causes the most obvious
change, followed by ferrous material, ferrous compo-
nents, and nonferrous material. When the increment
reaches 50%, their satisfaction degrees are the same.

(iii) From Figures 8(b), 8(c), and 8(d), an increasing
selling price dispersion level causes a drop of the
center value, 𝑍1, and the variances, 𝑍2 and 𝑍3. The
contribution from the selling price of nonferrous
components is greater than those from the others.
When the increment reaches a threshold value (50%
or so for the given scenario), the center values 𝑍1

are the same. Therefore, more satisfactory solutions
may be obtained as the selling price variances of the
nonferrous components or ferrous materials properly
increase.

A comparison between Figures 7 and 8 indicates that
reducing the variances of fuzzy cost coefficients is more
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Table 20: Impact of capacity’s ST in dismantlers.

Open or not 5%-10% 15% 20%-35% 40% 45%-90% 95% 100%
K1 1 1 1 1 1 1 1
K2 0 0 0 0 0 0 0
K3 0 0 0 0 0 0 0
K4 0 1 0 1 0 1 0
K5 1 1 1 1 1 1 1
K6 1 0 1 0 1 0 1

Table 21: Impact of capacity’s ST in shredders.

Open or not 5% 10% 15%-60% 65% 70%-95% 100%
K1 1 1 1 1 1 1
K2 0 0 0 0 0 0
K3 0 0 0 0 0 0
K4 0 1 0 1 0 1
K5 1 1 1 1 1 1
K6 1 0 1 0 1 0

Table 22: Impact of capacity’s ST in landfill.

Open or not 5%-40% 45%-55% 60% 65% 70%-75% 80% 85%-90% 95%-100%
K1 1 1 1 1 1 1 1 1
K2 0 0 0 0 0 0 0 0
K3 0 0 0 0 0 0 0 0
K4 0 1 0 1 0 1 0 1
K5 1 1 1 1 1 1 1 1
K6 1 0 1 0 1 0 1 0

Table 23: Impact of demand’s ST in secondary markets for ferrous components.

Open or not 5%-25% 30%-70% 75% 80%-85% 90%-100%
K1 1 1 1 1 1
K2 0 0 0 0 0
K3 0 0 0 0 0
K4 0 1 0 1 0
K5 1 1 1 1 1
K6 1 0 1 0 1

effective on increment of satisfaction degree and reduction
of expected total cost than that by increasing the variances
of fuzzy selling prices. Thus, instead of increasing the selling
prices, decision-makers should pay more attention to reduc-
tion of the processing costs, the transportation costs, or the
fixed opening costs.

5.3. Impacts of Randomness. In construction of model, we
have assumed that the capacities and demands in model (2)
are random.Thus, one of our concerns is to test the impact of
their ST on the optimal solution.

By changing the value of ST with a step length of 5%
increment, 120 scenarios are generated. Then, we imple-
ment Algorithm 1 to solve the corresponding models. From
the results of numerical experiments, it is found that the
capacity’s ST in dismantlers, shredders, and landfills and the

demand’s ST in the secondary markets for ferrous compo-
nents have impacts on the choice of opening sites for the
dismantlers, while none of the ST generates serious impact on
the choice of opening sites for the shredders. For this reason,
we only present the numerical results that cause impacts on
the choice of opening sites in Tables 20, 21, 22, and 23, while
the other scenarios are omitted. In Figure 9, we present the
impacts of ST on ∑3

ℎ=1 𝜃ℎ𝜇𝑍ℎ (𝑥), 𝑍1, 𝑍2, and 𝑍3, respective-
ly.

FromTables 20, 21, 22, and 23 and Figure 9, it is concluded
that

(i) The increment of ST causes two kinds of schemes
for choosing the opening sites of dismantlers. In our
scenario analysis, we should open Dismantlers 1, 5,
and 6 or open Dismantlers 1, 4, and 5 (see Tables 20,
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Figure 9: Sensitivity of standard deviation.

21, 22, and 23). In any scenario, the number of opening
sites is not affected by ST.

(ii) An increasing ST has almost the same impact on the
satisfaction degree, i.e.,∑3

ℎ=1 𝜃ℎ𝜇𝑍ℎ (𝑥), but the impact
is extremely small (see Figure 9(a)). Comparatively
speaking, the impact of the capacity’s ST in disman-
tlers is obvious than those in the other nodes.

(iii) The center value 𝑍1 and the deviations 𝑍2 and 𝑍3

are affected by the increasing ST (see Figures 9(b),
9(c), and 9(d)). However, compared with Figures 7
and 8, it is seen that the impacts caused by ST are quite
smaller than that caused by that of cost coefficients
or selling prices on the center value 𝑍1 and the
deviations 𝑍2 and 𝑍3. That is to say, uncertainty of
costs may be more critical to the decision-making
than that of demand and capacity if the demands or
the processing capacities are large enough, as shown
in the conducted case study.

6. Conclusions and Directions of
Future Research

In this paper, we have built an optimization model with
fuzzy and stochastic parameters for the production planning
problems of recycling ELVs under polymorphic uncertain
environment by taking into account a number of uncertain
parameters.

For this complicated PUOM, a so-called chance-con-
strained and multiobjective programming method has been
proposed to find a compromising solution for an optimal plan
of recycling ELVs. Scenario analysis and sensitivity analysis
have indicated that the developed algorithm is efficient and
can provide a number of valuable managerial insights from
the PUOMmodel.

Specifically, main results in this paper include the follow-
ing:

(1) The proposed model and the developed algorithm
in this paper have provided an efficient quantitative
method to find a compromising (optimal) policy for
the practical ELV recovery management problem in
an uncertain environment. In particular, the pro-
posed method can help decision-maker to choose an
optimal number of opening recovery sites, optimal
transportation quantities in the ELV recovery net-
work.

(2) Facedwith uncertainty in ELV recoverymanagement,
decision-makers could choose a relatively greater
compensation coefficient to make a greater least satis-
faction degree as they apply the presented model and
algorithm in this paper into the practical decision-
making.Moreover, by ourmodel and algorithm, some
critical threshold values being associated with an
optimal recovery policy can be found out in the
case that the practical recovery environment chan-
ges.
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(3) Variance of fuzzy costs or selling prices may lead
to a change of opening sites for the dismantlers
or shredders. Reducing the variance of processing
costs or increasing the variance of selling prices are
two effective methods to make a larger satisfaction
degree for the ELV recovery system. Reduction of
the costs such as the processing costs and the trans-
portation costs generate more significant impacts on
the optimal recycling policy than the change of the
component selling prices in the secondary markets.

(4) Small changes of demand and capacity would not
generate serious impact on the optimal recovery
policies in the case that the demands or the processing
capacities are large enough. It is suggested that adopt-
ing advanced processing technology and machinery
equipment is the most important measure to improve
the ELV recovery efficiency in this case. That is to say,
fuzziness of costsmay bemore critical to the decision-
making than randomness of demand and capacity.

For future research, the problem can be extended to
a closed-loop green supply chain system. Especially, if the
deterministic equivalent formulation of the original model is
nonsmooth or is involved with hundreds of integer variables
(the number of dismantlers and shredders), then develop-
ment of heuristic algorithms is necessary since it is an NP-
hard problem.

Additionally, if one considers the games between govern-
ments and recycling enterprises, it is worth further studying
newmodels from the perspective of game theory, rather than
from the centralized decision-making mode in this paper.
Particularly, in the case that the collection centers and the
processing centers of ELVs seek to maximize their profits as
different agents, it is necessary to construct a new model in
decentralized decision-making mode.
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