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Abstract. The essence of turbulence are the smallest scales of motion. They result from a
subtle balance between two differential operators differing in symmetry: the convective operator
is skew-symmetric, whereas the diffusive is symmetric and negative-definite. On the other hand,
accuracy and stability need to be reconciled for numerical simulations of turbulent flows in com-
plex configurations. With this in mind, a fully-conservative discretization method for collocated
unstructured grids was proposed [Trias et al., J.Comp.Phys. 258, 246-267, 2014]: it preserves
the symmetries of the differential operators and it has shown to be a very suitable approach
for DNS and LES. On the other hand, an efficient cross-platform portability is nowadays one
of the greatest challenges for CFD codes. In this regard, our leitmotiv reads: relying on a min-
imal set of (algebraic) kernels is crucial for code portability and maintenance! In this context,
this work focuses on the computation of eigenbounds for the above-mentioned convection and
diffusion matrices which are needed to determine the time-step à la CFL. A new inexpensive
method that allows this, without explicitly constructing these time-dependent matrices is pro-
posed and tested. It only requires a sparse-matrix vector product where only the vector changes
on time. Hence, apart from being significantly more efficient than the standard CFL condition,
cross-platform portability is straightforward.

1 INTRODUCTION

In the last decades, CFD has become a standard design tool in many fields such as automotive,
aeronautical and wind power industries. The driven force behind this, is the development of
numerical techniques in conjunction with the progress of high performance computing (HPC)
systems. However, nowadays we can say that its legacy from the 90-2000s is hindering its
progress. The reasons are two-fold: (i) codes designed for CPUs cannot be easily ported and
optimized to new architectures (GPUs, ARM...) and (ii) legacy numerical methods chosen to
solve (quasi)steady problems using RANS models are not appropriate for more accurate (and
more expensive) techniques such as LES or DNS. This work aims to interlace these two pillars
with the final goal to enable LES/DNS of industrial applications to be efficiently carried out
on modern HPC systems while keeping codes easy to port and maintain. In this regard, a
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fully-conservative discretization for collocated unstructured grids was proposed [1]. It exactly
preserves the symmetries of the underlying differential operators and is based on only five discrete
operators (i.e. matrices): the cell-centered and staggered control volumes (diagonal matrices),
Ωc and Ωs, the face normal vectors, Ns, the cell-to-face interpolation, Πc→s and the cell-to-
face divergence operator, M. Therefore, it constitutes a robust approach that can be easily
implemented in already existing codes such as OpenFOAMR© [2]. The benefits of symmetry-
preserving discretizations for DNS/LES have been extensively reported in many publications in
the last decades [2–9]. Hereafter, we follow the same operator-based notation as in Ref. [1].

On the other hand, for the sake of cross-platform portability and optimization, CFD algo-
rithms must rely on a very reduced set of (algebraic) kernels [10–12] (e.g. sparse-matrix vector
product, SpMV; dot product; linear combination of vectors) in order to keep a good balance be-
tween code portability and performance. This imposes restrictions and challenges that need to
be addressed such as the inherent low arithmetic intensity of the SpMV, the reformulation of flux
limiters [13] or the efficient computation of eigenbounds to determine the time-step, ∆t. This
work focuses in the latter problem and aims to answer the following research question: Can we
avoid to explicitly construct both convective, C (us), and diffusive, D(αs), matrices while still
being able to compute proper eigenbounds in an inexpensive manner? Read on...

2 RETHINKING CFL CONDITION: EIGENBOUNDS OF CONVECTIVE AND

DIFFUSIVE OPERATORS

2.1 Gershgorin-based linear stability analysis

Explicit (and semi-explicit) time-integration schemes impose severe restrictions on the time-
step, ∆t, due to the fact that eigenvalues of the amplification matrix must lie inside the stability
region of the time-integration method. Namely, linearizing (if needed) the dynamical system
(e.g. momentum equation on a 3D collocated mesh with n volumes and m faces) leads to

duc

dt
= Ruuc where Ru = (I3 ⊗ R) ∈ R

3n×3n, (1)

where the matrix R ≡ −Ω−1
c (C (us) + D) ∈ R

n×n accounts for the effects of convection and
diffusion and uc ∈ (u1,u2,u3)

T ∈ R
3n. Then, different time-integration schemes lead to different

stability regions [14]. The simplest example thereof in the first-order Euler explicit scheme:

un+1
c − un

c

∆t
= Ruu

n
s =⇒ un+1

c = (I3 ⊗ A)un
c where A ≡ (I+∆tR). (2)

The A-stability is guaranteed if the spectral radius of the amplification matrix, A, is smaller
than one, i.e. ρ(A) < 1. This leads to the stability region in terms of the eigenvalues of R̃ ≡ ∆tR
shown in Figure 1 (left). Similar analysis can be done for other temporal schemes [14]. An
example thereof is shown in the same figure for the one-parameter second-order explicit method

u
n+κ+1/2
c − u

n+κ−1/2
c

∆t
= Ruu

n+κ
c , (3)

where the off-step velocities are given by

un+κ+1/2
c = (κ+ 1/2)un+1

c − (κ− 1/2)un
c and un+κ

c = (1 + κ)un
c − κun−1

c . (4)
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Figure 1: Stability region of the first-order forward Euler scheme (Eq. 2) together with the family of
κ-dependent second-order κ1L2 time-integration scheme (Eqs. 3 and 4) (left) and their envelope (right).

This time-integration scheme named κ1L2 can be viewed as a generalization of the classical
second-order Adams-Bashforth (AB2) scheme (κ = 1/2). This was used in Refs. [3, 15] for
DNS of incompressible flows keeping the parameter κ constant during the simulation. Then, in
Ref. [16], a self-adaptive strategy was proposed: the parameter κ is being re-computed to adapt
the linear stability domain to the instantaneous flow conditions in order to maximize ∆t. The
idea of the method is depicted in Figure 1 (right). Hence, at the end, this or any other method
necessarily relies on bounding the eigenvalues of the dynamical system, i.e. in our case finding
eigenbounds of the matrix R given in Eq.(1). In the original work [16], this was done by applying
the Gershgorin circle theorem to Ω−1

c C (us) and Ω−1
c D together with the Bendixson theorem.

Theorem 1 (Bendixson [17]). Given two square matrices of equal size, X and Y, one with real-
valued eigenvalues, λX ∈ R, and the other with imaginary ones, λY ∈ iR, then every eigenvalue
of the sum, X+ Y, is contained in the rectangle

λX

min ≤ Re(λX+Y) ≤ λX

max Im(λY

min) ≤ Im(λX+Y) ≤ Im(λY

max). (5)

This can be easily applied to matrix R = −Ω−1
c C (us)+Ω−1

c D recalling that C (us) = −CT (us),
i.e. λC ∈ iR, and D = DT negative semi-definite, i.e. λD ∈ R

−
0 . At this point, there are a

couple of technical issues that worth mentioning. Although the (skew-)symmetry is lost when
matrices C (us) and D are left-multiplied by Ω−1

c , their eigenvalues are still imaginary and real-
valued, respectively. They actually have the same spectrum as the (skew-)symmetric matrices

Ω
−1/2
c C (us)Ω

−1/2
c and Ω

−1/2
c DΩ

−1/2
c ,

Ω−1
c Dv = λDv =⇒ Ω1/2

c (Ω−1
c D)Ω−1/2

c Ω1/2
c v = λDΩ1/2

c v =⇒ (Ω−1/2
c DΩ−1/2

c )w = λDw, (6)

where w = Ω
1/2
c v. Notice that the matrix Ωc has strictly positive diagonal elements. This

method to bound the eigenvalues of R was originally proposed and referred as EigenCD in
Ref. [16]. Later it was successfully used for a large variety of DNS and LES simulations on both
structured and unstructured meshes (see Refs. [4–7, 9, 16] among others).
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2.2 CFL condition: brief historical review

Nevertheless, this is not the standard way to bound the eigenvalues of R. In the CFD
literature, and in virtually all popular CFD packages, stability constraints for ∆t are usually
expressed in terms of the so-called CFL condition originally proposed in the seminal paper [18]
by R.Courant, K.Friedrichs, and H.Lewy in 1928! They derived the following stability condition

C =
u∆t

∆x
< Cmax, (7)

for a 1D transport equation
∂φ

∂t
+ u

∂φ

∂x
= 0, (8)

discretized in a uniform mesh with spacing equal to ∆x where u is the advection velocity.
The intuitive idea or “physical interpretation” of this formulae can be found, for instance, in
the OpenFOAMR© documentation as “a measure of the rate at which information is trans-
ported under the influence of a flux field” [19]. This, or very similar formulae can be found
in NEK5000 [20], COMSOLR© [21] or Basilisk [22] codes, among many others. An alternative
definition is used in ANSYS-Fluent [23]

CFL =
∆t

∑

faces λ
max
f Af

2V
, (9)

where Af are the face areas, V is the cell volume and λmax
f is the maximum of the local

eigenvalues. For incompressible (also compressible at low speed) flows, λf = Uf (here, Uf

is the face velocity); therefore, this CFL condition becomes identical to the definition used in
OpenFOAMR© [19], SU2 code [24] or Code Saturne [25] and slightly different than the definition
used in the DLR-TAU code (see Eq.18 in [26]). Nevertheless, the original idea of the formula
given in Eq.(9) is not completely clear (at least, not for the authors) and according to [27], it
goes back to Eq.(22) in Ref. [28] where the following definition of the CFL condition is given

CFL =
∆tλmax

V
, (10)

where λmax is the maximum eigenvalue of the system given by |v| for incompressible (also
compressible at low speed) flows. It must be noted that a multiplication by the face area, Af , is
missing in Eq.(10). Moreover, no summation by faces is specified here. Going back to previous
works by the same authors, we find the same definition in Ref. [29] without specifying how
the eigenvalues are being computed. Moreover, in Ref. [30] (see Eq.16) they used the following
formula for bounding the ∆t,

∆t = min

(

CFL∆x

u′ + c′
,
σ∆x2

ν

)

, (11)

where σ is referred as von Neumann number, u′ and c′ are respectively the velocity and the
speed of sound for the non-preconditioned system and ∆x is defined as the intercell length scale
over which diffusion occurs. Furthermore, in Ref. [31] (Eq. 4) we find the following formula

CFL = ∆tλmax(D), (12)
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where λmax(D) is the maximum eigenvalue of the chemical Jacobian. The time integration
method is a first-order implicit Euler scheme and the condition (12) is used to keep the system
positive definite, i.e. (I−∆tD) is a positive definite matrix. The eigenvalue ofD were determined
numerically using the LAPACK library [32]. In any case, CFL condition became soon very
popular among all the CFD community. To celebrate the article’s 40th anniversary, in 1967
the IBM Journal published a special issue, that included the English translation of the original
paper [33]. In 2010, the meeting “CFL-condition, 80 years gone” was held in Rio de Janeiro [34].

2.3 Two sides of the same coin

The CFL condition given in Eq.(7) can be easily related to the above explained constraints
related with the eigenvalues of the matrix R given in Eq.(1). Let’s consider a 1D uniformly
spaced mesh with constant advective velocity, u. In this case, the convective and diffusive terms
in the NS equations simplify to

∂φ

∂t
= −u

∂φ

∂x
+ ν

∂2φ

∂x2
. (13)

Then, a second-order semi-discrete finite-difference (also finite-volume) discretization of Eq.(13)
leads to

∂φi

∂t
= −u

φi+1 − φi−1

2∆x
+ ν

φi+1 − 2φi + φi−1

∆x2
. (14)

This can be re-arranged in a matrix-vector form as follows

∂φh

∂t
=





















0
. . .

. . . 0
. . .

u

2∆x
0 −

u

2∆x
. . . 0

. . .
. . . 0





















φh +























0
. . .

. . . 0
. . .

ν

∆x2
−

2ν

∆x2
ν

∆x2
. . . 0

. . .
. . . 0























φh, (15)

where φh = (φ1, · · · , φn)
T ∈ R

n is a column vector containing all the components of the scalar
field φ. Hence, eigenvalues of the convective and diffusive part can be bounded using the
Gershgorin circle theorem as follows

|λC| ≤
u

∆x
|λD| ≤

4ν

∆x2
, (16)

which leads to the classical CFL definition proposed almost a century ago [18].

At this point, we expect that it becomes clear that it is probably more appropriate (and more
accurate) to get rid of generalizations of the classical CFL definition given in Eq.(7) for general
cases (i.e. multi-dimensional, non-uniform, non-constant velocity, unstructured meshes...). In-
stead, the Gershgorin circle theorem can be applied assuming that the coefficients of the discrete
convective, C (us), and diffusive, D, operators are available. This was the main idea of the paper
published one decade ago [1]. Hence, at this stage, we are replacing inexact approximations
combined with heuristic, sometimes even trial-and-error, approaches to prescribe the so-called
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CFL value. In general, for the sake of robustness, these approaches tend to underestimate ∆t
leading to an increase in the overall computational cost of the simulations. In practice, CPU
cost reductions up to more than 4 were measured for unstructured grids [16].

3 A NEW EFFICIENTAPPROACH TO COMPUTE EIGENBOUNDS OF CON-

VECTIONAND DIFFUSION MATRICES AVOIDING ITS CONSTRUCTION

3.1 Deconstructing convection and diffusion matrices

The application of the Gershgorin circle theorem requires to explicitly evaluate the coefficients
of the matrix/ces that arise from the spatial discretization. However, in many ocasions this may
be impractical (or inneficient). Namely, let us consider the convective operator

C (us) ≡ MUsΠc→s ∈ R
n×n, (17)

M ∈ R
n×m is the face-to-cell divergence operator, Πc→s ∈ R

m×n is cell-to-face interpolation and
Us = diag(us) ∈ R

m×m is a diagonal matrix that contains the face velocities, us ∈ R
m. It is

obvious that the coeffients of the matrix C (us) are changing every time-step. In a code based
in mesh-loop functions, these coefficients can be recomputed “on the fly” and then call some
specific function to compute eigenbounds based on those coefficients of the matrix. This implies
the construction of the matrix every time-step (more RAM memory requirements), makes the
code more complex and difficult to maintain, hindering its efficient cross-platform portability.

A similar problem exists for the diffusive term with non-constant diffusivity

D(αs) ≡ MΛsG ∈ R
n×n, (18)

where Λs = diag(αs) ∈ R
m×m is a diagonal matrix that contains the values of the diffusivi-

ties defined at the faces, αs ∈ R
m. Notice that this is also (very) relevant for eddy-viscosity

turbulence models. For details about the discretization the reader is referred to [1].

At this point, we aim to answer the following research question: can we avoid to explicitly
construct both convective, C (us), and diffusive, D(αs), matrices while still being able to compute
proper eigenbounds in an inexpensive manner? To do so, we firstly write the divergence operator,
M, in terms of the cell-to-face, Tcs ∈ R

m×n and face-to-cell, Tsc ∈ R
n×m, incidence matrices

M ≡ TscAs ∈ R
n×m, (19)

where As ∈ R
m×m is a diagonal matrix containing the face surfaces. Moreover, recalling the

duality between the divergence and the gradient operators [1]

M = −(ΩsG)
T =⇒ G = −Ω−1

s MT ∈ R
m×n, (20)

together with the relation Tsc = TT
cs leads to

G ≡ −Ω−1
s AsT

T
sc = −∆−1

s Tcs, (21)

where ∆s ∈ R
m×m is a diagonal matrix containing the projected distances, δnf = |nf ·

−−→
c1c2|,

between the centroids, c1 and c2, of the two cells adjacent to a face, f (see Figure 2). Plugging
all this into the definition of the diffusive operator (18) leads to

D(αs) = −TscAsΛs∆
−1
s Tcs = −TscΛ̃sTcs = −TT

csΛ̃sTcs, (22)
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Figure 2: Left: face normal and neighbor labeling criterion. Right: definition of the volumes of the
face-normal velocity cell.

where the diagonal matrix Λ̃s = AsΛs∆
−1
s ∈ R

m×m has strictly positive diagonal coefficients.
Therefore, the diffusive operator is symmetric and negative semidefinite likewise the continuous
Laplacian, ∇2.

Similarly, the convective term given in Eq.(17) can be written as follows

C (us) = TscUsAsΠc→s, (23)

where the cell-to-face interpolation, Πc→s, defines the numerical scheme we are using. For
instance, taking

Πc→s =
1

2
|Tcs|, (24)

leads to a skew-symmetric matrix, i.e. C (us) = −CT (us); i.e. a second-order symmetry-
preserving discretization [1, 3]. In summary, convective and diffusive operators read

D(αs) = −TT
csΛ̃s Tcs where Λ̃s is a diagonal matrix with [Λ̃s]ii > 0, (25)

2C (us) = TT
csFs|Tcs| where Fs ≡ AsUs is diagonal and diag(Fs) ∈ ker(TT

cs). (26)

where, in general, both Λ̃s and Fs change on time.

3.2 Eigenbounds for the diffusion matrix

The idea at this point is to construct other matrices that have the same spectrum (except
for the zero-valued eigenvalues). To do so, we will use the following well-known property:

Theorem 2. Let A ∈ R
n×m and B ∈ R

m×n be two rectangular matrices with the appropriate
dimensions and m ≥ n, then the square matrices AB ∈ R

n×n and ATBT ∈ R
m×m have the same

eigenvalues except for the zero-valued ones.

Proof. A square matrix Q and its transpose, QT , have the same characteristic polynomial,
i.e. det(λI − Q) = det(λI − QT ) = 0; therefore, they also have the same spectrum. Then, both
ATBT and BA have the same spectrum

ATBTwi = λiwi → BAzi = λizi ∀i = 1, . . . ,m (27)
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Then, let λ 6= 0 be an eigenvalue of AB with an associated eigenvector v,

ABv = λv → BA(Bv) = λ(Bv) → BAz = λz. (28)

Notice that Bv 6= 0 since λ 6= 0. Hence, λ is a non-zero eigenvalue of BA and subsequently also
an eigenvalue of ATBT .

Therefore, a family of matrices with the same spectrum (except for the zero-valued eigenval-
ues) as those given in Eqs.(25) and (26) can be constructed using Theorem 2. Namely, for the
diffusive term all matrices with the form Λ̃α

sTcsT
T
csΛ̃

1−α
s have the same spectrum as TT

csΛ̃sTcs.
Hence, the following four matrices (the last three correspond to values of α equal to 1/2, 0 and
1, respectively) have the same spectrum (except for the zero-valued eigenvalues)

{

−TT
csΛ̃sTcs,−TcsT

T
csΛ̃s,−Λ̃1/2

s TcsT
T
csΛ̃

1/2
s ,−Λ̃sTcsT

T
cs

}

. (29)

The advantatge of the new forms is that only matrix −TcsT
T
cs have to be computed (once)

and stored. Note that this matrix has −2 in the diagonal and +1 in the non-zero off-diagonal
elements. Then, to apply the Gershgorin circle theorem to find an upper bound (in absolute
value) of the eigenvalues we can simply compute

ρ(D(αs)) = ρ(TcsT
T
csΛ̃s) ≤ max{|TcsT

T
cs|diag(Λ̃s)}, (30)

ρ(D(αs)) = ρ(Λ̃
1/2
s TcsT

T
csΛ̃

1/2
s ) ≤ max{diag(Λ̃1/2

s ) ◦ |TcsT
T
cs|diag(Λ̃

1/2
s )}, (31)

ρ(D(αs)) = ρ(Λ̃sTcsT
T
cs) ≤ max{diag(Λ̃s) ◦ |TcsT

T
cs|1s}, (32)

where ◦ denotes the Hadamard product (element-wise product).

Remark 1. In practice, we need estimations of the spectral radius of Ω−1
c D(αs) and not D(αs).

This can be easily done by replacing |TcsT
T
cs| by |TcsΩ

−1
c TT

cs| in Eqs.(30), (31) and (32). Equiv-
alent remark can be made for the forthcoming discussion about the convetive matrix, C (us).

3.3 Eigenbounds for the convection matrix

Convective term given in Eq.(26) can be treated in a similar manner. However, in this case,
the diagonal matrix Fs (mass fluxes across the faces) can take both positive and negative values
depending on the flow direction. Similar to Eq.(29), all these matrices have the same spectrum
(except for the zero-valued eigenvalues)

{

TT
csFs|Tcs|,Tcs|T

T
cs|Fs, |Fs|

1/2Tcs|T
T
cs||Fs|

−1/2Fs, |Fs|
−1/2FsTcs|T

T
cs||Fs|,FsTcs|T

T
cs|

}

. (33)

In the last four splittings, only the matrix Tcs|T
T
cs| has to be pre-computed and stored. This

matrix is skew-symmetric with ±1 in the non-zero off-diagonal elements. Then, the Gershgorin
circle theorem can be applied as follows

2ρ(C (us)) = ρ(Tcs|T
T
cs|Fs) ≤ max{|Tcs|T

T
cs|||diag(|Fs|)}, (34a)

2ρ(C (us)) =ρ(|Fs|
1

2Tcs|T
T
cs||Fs|

− 1

2Fs)≤ max{diag(|Fs|
1

2 ) ◦ |Tcs|T
T
cs||diag(|Fs|

− 1

2Fs)}, (34b)

2ρ(C (us)) = ρ(FsTcs|T
T
cs|) ≤ max{diag(|Fs|) ◦ |Tcs|T

T
cs|1s}, (34c)
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to find an upper bound of their eigenvalues (in this case they lie on the imaginary axis). How-
ever, in practical flows, none of these approaches is able to provide better (or, at least, similar
estimates) as using the Gershgorin circle theorem to the matrix C (us). A simple explanation
for this is the following: matrix |Tcs|T

T
cs||Fs has more non-zero off-diagonal coefficients per row

than matrix TT
csFs|Tcs|, e.g. for a structured Cartesian mesh in d-dimensions the former has

2(2d − 1) whereas the latter has only 2d. Therefore, more mass fluxes (in absolute value) are
contributing to the calculation of the Gershgorin circle radii.

Theorem 3 (Perron-Frobenius theorem [35, 36]). Given a real positive square matrix, i.e. A ∈
R
n×n and [A]ij > 0 ∀i, j , it has a unique largest (in magnitude) real eigenvalue, r ∈ R

+, with
a corresponding eigenvector, v ∈ R

n, with strictly positive components, i.e.

Av = rv =⇒ |λ| < r and vi > 0 ∀i = 1, · · · , n, (35)

where λ denotes any eigenvalue of A except r, and r is the so-called Perron-Frobenius eigenvalue.

Theorem 4 (Wielandt’s theorem [37]). Given a matrix A ∈ R
n×n that satisfies the conditions

of the Perron-Frobenius theorem (see Theorem 3) and a matrix C ∈ R
n×n such as

|cij | ≤ aij ∀i, j, (36)

where cij = [C]ij and aij = [A]ij . Then, any eigenvalue λC of C satisfies the inequality |λC| ≤ r
where r is the Perron-Frobenius eigenvalue of A.

Theorem 5 (Lemma 2 in Nikiforov [38]). Let A ∈ R
n×n be an irreducible non-negative sym-

metric matrix and R ∈ R
n×n be the diagonal matrix of its rowsums, [R]ii =

∑n
j=1[A]ij . Then

ρ

(

R+
1

r − 1
A

)

≥
r

r − 1
ρ(A), (37)

with equality holding if and only if all rowsums of A are equal.

To circunvent this problem with the boundings of the spectral radius of the convective term,
C (us), we can use the Wielandt’s theorem (see Theorem 4) to relate the spectral radius of the
matrices

2C (us) ≡ TT
csFs|Tcs| and DC ≡ −TT

cs|Fs|Tcs, (38)

where C (us) is the same convective operator defined in Eq.(26) and DC ∈ R
n×n is a diffusive-like

operator where the face diffusivities are replaced by the magnitude of the mass fluxes, |Fs|. The
matrix C (us) is zero-diagonal whereas the matrix DC has strictly negative diagonal coefficients.
At this point, it is worth noticing that the off-diagonal elements of 2C (us) (in absolute value)
and DC are equal. Hence, the zero-diagonal matrix

DC,off ≡ DC − diag(diag(DC)), (39)

satisfies the conditions of the Perron-Frobenius theorem (see Theorem 3). Then, we can apply
Wielandt’s theorem (see Theorem 4) since

2|[C (us)]ij | ≤ [DC,off ]ij ∀i, j =⇒ 2|λC| ≤ ρ(DC,off). (40)
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Figure 3: Numerical results obtained for a differentially heated cavity using a Cartesian stretched mesh
(left) and an unstructured mesh composed of triangular elements (right).

In our case, taking R = − diag(diag(DC)), A = DC,off and r = 2 in Eq.(37) together with the
inequality (40) leads to

ρ(|DC|) ≥ 2ρ(DC,off) = 4ρ(|C (us) |) ≥ 4ρ(C (us)). (41)

Recalling that the leitmotiv for all this analysis was to avoid constructing the matrix C (us), it
is obvious that relying of the contruction of another (similar in structure) matrix such as |DC|
would not have much sense. At this point, we can use of the following properties of incidence
and adjacency matrices

|TT
csTcs| = |TT

cs||Tcs|, (42)
∣

∣TT
cs|Fs|Tcs

∣

∣ = |TT
cs||Fs||Tcs|, (43)

to show that

ρ(|DC|) = ρ
(
∣

∣TT
cs|Fs|Tcs

∣

∣

) (43)
= ρ(|TT

cs||Fs||Tcs|)
Thm 2
= ρ(|Tcs||T

T
cs||Fs|)

(42)
= ρ(|TcsT

T
cs||Fs|). (44)

Finally showing that ρ(C (us)) can be bounded either with ρ(|TcsT
T
cs||Fs|) or ρ(|Fs||TcsT

T
cs|)

ρ(|TcsT
T
cs||Fs|) = ρ(|Fs||TcsT

T
cs|) = ρ(|DC|) ≥ 2ρ(DC,off) = 4ρ(|C (us) |) ≥ 4ρ(C (us)). (45)

4 NUMERICAL RESULTS AND CONCLUDING REMARKS

In summary, the newly proposed AlgEigCD method simply relies on the contruction of the
matrix |TcsΩ

−1
c TT

cs| which can be done in a pre-processing stage. Then, this matrix is used to
find eigenbounds of matrices Ω−1

c D and Ω−1
c C (us) as follows

ρ(Ω−1
c C (us)) ≤ 1/4ρ(|Fs||TcsΩ

−1
c TT

cs|) ≤ 1/4max{diag(|Fs|) ◦ |TcsΩ
−1
c TT

cs|1s}, (46)

ρ(Ω−1
c D(αs)) = ρ(Λ̃sTcsΩ

−1
c TT

cs) ≤ max{diag( Λ̃s ) ◦ |TcsΩ
−1
c TT

cs|1s}, (47)
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where the former inequality follows from Eq.(45) and application of the Gershgorin circle theorem
to the matrix |Fs||TcsT

T
cs|. Similarly, the second one follows from Eq.(32). Notice that in these

cases, the diagonal matrix Ω−1
c has been introduced (see Remark 1). First prelimary results are

displayed in Figure 3. They correspond to a square air-filled (Pr = 0.71) differentially heated
cavity at Rayleigh number equal to Ra = 109 (for details of this flow configuration see, for
instance, Refs. [4, 5]) computed with two different meshes: a structured Cartesian mesh with
a stretching towards the walls similar to those used in Refs. [4, 5] and an unstructured mesh
composed of triangular elements with a similar stretching. There is a significant gain (see ratio
∆tCFL/∆tAlgEigCD) respect to the classical CFL condition. This is an observation that was
already done in Ref. [16] where the EigenCD method was proposed. The new method is slightly
improving the former one. However, the key element of the newly proposed AlgEigCD is the fact
that no new matrix have to the re-computed every time-step and that, in practice, only relies
on very basic linear algebra kernels: an SpMV and a point-wise Hadamard product of vectors.
Therefore, the cross-platform portability of the method is straightforward.
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[17] I. Bendixson. Sur les racines d’une équation fonamentale. Acta Mathematica, 25:359–365, 1902.
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