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Abstract. We present a framework to accelerate optimization of problems where the objective
function is governed by a nonlinear partial differential equation (PDE) using projection-based
reduced-order models (ROMs) and a trust-region (TR) method. To reduce the cost of objective
function evaluations by several orders of magnitude, we replace the underlying full-order model
(FOM) with a series of hyperreduced ROMs (HROMs) constructed on-the-fly. Each HROM
is equipped with an online-efficient a posteriori error estimator, which is used to define a TR.
Hyperreduction is performed following a goal-oriented empirical quadrature procedure, which
guarantees first-order consistency of the HROM with the FOM at the TR center. This ensures
the optimizer converges to a local minimum of the underlying FOM problem. We demonstrate
the framework through optimization of a nonlinear thermal fin and pressure-matching inverse
design of an airfoil under Euler flow and Reynolds-averaged Navier-Stokes flow.

1 INTRODUCTION

Numerical approximations of partial differential equations (PDEs) play an increasingly promi-
nent role in the development of new engineering designs. However, while higher-fidelity simula-
tions of increasingly more complex systems become possible, the computational cost continues to
grow. This motivates the current work, which attempts to preserve the accuracy of high-fidelity
simulations while reducing the cost. Specifically, we wish to reduce the cost of optimization
problems governed by general nonlinear PDEs. We employ a goal-oriented projection-based
reduced-order model (ROM) constructed on-the-fly to achieve this goal.

Our approach to projection-based ROMs of nonlinear PDEs builds on three ingredients.
The first ingredient is a reduced basis (RB) constructed from full-order model (FOM) solution
snapshots. The RB provides a low-dimensional and rapidly converging approximation of the
parameter-induced solution manifold [15]. The second ingredient is hyperreduction, which en-
ables the rapid and accurate evaluation of the nonlinear residual. Of the many hyperreduction
methods available [7, 5, 8, 3, 12, 12], we use the empirical quadrature procedure (EQP) [19, 23],
which provides direct quantitative error control of the quantities of interest (i.e., goal-oriented
error control) [22]. The combination of the RB and the EQP yields the hyperreduced ROM
(HROM). The third ingredient is the dual-weighted residual (DWR) method [6], used in the
context of ROM to approximate the error in the quantities of interest, as done in [16, 22].
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ROM has been used extensively to accelerate PDE-constrained optimization problems [24,
1, 25, 20]. In these works, the ROM is built as the optimizer progresses using a trust-region
(TR) approach, and is therefore referred to as “adaptive” or constructed “on-the-fly”. There
are also works that use a HROM constructed a priori (and not on-the-fly) in PDE-constrained
optimization [2]. However, to the best of our knowledge, the present work is the first to employ
on-the-fly hyperreduction and apply it to aerodynamic shape optimization.

The contributions of this work are threefold. Firstly, we develop a hyperreduction method
for TR-based optimization which guarantees that the ROM satisfies the zeroth- and first-order
consistency conditions required for global convergence. To achieve this goal, we develop the
EQP with constraints tailored for gradient-based optimization. Secondly, we propose TR def-
initions informed by a DWR error estimate for nonlinear PDEs. Thirdly, we demonstrate the
integrated framework to accelerate PDE-constrained optimization using a series of progressively
more difficult optimization problems, including aerodynamic shape optimization.

2 FORMULATION

2.1 Problem statement

We introduce the optimization problem that we consider throughout this work. We first
introduce an np-dimensional parameter domain D ⊂ Rnp and a parametrized d-dimensional
physical domain Ω(µ) ⊂ Rd. We then introduce a system of nk conservation laws of the form

∇ ·
(
F (u(µ);µ) +G(u(µ),∇u(µ);µ)

)
= S(u(µ),∇u(µ);µ) in Ω(µ), (1)

where u(µ) : Ω(µ) → Rnk is the solution field, F : Rnk × D → Rd×nk is the advection flux,
G : Rnk × Rd×nk × D → Rd×nk is the diffusion flux, and S : Rnk × Rd×nk × D → Rnk is the
source. The system is complemented by appropriate boundary conditions. Given the state, we
evaluate a functional output

q(u(µ);µ) ≡
∫

Ω(µ)
qV (u(µ);µ) dV +

∫
∂Ω(µ)

qB(u(µ),∇u(µ);µ) dS, (2)

where qV : Rnk ×D → R and qB : Rnk × Rd×nk ×D → R are the volume and boundary output
integrands, respectively. We finally state our optimization problem: find µopt such that

µopt = arg min
µ∈D

C(q(u(µ);µ);µ), (3)

where C(·;µ) : R→ R is a (low-cost, algebraic) function that maps the functional output to the
objective function by, e.g., adding a penalty or comparing the output with a target value.

2.2 Finite element approximation

We now introduce a FOM using a finite element (FE) approximation of the optimization
problem (3). To begin, we introduce a piecewise polynomial approximation space Vh of dimension
N , where N is typically large and is of order 104–106. We next introduce a semi-linear form
rh : Vh × Vh × D → R and a nonlinear form qh : Vh × D → R associated with (1) and (2),
respectively. The forms incorporate (i) stabilization terms required for non-conforming methods
(e.g., discontinuous Galerkin (DG) method [4, 10]) and (ii) approximations of the integrals in
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the weak form of (1) and (2) using piecewise Gauss(-like) quadrature rules with points {xq}
Nq

q=1

and weights {ρq}
Nq

q=1. Note that Nq is the total number of volume and surface quadrature points,
making it a mesh-dependent quantity; Nq is of order N , but several times greater than N . Our
FE optimization problem is as follows: find µopt,h ∈ D such that

µopt,h = arg min
µ∈D

Ch(µ), (4)

where Ch(µ) ≡ C(qh(uh(µ);µ);µ) and uh(µ) ∈ Vh satisfies

rh(uh(µ), vh;µ) = 0 ∀vh ∈ Vh. (5)

The solution of the optimization problem using a gradient-based optimization method (we
employ an interior point method [17]) requires the evaluation of the gradient of Ch(·). We use
an adjoint method to compute the gradient. To this end, we first introduce a dual problem: find
zh(µ) ∈ Vh such that

r′h[uh(µ)](vh, zh(µ);µ) = q′h[uh(µ)](vh;µ) ∀vh ∈ Vh, (6)

where r′h[uh(µ)](wh, vh;µ) and q′h[uh(µ)](wh;µ) are the Gâteaux derivatives of r(·, vh;µ) and
qh(·;µ) about uh(µ) in the direction wh, respectively. We also define a residual sensitivity form
∂µrh : Vh × Vh × D → Rnp and an output sensitivity form ∂µqh : Vh × D → Rnp such that
∂µrh(wh, vh;µ) ≡ ∂

∂µrh(wh, vh;µ) and ∂µqh(vh;µ) ≡ ∂
∂µqh(vh;µ) for all wh, vh ∈ Vh and µ ∈ D.

We then express the gradient of qh(uh(·); ·) as

∇µ(qh(uh(µ);µ)) = −∂µrh(uh(µ), zh(µ);µ) + ∂µqh(uh(µ);µ). (7)

The implicit dependence on µ through uh is captured by the first term, and the direct dependence
through qh is captured by the second term. Given ∇µ(qh(uh(µ);µ)), we appeal to the chain rule
to evaluate the objective function gradient ∇µCh(µ) ∈ Rnp .

The evaluation of the objective Ch(µ) and the associated gradient ∇µCh(µ) requires the
solution of the FE primal problem (5) and the dual problem (6). This requires O(N ) operations,
which renders the solution of the optimization problem (3) computationally expensive.

2.3 Reduced-order model

We now introduce a projection-based ROM, which we use as a surrogate model to rapidly
approximate the objective function Ch(µ) and its gradient ∇µCh(µ), accelerating the solution
of the optimization problem using a TR method. To ensure the global convergence of the
TR method, the ROM approximations CN (µ) and ∇µCN (µ) must satisfy the following two
conditions:

� Zero-order consistency (ZOC): CN (µTR) = Ch(µTR),

� First-order consistency (FOC): ∇µCN (µTR) = ∇µCh(µTR),

where µTR ∈ D is the current TR center. If these two conditions are satisfied, and each sub-
problem satisfies a sufficient decrease condition, then the TR method is guaranteed to converge
to a local minimum of the optimization problem (4) [17, 24]. We construct the ROM with these
conditions in mind.
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2.3.1 Reduced basis method

We now describe on-the-fly construction of the RB in the context of TR-based optimization.
The RB method takes advantage of the fact that the parametric solution manifold {uh(µ)}µ∈D
is often amenable to approximation in a lower-dimensional space than the FE space Vh. In
the context of optimization, we obtain the RB using Gram-Schmidt orthogonalization (GSO)
(alternatively POD) on the FOM solutions obtained so far during optimization. Namely, we
choose the set of all parameter values at which the FOM problems (5) and (6) have already been
solved as the training set Ξtrain ⊂ D (which includes µTR) and obtain the associated (primal)

training snapshots Utrain ≡ {uh(µt)}µt∈Ξtrain . We then set {ζpr
i }

Npr

i=1 = GSO(Utrain ∪ zh(µTR))

and finally introduce the RB space Vpr
N ≡ span{ζpr

i }
Npr

i=1 of dimension Npr � N . See Remark 1
for the rationale in the choice of the particular RB space.

Given the RB space, our RB approximation of the primal problem (5) is the following: given
µ ∈ D, find uN (µ) ∈ Vpr

N such that

rh(uN (µ), v;µ) = 0 ∀v ∈ Vpr
N . (8)

We then evaluate the output CN (µ) ≡ C(qh(uN (µ);µ);µ). To evaluate the gradient ∇µCN (µ)
using the the adjoint method, we first introduce the dual problem: find zpr

N (µ) ∈ Vpr
N such that

r′h[uN (µ)](vN , z
pr
N (µ);µ) = q′h[uN (µ)](vN ;µ) ∀vN ∈ Vpr

N . (9)

Then we exactly evaluate ∇µ(qh(uh(µ);µ)) and ∇µCN (µ) using a procedure analogous to that
described in Section 2.2, with uh(µ) and zh(µ) replaced by uN (µ) and zpr

N (µ).

Remark 1. The inclusion of a solution uh(µTR) in the training set Utrain ensures uN (µTR) =
uh(µTR): i.e., we exactly reproduce primal solutions. Hence, we satisfy the ZOC condition:
CN (µTR) = Ch(µTR). Similarly, the dual solution zh(µTR) is included in the primal RB set
to ensure that (9) yields the exact solution: zpr

N (µTR) = zh(µTR). Together with the fact that
uN (µTR) = uh(µTR), this ensures that the ROM satisfies the FOC condition: ∇µCN (µTR) =
∇µCh(µTR).

2.3.2 Hyperreduction by an empirical quadrature procedure

Despite the significant reduction in the dimension of the approximation space (i.e., Npr � N ),
the cost to solve (8) for uN (µ) ∈ Vpr

N as described above still scales withN because the evaluation
of the residual scales with the number of FE quadrature points Nq = O(N ). The goal of
hyperreduction is to achieve N -independent cost.

While many hyperreduction methods exist, we use the EQP [23]. The EQP seeks a reduced

quadrature (RQ) rule {(x̃q, ρ̃q)}
Ñq

q=1, where Ñq � Nq to promote rapid evaluation while con-
trolling the quadrature error in integrals that are relevant to the ROM. Accuracy is promoted
by training on a set of integrals {It ≡

∫
Ω It(x)dx}nEQP

t=1 associated with integrands It : Ω → R,

where each It is evaluated using the FE quadrature rule {(xq, ρq)}
Nq

q=1. We then pose the following

optimization problem: find ρ̂ ∈ RNq

≥0 such that

4



Benjamin F. Gibson and Masayuki Yano

ρ̂ = arg min
ρ∈RNq

≥0

‖ρ‖0 (10)

subject to

∣∣∣∣ Nq∑
q=1

ρqIt(xq)− It
∣∣∣∣ ≤ εEQP,t, t = 1, . . . , nEQP,

where εEQP,t ∈ R≥0 is a user-prescribe tolerance for the t-th training integral. We then extract

non-zero entries of ρ̂ to obtain the RQ rule {(x̃q̃, ρ̃q̃)}
Ñq

q̃=1 = {(xq, ρ̂q) | ρ̂q 6= 0, q = 1, ..., Nq}.
Given the RQ rule, we evaluate the objective C̃N (µ) and its gradient ∇C̃N (µ) associated

with the hyperreduced ROM (HROM) as follows. We find ũN (µ) ∈ Vpr
N such that

r̃h(ũN (µ), vN ;µ) = 0 ∀vN ∈ Vpr
N , (11)

where r̃h(·, ·;µ) is the approximation of the semi-linear form rh(·, ·;µ) using the RQ rule. We
then evaluate the HROM approximation of the objective, C̃N (µ) ≡ C(qh(ũN (µ);µ);µ). In this
work, we do not hyperreduce the output functional qh(·;µ), since the cost of its evaluation is
relatively low. To evaluate its gradient, we first find z̃pr

N (µ) ∈ Vpr such that

r̃′h[ũN (µ)](vn, z̃
pr
N (µ);µ) = q′h[ũN (µ)](vN ;µ) ∀vN ∈ Vpr

N , (12)

and then follow the procedure in Section 2.2, with uN (µ) and zpr
N (µ) replaced by ũN (µ) and

z̃pr
N (µ), to obtain ∇µC̃N (µ).

We now describe the key to our hyperreduction procedure: the selection of the training
integrals in the EQP. In the EQP, we are free to choose the training integrals, which enables
construction of goal-oriented, application-tailored empirical quadrature rules. Our application
is optimization, so we use constraints that preserve ZOC and FOC of the surrogate model:∣∣rh(uN (µTR), ζpr

i ;µTR)− r̃h(uN (µTR), ζpr
i ;µTR)

∣∣ ≤ εFOC, i = 1, ..., Npr, (13)∣∣r′h[uN (µTR)](ζpr
i , z

pr
N (µTR);µTR)− r̃′h[uN (µTR)](ζpr

i , z
pr
N (µTR);µTR)

∣∣ ≤ εFOC, i = 1, ..., Npr, (14)∣∣∂µrh(uN (µTR), zpr
N (µTR);µTR)− ∂µr̃h(uN (µTR), zpr

N (µTR);µTR)
∣∣ ≤ εFOC,(15)

where we set εFOC to be near machine precision, so that the integrals are (nearly) exactly
reproduced by the RQ rule.

Remark 2. Constraint (13) ensures that ũN (µTR) = uN (µTR), constraint (14) ensures that
z̃pr
N (µTR) = zpr

N (µTR), and constraint (15) ensures that∇µ(q(ũN (µ);µ))|µTR = ∇µ(q(uN (µ);µ))|µTR .
This ensures that ZOC and FOC is carried from the FOM through ROM to the final HROM:
i.e., Ch(µTR) = CN (µTR) = C̃N (µTR) and ∇µCh(µTR) = ∇µCN (µTR) = ∇µC̃N (µTR). The
total number of constraints in the EQP is 2Npr + np. We may also add more constraints at a
lighter tolerance to improve the quality of the empirical quadrature rule.

2.3.3 A posteriori error estimation

Following [24, 25, 20], we wish to use TRs informed by the ROM error. Since we consider
general nonlinear PDEs in this work, we use the DWR method [6], following the construction of
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a DWR-based error estimate for HROMs in [22]. Namely, given the dual FE snapshots Ztrain ≡
{zh(µt)}µt∈Ξtrain , we first construct a dual RB {ζdu

i }
Ndu
i=1 = GSO(Ztrain) and the associated dual

RB space Vdu
N ≡ span{ζdu

i }
Ndu
i=1 . We then find the dual RB solution zdu

N (µ) ∈ Vdu
N such that

r′h[ũN (µ)](vN , z
du
N (µ);µ) = q′h[ũN (µ)](vN ;µ) ∀vN ∈ Vdu

N (16)

and estimate the error incurred by the HROM (with respect to FOM) as

|q(uh(µ);µ)− q(ũN (µ);µ)| ≈ ηN (µ) ≡ |rh(ũN (µ), zdu
N (µ);µ)|. (17)

In this work (unlike in [22]), we do not apply hyperreduction to the dual problem; in the context
of optimization, we find that the cost to construct the RQ rule for the dual problem using the
EQP outweighs the acceleration the dual HROM provides.

2.4 TR definitions

In general, the kth trust region DTR,k ⊂ D is defined as DTR,k ≡ {µ ∈ D | θk(µ) ≤ δk}, where
θk : D → R≥0 is the TR metric, and δk is the maximum allowable TR metric (or TR size). In
this work, we terminate solution of the optimization sub-problem when the optimizer reaches
θk(µ) ≥ 0.9δk, or within 90% of the TR boundary. We consider three TR metrics.

Geometric TR (GTR). In the standard GTR, θGTR
k (µ) ≡ ‖µ−µTR‖2, the Euclidean distance

between the current point µ and the TR center µTR. The TR size δk adapts based on the
accuracy of the previous HROM relative to the FOM after a model update [17].

Error-based TR (ETR). The GTR does not directly capture the accuracy of the HROM,
especially when the design parameters are scaled poorly. The HROM error is more accurately
predicted by the error estimate ηN (µ) in (17). We therefore define an ETR with a metric
θETR
k (µ) ≡ ηN=k(µ). To ensure the TR is bounded, we also use a large maximum GTR with a

fixed size DmaxGTR to bound the ETR, so DETR ≡ {µ ∈ D | θETR
k (µ) ≤ δk} ∩ DmaxGTR.

Advanced TR (ATR). The ATR uses the error estimate to attempt to guarantee that the
newly selected design point satisfies the sufficient decrease condition. If the error is predicted to
be large, but the decrease in the objective function is suspected to be even larger, then we accept
the step. This is because typically near the beginning, the HROM is not that accurate, but it
also does not need to be as accurate in order to make progress. Hence we choose θATR

k (µ) ≡
ηN=k(µ)

(
(C̃k(µTR)−C̃k(µ))+β(µ−µTR)T∇C̃k(µTR)

)−1
and fix the TR size to δ = 1. To ensure

the TR is neither unbounded nor empty, we also use a small minimum ETR and a maximum
GTR: DATR ≡

(
{µ ∈ D | θATR(µ) ≤ 1} ∪ DminETR

)
∩ DmaxGTR.

3 RESULTS

We assess the proposed ROM-accelerated optimization method using three model problems.
Due to space limitations, we only present a sample of the results here; for more details, see [13].

3.1 Nonlinear thermal fin

We consider a np = 7-dimensional nonlinear thermal fin problem, modelled on Qian et al. [20],
but governed by a nonlinear heat equation to motivate hyperreduction. Figure 1 shows the
physical domain Ω. The conductivity of the main trunk Ω0 is eu(µ), and the conductivity of each
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(a) Designation of regions and boundaries, Γroot in
red and Γext in blue

(b) Mesh for FOM (N = 2,029 degrees of freedom)

Figure 1: Model thermal fin problem

(a) ζpr1 (b) Mesh overlayed with quadrature points (red)

Figure 2: RB and RQ visualization

fin Ωi is 10µieu(µ), i = 1, ..., 6. The temperature-dependent conductivity makes the heat equation
nonlinear. Natural convection away from Γext is described by Bi(µ) = 10µ7 . The objective is to
minimize the (scaled) average temperature

∫
Ω u(µ)dx, with a penalty on higher values of each

µi.
Figure 2a shows the first RB function. The RB is computed using POD (but without com-

pression), making ζpr
1 the average solution of (Utrain ∪ zh(µTR)). Figure 2b shows a RQ rule,

where Nq = 5,256 is reduced to Ñq = 69. Most RQ points are clustered near the subdomain
boundaries.

Figure 3 demonstrates the ZOC and FOC of the model for N = 10. Both the error ∆(µ) ≡
|q(uh(µ);µ)− q(uN (µ);µ)| and the error estimate ηN (µ) are shown to be zero at µTR, for both
the non-hyperreduced ROM and the HROM. The error in the gradient of the objective is also
zero, demonstrating the successful guarantee of ZOC and FOC; cf. Remarks 1 and 2.

Table 1 breaks down the cost to solve the optimization problem for the three TR definitions.
Speedup is observed for all three cases, though most significantly with the GTR. This is due
to fewer FOM solves required and not having to evaluate ηN (µ). The parameterization of this
problem is not that complex, so the advantages of the error-based TRs over a GTR with an
adaptive TR size update rule are not clear.
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Figure 3: Comparison of non-hyperreduced and HROM output and gradient errors near µTR,
with N = 10

Table 1: Results for nonlinear thermal fin optimization

Case # FOM # HROM tFOM [s] tHROM [s] tη [s] ttrain [s] ttotal [s]

FOM 16 - 6.4 - - - 6.4

GTR 11 60 4.0 0.1 - 0.2 4.6

ETR 12 79 4.5 0.2 0.5 0.3 6.0

ATR 12 59 4.6 0.1 0.4 0.3 6.0

3.2 Inverse design: Euler equations

We consider a pressure-matching inverse-design problem governed by the Euler equations. To
this end, we consider free-form deformation (FFD) of the NACA0012 airfoil. The reference airfoil
surface pressure pref is associated with a reference deformation µref. Our goal is to reproduce
µref by optimizing the objective function q(u(µ);µ) ≡

∫
Γfoil

(p(u(µ))−pref)
2dS. This is an inverse

design problem — finding the geometry that yields a specified pressure distribution. Zahr and
Farhat [25] studied this problem using ROM, but without hyperreduction and a posteriori error
estimates for the output. Figure 4 shows the geometry and surface pressure distributions; the
reference and final geometries are indistinguishable. Figure 4a also shows the FFD control lattice,
characterized by np = 6 parameters. The FOM uses a high-order DG FEM with output-based
adaptive mesh refinement [6], with N = 20,496. The use of these state-of-the-art techniques
ensures that the further cost reduction obtained by the ROM-accelerated methods provides a
fair comparison, not skewed by the choice of an inefficient baseline.

We solve the problem using the HROM-accelerated method and the ATR. We also exper-
iment with a parameter in the algorithm called nwarmup, which is the number of initial FOM
solves (after the first one, which is not optional) which are performed before starting to apply
HROM-acceleration. The motivation for this is that in the beginning with as few as only one
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Figure 4: Geometry and Cp distribution for Euler-based pressure matching optimization, with
M = 0.2 and α = 5◦

Table 2: Results for Euler inverse aerodynamic design

Case # FOM # HROM tFOM [s] tHROM [s] tη [s] ttrain [s] ttotal [s]

FOM 20 - 33.6 - - - 33.6

nwarmup = 0 14 198 25.3 1.9 0.9 10.1 38.1

nwarmup = 2 10 62 17.8 0.5 0.3 2.6 21.3

nwarmup = 6 13 46 23.6 0.4 0.3 7.3 31.6

nwarmup = 9 12 14 21.9 0.1 0.1 3.1 25.2

nwarmup = 13 19 73 33.2 0.9 0.5 64.4 99.1

training snapshot, the resulting ROM is quite crude, perhaps resulting in more exploration of
the parameter space and therefore more FOM solves. The convergence in Figure 5 and the
timing breakdown in Table 2 demonstrate the effect of nwarmup on performance, as compared
to the FOM baseline. All cases except the two extremes of nwarmup = 0 and 13 show speedup.
The initial HROM is too crude for nwarmup = 0 which impedes the initial progress, and more
warmup solves than necessary are performed for nwarmup = 13.

3.3 Inverse Design: RANS Equations

We solve another inverse design problem similar to the one in Section 3.2 with two modifi-
cations: the governing equations are the Reynolds-averaged Navier-Stokes (RANS) equations,
and the angle of attack is a design variable. The FOM has N = 77,940 DOF. The pressure dis-
tribution is similar to Figure 4b, so we do not show it here. As far as we know, a RANS-based
optimization problem accelerated by ROM has not been attempted in the literature; we wish to
push the boundaries of what has been achieved to date with ROM-accelerated optimization.

Unfortunately, as shown in Table 3, actual acceleration in terms of computational time is not
observed. We reduce the number of FOM solves, but we do not see speedup in real terms. This
is because of the high cost both of the HROM solves and of the training, specifically the EQP

9



Benjamin F. Gibson and Masayuki Yano

2 4 6 8 10 12 14 16 18 20

FOM Solves

10-8

10-6

10-4

10-2

100

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

FOM Baseline

n
warmup

 = 0

n
warmup

 = 2

n
warmup

 = 6

n
warmup

 = 9

n
warmup

 = 13

(a) Objective function

2 4 6 8 10 12 14 16 18 20

FOM Solves

10-4

10-3

10-2

10-1

100

101

FOM Baseline

n
warmup

 = 0

n
warmup

 = 2

n
warmup

 = 6

n
warmup

 = 9

n
warmup

 = 13

Target = 10-3

(b) First order optimality

Figure 5: Effect of number of initial FOM solves nwarmup on convergence of the Euler pressure
matching problem using HROM acceleration with an ATR

Table 3: Results for RANS inverse aerodynamic design, Re = 2× 105, εopt = 10−3

Case # FOM # HROM tFOM [s] tHROM [s] tη [s] ttrain [s] ttotal [s]

FOM 21 - 341.3 - - - 341.3

GTR 16 91 272.3 49.5 - 122.6 444.9

ETR 13 127 222.5 69.4 12.3 64.5 369.1

ATR 14 142 246.2 81.0 14.1 127.6 469.1

training. HROM solves are expensive not because of any failure in the method described here,
but simply due to the expense of the FFD transformation, which we were not able to reduce. We
still require a full geometry transformation, the cost of which is still mesh-dependent. The EQP
training cost also scales with Nq. More work is required to reduce both of these contributions
to the cost before we can see true speedup.

4 CONCLUSIONS

We have presented a framework to accelerate nonlinear PDE-constrained optimization using a
projection-based HROM and TR method. The HROM is constructed to achieve ZOC and FOC
with the FOM at the TR center, providing an optimization convergence guarantee. We use
the DWR error estimator ηN (µ) to describe two error-aware TRs, in addition to the standard
GTR. We then present results on three model problems, two of which did see a reduction
in computational cost. The third problem represents the breaking of new ground in ROM-
accelerated optimization, but to date real computational speedup has not yet been achieved.

Future work on this subject should involve further reducing the cost of the FFD transforma-
tion and the EQP. Additionally, the stability of the HROM for RANS problems needs to be im-
proved; we have encountered cases where the nonlinear HROM solver failed to converge. Finally,
more and more complex optimization problems should be attempted, until ROM-accelerated
methods are able to handle industry-scale aerodynamic shape optimization problems.
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Optical Society of America A, Optics and Image Science (1995) 12:1657–1664.

[12] Farhat, C., Avery, P., Chapman, T., and Cortial, J. Dimensional reduction of nonlinear
finite element dynamic models with finite rotations and energy-based mesh sampling and

11



Benjamin F. Gibson and Masayuki Yano

weighting for computational efficiency. International Journal for Numerical Methods in
Engineering (2014) 98:625–662.

[13] Gibson, B. Accelerated PDE-Constrained Optimization by Adaptive Reduced Order Mod-
elling and Goal-Oriented Hyperreduction. University of Toronto (2022). Master’s Thesis.

[14] Gogu, C. Improving the efficiency of large scale topology optimization through on-the-fly
reduced order model construction. International Journal for Numerical Methods in Engi-
neering (2015) 101:281–304

[15] Hesthaven, J.S., Rozza, G., and Stamm, B. Certified reduced basis methods for parametrized
partial differential equations. Springer (2016).

[16] Meyer, M. and Matthies, H.G. Efficient model reduction in non-linear dynamics using the
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