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Abstract. Piezoelectric lattice metamaterials are considered. A computationally-effective ho-
mogenisation method is developed based on the recent solution to the Saint-Venant problem for
general anisotropic piezoelectric cylinders. A publicly available repository of unit cell topologies
is used to identify piezoelectric metamaterials with optimal figures of merit.

1 INTRODUCTION

Piezoelectric materials find applications in many fields of science and technology, including
sensors, actuators, energy harvesters and many other devices, owing to their ability to convert
mechanical to electrical energy and vice versa. Their piezoelectric properties depend on their
intrinsic crystallographic structures and compositions [1]. In order to enlarge the design space of
piezoelectric properties, several piezoelectric materials have been thoroughly studied, including
single crystals, ceramics, polymers, and a plethora of composites with different connectivity [2].
However, some restrictions still prevail [1].

In this paper, piezoelectric lattice metamaterials are explored (examples are shown in Fig-
ure 1). They are generated by the periodic repetition in space of a unit cell constituted by
beams, whose cross section is assumed to be circular.

Piezoelectric metamaterials can be fabricated via 3D printing [1]. In fact, 3D printing of
functionalised materials, like piezoelectric ones, is sometimes referred to as 4D printing. In [1], a
photosensitive resin is used as bulk material, in which nanoparticles made of PZT, a piezoelectric
ceramic, have been dispersed. Production of piezoelectric metamaterials is made in two steps.
First, they are printed using high-resolution projected microstereolithography. Then, poling is
performed, which is essential to reorganise and align the microscopic dielectric dipoles so that
piezoelectric properties arise at the macroscale. As a consequence, the parent material turns
out to be transversely isotropic, with the transverse isotropy axis coinciding with the poling
direction.

The main features that determine the overall properties of piezoelectric lattice metamaterials
include the unit cell topology and geometry, the relative density, and parent material properties.
This work aims to devise a computationally-effective homogenisation method to provide the
homogenised properties of piezoelectric lattice materials. In this regard, although the cylindrical
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Figure 1: Examples of piezoelectric lattice metamaterials. 2 × 2 × 2 tessellation at relative
density ρ̄ = 0.04. On the left: pentamode unit cell (cub Z03.6 R487). On the right: octet unit
cell (cub FZ12.0 E19) [4].

Table 1: Material properties in e-form used in numerical applications [1]. Poling is along the x3
axis.

CE
11 CE

12 CE
33 CE

13 CE
44 εǫ11/ε0 εǫ33/ε0 e31 e33 e15

[GPa] [GPa] [GPa] [GPa] [GPa] [-] [-] [mC/m2] [mC/m2] [mC/m2]

5.072 4.552 3.115 3.561 0.480 29.10 13.37 40.81 55.16 33.60

beams comprising the lattice are made of a transversely isotropic linear piezoelectric material, the
transverse-isotropy axis of the material (i.e., the poling direction) does not generally coincide
with the beam axis. Consequently, within the beam local reference frame, the piezoelectric
constitutive law of the parent material is formulated as a general anisotropic constitutive law.
Hence, instrumental in the homogenisation process are the results of the Saint-Venant problem
for general anisotropic piezoelectric cylinders [3], enabling the usage of a very efficient beam
model even for beams whose axis is oblique to the poling direction.

Finally, over 17,000 publicly available crystallographic network topologies [4] have been an-
alyzed, regarded as cellular structures with nodes connected by piezoelectric beams [4], and
structures with extremal piezoelectric properties are identified.

2 LINEAR PIEZOELECTRIC CONSTITUTIVE EQUATIONS

Denoting by ǫ, σ, E, and D respectively the (infinitesimal) strain, stress, electric field
and electric displacement, the piezoelectric constitutive relationships can be expressed in four
different forms, as follows [5]:
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Here C, S, ε, and β respectively denote stiffness, compliance, electric permittivity, and electric
impermeability tensors, the superscript T denotes transposition, and other superscripts denote
the field which is held fixed (e.g., C

E is the stiffness tensor at constant electric field). The
third-order tensors e, d, g, and h are piezoelectric tensors. The most relevant for applications
are the g and d tensors. Equations (1)–(4) are denoted as e-, d-, g-, and h-form, respectively.
They can be respectively derived by the following electro-elastic potentials:

ψe(ǫ,E) =
1

2
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In particular, ψh is the stored energy density for the piezoelectric continuum, whereas ψe is
known as electromechanical enthalpy [5].

In [1] piezoelectric lattice metamaterials have been fabricated by additively manufacturing
free-form, perovskite-based piezoelectric nanocomposites. The latter have been obtained by
covalently bonding functionalized lead zirconate titanate (PZT) nanoparticle colloids with en-
trapped photo-active monomers. The as-fabricated nanocomposite system did not require post-
heat treatment and achieved high structural fidelity and uniformity. Poling under a uniform
electric field with standard corona poling method was performed in order to align the dipoles
in the direction of the applied field. The material properties used in numerical applications are
reported in Table 1 in the e-form.

3 FIGURES OF MERIT

Figures of merit (FOMs) are combinations of material properties that characterize the per-
formance of a piezoelectric material. FOMs are especially useful when different piezoelectric
materials, composites, or lattices are to be compared. Several such FOMs, mainly based on the
piezoelectric d and g constants, have been suggested [6, 7]. In this work, the following FOMs are
considered, relevant to the longitudinal piezoelectric effect (Voigt notation is used and poling is
along the x3 axis):

• piezoelectric voltage coefficient g33, relating the generated voltage to the stress applied
along the transverse-isotropy axis; high values of g33 are especially beneficial for sensor
applications;
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• piezoelectric charge coefficient d33, relating the induced strain to the electric field applied
along the transverse-isotropy axis; high values of d33 are helpful for actuator applications;

• squared figure of merit Q2
33 = d33 g33; it is important in transmit-receive or pulse-echo

systems and is used to characterise the sensor signal-to-noise ratio;

• electromechanical coupling factor κ33 = d33/(ε
σ
33 s

E
33)

1/2 describe the effectiveness of the
energy conversion due to the piezoelectric effect and is relevant in energy-harvesting ap-
plications;

• anisotropy factor ζ = d33/max{|d31|, |d32|} is relevant in transducers applications.

4 PIEZOELECTRIC BEAM CONSTITUTIVE RELATIONSHIPS

The Saint-Venant problem for general anisotropic linear piezoelectric cylinders was solved
in [3] (see also [8, 9, 10, 11]). Under the assumption of material homogeneity along the cylinder
axis, the Voigt hypothesis was shown to be a necessary condition for the solution, thus allowing
for the reduction of the three-dimensional piezoelectric problem to a pair of uncoupled boundary-
value problems on the cylinder cross section.

Let B be the cylinder, with bases Ω0 and ΩL. Let (nL, tL, mL, mL, qL) respectively denote
the resultant axial force, shear force, torque, bending moment, and total free charge acting
on ΩL. Aiming at deriving the beam constitutive equations in terms of the stress and charge
resultants (nL, tL, mL, mL, qL), the electro-elastic potential ψg (equation (7)) is computed in
solution and integrated over the cylinder B. It results to be a quadric form of those resultants
and can be represented by:

Ψg =
1

2

[

(nL, tL, mL, mL) · S
q (nL, tL, mL, mL)− 2 qL ĝ · (nL, tL, mL, mL)−Brq2L

]

, (9)

where Sq is the open-circuit compliance matrix of the cylinder, Br is the inverse capacitance
of the free cylinder, and ĝ is its piezoelectric sensor vector. Those quantities were derived in
closed form in the case of a homogenous cylinder with a circular cross section [3]. Basing on a
customary energetic equivalence principle, the following definitions are introduced:

(

∆w, ∆u, ∆θ, ∆ϑ
)

= Sq (nL, tL, mL, mL)− ĝT qL , (10)

∆V = ĝ · (nL, tL, mL, mL) +BrqL , (11)

to be interpreted as the equivalent relative displacements (∆w and ∆u, respectively dual to nL
and tL), the equivalent relative rotations (∆θ and ∆ϑ, respectively dual to mL and mL), and
the equivalent electric potential difference (∆V , dual to qL) between the bases Ω0 and ΩL of the
cylinder.

Equations (10)–(11) are the counterpart, at the beam level, of the general anisotropic linear
constitutive law (3) at the material point level. They can be inverted, yielding:

(nL, tL, mL, mL) = KV
(

∆w, ∆u, ∆θ, ∆ϑ
)

+ êT∆V , (12)

qL = −ê ·
(

∆w, ∆u, ∆θ, ∆ϑ
)

+ Cs∆V , (13)
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Figure 2: Example of a periodic unit cell (labelled cub Z03.6 R487 in [4]). On the left: 3D
model. On the right: beam model. Corresponding nodes on opposite faces of the periodic unit
cell are denoted by markers of the same shape and colour.

where KV is the closed-circuit stiffness matrix of the cylinder, Cs is the capacitance of the
clamped cylinder, and ê is its piezoelectric e-vector.

The equivalent relative displacements and rotations
(

∆w, ∆u, ∆θ, ∆ϑ
)

are then expressed
as functions of the displacements s of the cylinder bases (3 translations and 3 rotations for each
base). Analogously, the equivalent electric potential difference ∆V is expressed as a function
of the electric potentials V of the cylinder bases (one for each base). Moreover, the force and
couple resultants (nL, tL, mL, mL), together with the analogues resultants acting on the base Ω0

obtained by equilibrium of B, are collected into the 12-component force vector f , and the total
free charge qL, together with the total free charge q0 obtained by charge balance, are collected
into the 2-component vector q. Accordingly, equations (12)–(13) is transformed into:

(

f

q

)

=

[

K̃
V
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−ẽ −C̃
s

]

(

s

−V

)

, (14)

Equation (14) relates the force vector f and the total free charge vector q on the cylinder bases
to the displacements s and the electric potentials V of the cylinder bases. It yields the stiffness
matrix of a piezoelectric beam made of a fully anisotropic piezoelectric material. Accordingly,
the electromechanical enthalpy Ψe of the piezoelectric beam, to be used in the homogenisation
process, is given by:

Ψe =
1

2
(f · s− q · V ) =

1

2

(

s

−V

)T
[

K̃
V

−ẽT

−ẽ −C̃
s

]

(

s

−V

)

. (15)

5 HOMOGENISATION

The homogenised constitutive properties of periodic composite materials can be computed by
classical asymptotic homogenisation [12]. This method has a rigorous mathematical foundation
and requires the solution to the cell problem formulated on the periodic unit cell of the material
under periodic boundary conditions. Asymptotic homogenisation of periodic piezoelectric com-
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posites has been reported, e.g., in [13, 14, 15]. Therein the unit cell problem was numerically
solved using solid elements at the expense of a relatively high computational cost.

For periodic lattice metamaterials, especially at low relative densities, it would be convenient
to regard the periodic unit cell as a system of beams. For elastic lattices, that point of view was
shared, e.g., in [16, 4]. It is here first adopted for lattices made of a poled piezoelectric parent
material.

The e-form of the homogenised constitutive equations, taking the strain and the electric
field as independent variables, is derived. To this end, a macroscale homogeneous strain ǫ

and electric field E are applied to the unit cell. Then, the total electromechanical enthalpy of
the unit cell is computed as the sum of the electromechanical enthalpy of every single beam,
which in turn descends from equation (15). Finally, the unit cell problem is solved by taking the
stationary condition of the total electromechanical enthalpy with respect to nodal displacements,
rotations and electric potentials, under periodic boundary conditions. The solution to the unit-
cell problem is carried out in the fashion of a standard finite element analysis of a system of
beams. Periodicity constraints are imposed on corresponding nodes located on opposite faces
of the unit cell, as shown in Figure 2. As a result, the homogenised electromechanical enthalpy
density is obtained, yielding the homogenised constitutive matrix of the lattice in e-form. In
formulas, the homogenisation procedure is formulated as follows:
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e (ǫ,E) =
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(16)
where |U| is the unit cell volume, and the sum at the right-hand side is extended over the
beams comprising the unit cell. Of course, a standard assembly procedure guarantees that
beams converging into a node share the same nodal degrees of freedom. In passing, it is noted
that only one of two corresponding beams on opposite boundaries of the unit cell should be
considered. The periodic boundary conditions P are formulated as follows, for any couple (i, j)
of corresponding nodes on opposite boundaries of the unit cell (Figure 2):

P : uj = ui + ǫ[xj − xi] , ϕj = ϕi , Vj = Vi −E[xj − xi], (17)

with ui and ϕi respectively denoting the displacements and rotations of node i, and si = (ui;ϕi).
The contribution ε0‖E‖2/2, where ε0 denotes the vacuum permittivity and ‖·‖ is the norm, is
added to the homogenised electromechanical enthalpy density ψhom

e , in order to account for the
electric field contribution in the free space of the lattice, which may be significant at low relative
density values [17].

By taking the derivative of the homogenised electromechanical enthalpy density ψhom
e with

respect to ǫ and E, the homogenised constitutive relationships are obtained. Specifically, those
equations describe the average stress σ and (the opposite of) the average electric displacement
D arising in the metamaterial due to the application of a strain field and an electric field with
prescribed averages ǫ andE, respectively. Because the homogenised constitutive equations result
to be linear, nine independent loading conditions are required for their complete characterization.
In practice, the macroscale homogeneous strain or electric fields are applied component-wise to
the unit cell. Each load case yields a column of the homogenised constitutive matrix. Finally,
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Figure 3: Linear elastic lattices. Scaling behaviour for relative densities ρ̄ below 0.1 of the
four cell types reinforced body-centred (purple), octet-truss (blue), Kelvin-cell (turquoise), and
body-centred cubic (yellow). The solid thick line shows the results obtained via the proposed
homogenisation framework. Other results are taken from the literature [4].

it is noticed that, once the e-form of the homogenised constitutive law has been computed,
alternative forms can be easily derived (Section 2).

6 VALIDATION

The proposed homogenisation procedure has been validated on purely elastic lattice materi-
als. Figure 3 shows the effective Young modulus of four different lattices as a function of the
metamaterial relative density. Several analytical, numerical and experimental results taken from
the literature are shown. In particular, the well-known linear dependence of the effective Young
modulus on the relative density exhibited by stretch-dominated lattices, like the octet-truss, can
be recognised. Analogously, the quadratic dependence shown by bending dominated lattices,
like the Kelvin cell, appears. The results obtained using the proposed homogenisation method
(denoted by a solid thick line) are in reasonable agreement with the reference results.

A repository of more than 17,000 lattices is publicly available in the literature, along with
their homogenised material constants, obtained under the assumption of linearly elastic parent
material using the Timoshenko beam model [4]. The histograms reported in Figure 4 show the
distribution of the relative error of the present solution with respect to the reference one. It can
be noticed that the relative error is less than a few per cent. Our model tends to return slightly
smaller stiffness moduli, possibly because the exact Saint-Venant model adopted herein tends
to be slightly more compliant than the Timoshenko beam model used in [4].
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Figure 4: Linear elastic lattices. Histograms of relative errors of results obtained via the proposed
homogenisation framework with respect to results taken from the literature [4].

Figure 5: Linear piezoelectric material with vertical poling direction. Periodic unit cells of
fourteen lattices [4].
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Figure 6: Linear piezoelectric material with vertical poling direction. Charge coefficient d33,
voltage coefficient g33, figure of merit Q2

33, coupling factor κ33, computed as a function of the
relative density ρ̄ of the metamaterial.

Figure 7: Linear piezoelectric material with vertical poling direction. Anisotropy factor ζ, on
the left, and coupling coefficient κ33, on the right, versus Q2

33.

9



Paolo Bisegna, Claudio Intrigila and Nicola A. Nodargi

7 RESULTS

Figure 5 shows the periodic unit cells of fourteen lattices. The material is now assumed to
be linearly piezoelectric and the poling direction is the vertical one.

For each of those unit cells, the figures of merit introduced in Section 3 have been computed
as a function of the relative density of the metamaterial in the rage [0.01–0.2], using the proposed
homogenisation approach. The results of the analysis are shown in Figure 6. It can be noticed
that the charge coefficient d33 is almost invariant with respect to the relative density, whereas
the voltage coefficient g33 markedly decreases at increasing relative density. The microstructures
yielding the highest value of d33 or g33 are easily identified in each relative-density range. The
figure of merit Q2

33, which is the product of d33 and g33, has a behaviour very similar to g33.
On the other hand, the coupling coefficient κ33 has a behaviour similar to the Young modulus,
showing a different slope for stretch or bending dominated microstructures.

It is possible to search for unit cell topologies yielding specific combinations of figures of
merit. Figure 7 reports the anisotropy factor ζ and the coupling coefficient κ33 versus Q2

33.
More than 17,000 microstructures [4] have been analysed at a relative density equal to 0.01.
Among the achievable combinations, some unit cells exhibiting favourable properties have been
pointed out.

8 CONCLUSIONS

A computationally-effective homogenisation method for piezoelectric lattice materials was
presented. Instrumental to this method was the solution to the Saint-Venant problem for fully
anisotropic piezoelectric beams. The proposed homogenisation method, here applied to a pub-
licly available repository of unit cell topologies, can serve as a tool to identify optimised piezo-
electric metamaterials with desired figures of merit. Piezoelectric lattice metamaterials with
improved piezoelectric properties may provide cutting-edge technology to improve the applica-
tion of smart materials significantly. Further studies will account for the finite dimension of
nodes in the homogenisation process and will be devoted to gaining insight into the topology-
properties relationship of piezoelectric lattice materials.
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