Moving Least Square
Approximations for Solution of
Differential Equations

R.L. Taylor

0.C. Zienkiewicz
E. Ofate

S. Idelsohn

Publication CIMNE N¢ 74, December 1995

Moving Least Square
Approximations for Solution of
Differential Equations

R.L. Taylor
O.C. Zienkiewicz
E. Oifate
S. Idelsohn

Publication CIMNE N¢ 74, December 1995

International Center for Numerical Methods in Engineering
Gran Capitan s/n, 08034 Barcelona, Spain

MOVING LEAST SQUARE APPROXIMATIONS
FOR SOLUTION OF DIFFERENTIAL EQUATIONS

R. L. Taylor!
0. C. Zienkiewicz?
E. Ofiate?

S. Idelsohn*

International Center for Numerical Methods in Engineering
Universitat Politécnica de Catalunya
Edificio C1, Gran Capitan s/n,
08034, Barcelona, Spain

1. Introduction

The use of local least square approximations to fit sets of data has been reported in
several studies [8,18,21]. Recently, several authors have explored the use of least square
approximations for the solution of differential equations associated with solid and fluid
mechanics [2,9,16,17,19]. Generally, the introduction of weighting functions leads to im-
proved results as shown in Ofiate et. al. for compressible fluid flow solutions [15]. One
variant of a weighted approach is the moving least square method (MLS) introduced by
Lancaster and Salkauskas [7]. In MLS a weighting function is introduced and allowed to
move continuously to the location where a least square fit is to be obtained. The method
can lead to continuous interpolation in terms of a set of discrete parameters and thus
provides a basis for constructing discrete approximate solutions to differential equations,
as well as, for data fitting. Belytschko and co-authors have presented a number of studies
applied to problems in solid mechanics and calls the approach an element free Galerkin

method (EFG) [3,4,10-14,22].

In this report we review the moving least square method in Section 2 and in Section
3 a recent extension based on hierarchical approximations as proposed independently by
Babuska and Melenk [1] and by Duarte and Oden [6]. We call the extension a hierarchical
moving least square method (HMLS). The effects of the continuity of a moving least square
weighting function and its domain of influence is investigated in Section 4. Based on this
assessment it is concluded that weighting functions which have continuous derivatives up to
the order necessary in the approximating procedure are an essential ingredient for accurate

1 Professor of Civil Engineering, University of California, Berkeley. Visiting Professor,

CIMNE

2 Professor of Civil Engineering, University College, Swansea. UNESCO Professor,
UPC

3 Director, CIMNE
4 Professor, Universidad del Litoral, Sante Fe, Argentina. Visiting Professor, CIMNE

1

representations of solutions. In Section 5 we illustrate this by considering an application
of MLS and HMLS to approximately solve ordinary differential equations by a finite point
method (FPM) proposed by Ofiate et. al. [15]. Finally, in Section 6 an application of MLS
and HMLS using a Galerkin approach is presented.

2. Moving Least Square Approximation

The moving least square method is a weighted least square approximation in which
the weighting function is allowed to move based on the point where the fit is to be obtained.
To describe the method, consider the problem of fitting an approximation to a set of data
items u;,i = 1,n defined at the n points z;. We assume the approximating function is to
be described by the relation

u(z) ~ () = Zpi(fc)ai =pT(2)

where p; are a set of linearly independent functions and «; are unknown quantities to
be determined by the fit algorithm. A moving least square fit to the given data may be
defined for each point # in the domain by solving the problem

J(#) =Y pa(zr — #)[ur — p"(zr)ax(2)]* = min
k=1

where @3 can in general change its shape and span depending on the position of the point
#. We note that the point & is an arbitrary position and the o; now depend on the position
selected. After the a;(#) are computed, substitution into the expression for u(z) above is
achieved with

u(z) ~ d(z) = sz'(f'?)az'(i‘)h:z

We retain the form ¢;(z), — &) to emphasize the possibility of a changing function at each
position where the minimization is to occur. In the simplest case, with constant spacing
of the data points zy, it is possible to take

pilan — &) = p(ar — &)

and assume the shape and span of the weighting is invariant with position.

In general with an arbitrary spacing of the points %, the problem of specifying ¢;
at every position & is very difficult and presents an infinite number of possibilities. It is
convenient instead to assume weighting functions associated to the data points and take

vi(zr — &) = or(& — i)

where we again emphasize that & denotes an arbitrary point whereas) are fixed points
in the domain. With this assumption the weight functions ¢y are fixed at each zj and the
function to be minimized is now

1#) = 3 6@ — an)ur — p(e)a(@)]? = min
k=1

2

If each weighting function is defined such that

(’bk(y) = {fk(y)’ if |y| < Tk

0, otherwise.

then the terms in the sum are zero whenever y = & — x and |y| < rr. The parameter
r defines a radius of a ball around each point, z; inside the ball the weighting function
is non zero while outside the radius it is zero. Each point may have a different weighting
function or radius of the ball around its defining point. Note that the weighting function
is defined such that it is zero on the boundary of the ball (i.e., y = r). This class of
function may be denoted as C¢(Br,), where the subscript denotes the boundary value of
zero, the superscript denotes the highest derivative for which C° continuity is achieved,
and B,, denotes a ball of radius rx. The solution to the least square problem leads to

a(#) = A7(2)) Bi(#) uj
j=1

where
n

A(#) = ¢r(@ —2r)p(ee)p” (2r)

k=1
and
Bj(&) = ¢j(& — zj)p(z;)

In matrix form the array A(&) may be written as

$1(% — @1) 0 pi
A@#)=[pr p2 ... pn] 9 ¢2($,—$2) .0 - P!
0 ¢N(§c;mN) p']TV

where

pi(zk)
pr = p(ai) = | P2l=)

From the above it is evident that use of weighting functions ¢x(& — zx) which are zero
outside a ball of radius r results in only a limited number of terms contributing to the
summation. Note also that the moving least square algorithm produces solutions for o
which depend on the point selected for each approximation.

Based on the moving least square solution the approximation for the function u(z)
now may be written as

a(z) = ZNJ'(»"«‘) uj

3

where

Nj(z) = pT(2) A7 (8)Bj(#)]a=a
define interpolation functions for each data item u;.

It is easy to show that the interpolations defined by the above can approximate all
the functions used to define p(z). To do so, consider the set of approximations

7 =Y Ni(z) U5

j=1

where
=[a1(z) d2(z) ... dnp(z)]

and
Uj:[ujl sz lbjn]

and assign to each uj the value of the funtion p(z;) (i.e., the k-th entry in p) so that
Uj=p'(z;)

Now, using the definition of the interpolation functions we have
U =3 Nye) 57(a;) Zp% 1 (@)B;(2)p" (2;)
j=1
which after substitution of the definition of Bj(z) yields
U= Y ()47 (0)95(z — 2)p(e)p " (25)
j=1

Rewriting as
U=p'(z)A Z ¢i(z —2j)p(zj)p" (z5)

yields
U =p’(2)A7 A(z) = p" (2)

which shows that the form can interpolate exactly any function included as part of the
definition of p(z). If polynomials are used to define the functions, the interpolation always
includes exact representations for each included polynomial. Inclusion of the zero-order

polynomial (i.e., 1), implies that
Z Ni(z)=1
=1

In the mathematical literature this is known as a partition of unity (provided it is true for
all points, z, in the domain) [20]. It is easy to recognize that this is the same requirement
as applies to most finite element shape functions.

Derivatives of the interpolation function may be constructed by defining
n
a(d)|z=e = Z’wj(:v)u]-
i=1

and using the representation
T
Nj(z) =p" (z)w;(z)
where

A(z)wj(z) = Bj(z)

For example, the first derivative is given by

and dw; dA _ dB;
A T T
where .
C(li_x: _ ;_1 d¢k(f§l$— :Ck)p(.’lik)pT(CBk)
and

dB; d¢j(z —=;)
de dz p(%)

Solving for d;‘;j and substituting into the equation for the derivative yields

dN; dp” 7 4-1 44 T 21 9B;
N _ ([_ pT A2) w, A2
dz (dz p dz wi TP dz

Higher derivatives may be computed by repeating the above process to define the higher
derivatives of w;.

Nayroles et.al. suggest that approximations ignoring the derivatives of o may be
used to define the derivatives of the interpolation functions [16-18]. Accordingly, as an
approximation they suggest the use of

dN; _dN; dp”

de ~ dx dz Wi

for the first derivative. This approximation simplifies the construction of derivatives as it
is no longer necessary to compute the derivatives for A and B;. However, there is little

S

additional effort required to compute the derivatives of the weighting function. Further-
more, for the lowest order approximation using only a constant for the p ignoring the
derivative results in no derivatives being available. Consequently, we have not utilized the
above approximation for any of the results reported below.

3. Hierarchical Enhancement of Moving Least Square Approximation

In the previous section the moving least square solution for the approximation of the
function u(z) was given as

i(x) = ZN]'(@‘) uj

where N;(z) define interpolation functions based on linearly dependent functions pre-
scribed by p(z). In the sequel we employ polynomial functions to describe p(z), with a
polynomial of degree k given by

p(z)=[1 z 2% ... 2]

For this case we will denote the resulting interpolation functions using the notation N]’”("c),
where j is associated with the location of the point where the parameter u; is given and
k denotes the order of the polynomial approximating functions. Duarte and Oden suggest
using Legendre polynomials instead of the form given above [6]; however, conceptionally
the two are equivalent. Duarte and Oden also present a hierarchical construction based
on N ;‘(:L) which increases the order of the polynomial to p. In their construction, the
interpolation is written as

bjr
n b .
i@ =3 [W@ e M@ |
=1 :
bjq
n
= Nf(@) (1w +q7(2)b;)
J=1
where ¢ = p— k and bj;, for [= 1,...,¢, are additional parameters for the approximation.

Derivatives of the interpolation function may be constructed using the method given in
the previous section.

The advantage of the above method lies in the reduced cost of computing the inter-
polation function N ;”(7:) compared to that required to compute the p-order interpolations

N} (z). For example, use of the functions Nf(m), which are called Shepard interpolations

[21], leads to a scalar matrix A which is trivial to invert to define the N JQ . Specfically, the
Shepard interpolations are

Nj(z) = A7 (z)Bj(x)

6

where

A@) =Y ¢z — =)
k=1

and

Bj(z) = ¢j(z — ;)

The fact that the hierarchical interpolations include polynomials up to order p is easy
to demonstrate. Based on the results from the previous section the interpolation ¢(y)
contains all the polynomials up to order k. The higher polynomials may be constructed
from

bj1

n b.2

u(x) :Z N]L(’L) u]-—i—]\fjk(w)[w’“'+l k2 . aP] J
j=1 :

biq

by setting all the u; to zero and then for each interpolation term j setting one of the bj
to unity with the remaing values set to zero. For example, setting bj; to unity results in
the expansion

n
i(z) = ZNjk(:E)Ik+1 = ght!
i=1

This result requires only that

n

ZN}‘(:B) =1

which was already verified. The remaining polynomials are obtained by setting the other
values of b;j to unity one at a time. Calculations provided by Duarte and Oden show that
the same order approximation is obtained with £ = 0,1 or p.

The above hierarchical form has parameters which do not relate to approximate values
of the interpolation function. For the case where k = 0, Babuska and Melenk [1] suggest
that an alternate expression be used in which

uj
n bjl

tilz)= Z Njo(w)[l gl 2?2 ... 2P] bj2
J=1

qu

be written as

IS
Paant
8
S—
Il
3
32
P
8
S~—
N
[~
b~
Elas]
D
Q
N’
3
~
=
N

where L% () are Lagrange interpolation polynomials and u) are parameters with dimen-
sions of u for the j-th term at point zx of the Lagrange interpolation. The above result
follows since the Lagrange interpolation polynomials have the property

1, k=1
Li(wi) = ki = { 0, otherwise

Babuska and Melenk also note that any functions which satisfy the partition of unity
may be used to define the N]}”(1) In particular finite element interpolations may be used
for this purpose. Consequently, a hierarchical interpolation may be generated for standard
finite element forms, for the moving least square approximations, or for any other functions
which satisfy the partition of unity. An example, which can be used for any finite element
implementation requiring only first derivatives is to define

a(m)zé M@ 2|y

where N} are standard linear finite element interpolations for elements which include
the polynomials 1 and z. Similarly, for two dimensions one can use interpolations over
triangular elements as

’LLJ'

A - b;
i(z,y) =Y, Ni(a,y)[1 < ay ']
j=1 bJ-Z

73

where N}(a:,y) are the tent functions resulting from linear interpolations on each
element connected to node j.

We should also note that in addition to the options for choosing N]’” (z), a similar
freedom holds to define functions used for the gq. Thus, for any function ¢;(z) we can set
the associated bj; to unity (with all others and u; set to zero) and obtain

i(z) = ZNﬁ‘(m) ¢i(z) = gi(e)

Again the only requirement being that

n
Y Ni@) =1
j=1

Thus, for any basic functions satisfying the partition of unity a hierarchical enrichment
may be added using any type of functions. For example, if one knows the structure of
the solution involves exponential functions in z it is possible to include them as members

8

of the g(z) functions and, thus, capture the essential part of the solution with just a few
terms. This is especially important for problems which involve solutions with different
length scales. Large length scale can be included in the basic functions, NJI"(’L), and while
other smaller length scales may be included in the functions q(z).

4. Behavior of Interpolation Functions and Derivatives

To assess aspects of moving least square interpolation functions we consider a set of
test examples for uniformly spaced points. We first illustrate the importance of the weight
function by considering four different forms. These are:

1. Piecewise constant interpolation given by:

fmy)=1 5 |yl<rk

2. Hat function given by:

3. Truncated Gaussian function given by:

exp(—£2) — exp(=£})

frs(y) = = exp(—E2) sy l<re
where y
=
C
T
£ = =
C
and
= KFg

with a specified parameter (in our tests we set & to one-half).

4. A smooth polynomial given by:
= Y y2ym .
fral) == (C)T" 5 Tyl<m

where m is a specified positive integer.

The weighting function for each of the above is taken, as defined previously, by:

¢k(y) = {fh(y)g 1f I Y l< Tk

0, otherwise.

for i = 1,4; consequently, all of the above weighting functions are zero outside the range
| ¥ |< rk. The above weighting functions have the property that fr1 has continuity
C;(rk); fre and frs have C(ry); and frq has continuity C* (k). Functions 2 and 3
differ in that fis has all derivatives continuous at y = 0 whereas f2 is only C 0 continuous
at this point.

To demonstrate the differences the above weighting functions produce in generating
shape functions we consider the class of quadratic hierarchical interpolations generated
from the N;J Shepard basic functions. All of the results shown are for a 7 point equally
spaced region using a weighting function with a total span of 4.1 mesh spaces (le. 7 =
2.05). We show in all the comparisons the function XV, Y with the first and second derivatives
denoted as dN and d2N, respectively.

The results for N produced by a uniform type 1 weight function are shown in Figure
4.1a. Figures 4.1b and 4.1c show results for N and x2 N, respectively.

Hierarchical Moving Least Square Functions
0.251
0.2 u d U

0.151

—N
<o dN
- - d2N

N(1)

0.1

0.05F

o N N o o
1 2 3 4 5 6 rd
Nodes

Figure 4.1a. Shepard Interpolation: NJ. Type 1 Weight Function, rx = 2.05

Hierarchical Moving Least Square Functions
0.5r

0.4r
0.3r

0.2r

0.1

S o—p----- 0-—-— - e-----)
-0.1
— N
1 2 S dN
- - d2N
-0.3
04
—05 . N) L .
1 2 3 4 5 6 74
Nodes

Figure 4.1b. Hierarchical Interpolation: zNJ. Type 1 Weight Function, r; = 2.05

10

Hierarchical Moving Least Square Functions

N(1)
2

—N
< dN
- - d2N

s L ' s s s
1 2 3 4 5 6 7
Nodes

Figure 4.1c. Hierarchical Interpolation: 2 N?. Type 1 Weight Function, r = 2.05

The results for N produced by the hat type 2 weight function are shown in Figure
4.2a. Figures 4.2b and 4.2¢ show results for N and 2®NJ, respectively.

Hierarchical Moving Least Square Functions

L s
3 4 74
Nodes

Figure 4.2a. Shepard Interpolation: Ny. Type 2 Weight Function, rx = 2.05

The results for N? produced by the truncated Gaussian type 3 weight function are
shown in Figure 4.3a. Figures 4.3b and 4.3c show results for 21V, Y and 22N}, respectively.

The results for N produced by the C{" type 4 weight function are shown in Figure
4.4a. The parameter m is set to 4. Figures 4.4b and 4.4c show results for N and 22N},
respectively.

It is evident from the above results that the use of smooth weighting functions is nec-
essary to produce interpolations free from discontinuities in the derivatives. For example,
use of type 4 weight function with an exponent m greater than 3 and span greater than 4
together with quadratic polynomial interpolations will produce moving least square func-
tions NP, p = 2 with continuous second derivatives. The required span of the interpolation

11

Hierarchical Moving Least Square Functions

—N
i o dN
! - - d2N

L \ L .))
1 2 3 4 5 6 7
Nodes

Figure 4.2b. Hierarchical Interpolation: zN?. Type 2 Weight Function, ry = 2.05

Hierarchical Moving Least Square Functions

—4

Nodes

Figure 4.2c. Hierarchical Interpolation: 22 N?. Type 2 Weight Function, ry = 2.05

Hierarchical Moving Least Square Functions

= \ [
z \ |
\ ol
\ i
L \ !
05 \) e dN
\ 1 - — d2N
\ 1
\ 1
\ !
\]
\]
)
1t \‘ ¢
I ' ul L L s
1 2 3 4 5 6 7
Nodes

Figure 4.3a. Shepard Interpolation: N?. Type 3 Weight Function, ry = 2.05

12

Hierarchical Moving Least Square Functions
7N\

Nodes

Figure 4.3b. Hierarchical Interpolation: e NQ. Type 3 Weight Function, ry = 2.05

Hierarchical Moving Least Square Functions

N()

-
L
i

.
1 2 3 4 5 6 7
Nodes

Figure 4.3c. Hierarchical Interpolation: 22 N). Type 3 Weight Function, r; = 2.05

Hierarchical Moving Least Square Functions

N N

N()

\ ! - - d2N

-1 \ ’

i

Nodes

Figure 4.4a. Shepard Interpolation: NJ. Type 4 Weight Function, rx = 2.05

13

Hierarchical Moving Least Square Functions

A
1\

N(1)

. . L s
1 2 3 4 5 6 7
Nodes

Figure 4.4b. Hierarchical Interpolation: aNY. Type 4 Weight Function, rx = 2.05

Hierarchical Moving Least Square Functions

Figure 4.4c. Hierarchical Interpolation: 22 N?. Type 4 Weight Function, ry = 2.05

may be reduced using the hierarchical representation. Thus, the span of the functions
based on Shepard interpolation (i.e., NJ(z)) need only be greater than 1 (rj > 0.5). Using
a span 1.2 (i.e., 7y = 0.6) for type 4 weight functions produces the quadratic functions
shown in Figures 4.5a to 4.5c.

The extremely sharp discontinuities near the ends of the interpolation lead to very
large values for derivatives which renders approximation techniques sensitive to points
used in the calculations, as well as producing flat spots. For example, Galerkin methods
may require high order quadrature formula to produce good results (e.g., see results in
Section 6). Collocation methods may be equally sensitive. Increasing the span to 2.01
(7 = 1.005) produces the results shown in Figures 4.6a to 4.6c. The increased smoothness
of the interpolations produced by the larger span is clearly evident.

14

N(l)
Q

2+

-3F

B
5 6 7

4 L L
1 2 3 4
Nodes

Figure 4.5a. Shepard Interpolation: Nf. Type 4 Weight Function, ry = 0.6

Hierarchical Moving Least Square Functions

N()
3

A

-2+

-3}

=4 s L
1 2 3

Figure 4.5b. Hierarchical Interpolation: NJ. Type 4 Weight Function, r = 0.6

Hierarchical Moving Least Square Functions

4r :1 "
! " _
1 1" N
3k £ W dN
5 i - - d2N
:1 1
i "
2r mm-o T
[1
!
B ¥ 1
1 ';l;: At
b S
= :;'I‘ S
S o e TN
= e IHE
57
-1 ot it
| [k
l: 1
L ! 1
2 |: §
1 1
N (RS
_al " I
|I [
h 1f
4 . L L . " L L)
1 2 3 4 5 6 7

Figure 4.5c. Hierarchical Interpolation: 22 NJ. Type 4 Weight Function, ry = 0.6

15

Hierarchical Moving Least Square Functions
' |

!
! 1
| v !

1 -
1 .
1 Y
I \ ‘l
! i
i # \ !
1 | !
| | !
1 | '

I |)

1

|

Interpolation: NJ. Type 4 Weight Function, r; = 1.005

Hierarchical Moving Least Square Functions
4r ' "

[
(I}
[N
B
[}
[
[
[
I 1
I 1
I 1
1 1
I

|
\

N()
B

-1r \

-3

300
e
¢
oy
1
I
I
l
|
|
|
|
1
1
L

1

1
1
1
1
1
1
J
!

=4 L s L
1 2 3 4 5 6 4

Nodes

Figure 4.6b. Hierarchical Interpolation: zNJ. Type 4 Weight Function, ry = 1.005

Figure 4.6c.

Hierarchical Moving Least Square Functions

\ A
! \

a
z

1
1
I
1
!
1
1
1
I

N(I)

2+

-3F

o
T
I
I
I
!
I
I
I
I
!
I
I
1
I
I
I
!

4 L
1 2

w
I
5]
o
~

Hierarchical Interpolation: 22NJ. Type 4 Weight Function, ry = 1.005

16

5. Solution of ODE by a Finite Point Method

To assess the performance of moving least square approximations described in Sections
2 and 3, we consider the solution of second order ordinary differential equations using a
finite point method [15]. Accordingly, the differential equation is taken as

d*u du
—aﬁ—kl)%—#cu—f(m)

on the domain 0 < z < L with constant coefficients a, b, ¢, and subject to the boundary
conditions

u(0) = g1
and

u(L) = g2

The domain is divided into a set of points located at @;, ¢ = 1,n. The moving least square
approximation described in Section 2 is used to write difference equations at each of the
interior points (i.e., i = 2,n — 1). The boundary conditions are also written in terms of
discrete approximations using the moving least square approximation. Accordingly, for the
approximate solution using p-order polynomials to define the p(z) in the interpolations

n
) — P(;
u(z) = g Nl (z) u;
i=1
we have the set of n-equations in n-unknowns:

n
Y NP(21) wi =g
1=1

n

d?N? _ d’N? ‘ .
Z<_adw2 +bd$2 +cNZP> g = Flmg) : j=2,n—-1

1=1 T=T;

and
n

> NP(zn) ui = g2

=1

A solution using the approximate interpolation functions as first suggested by Nayroles
et.al. may be constructed by replacing the derivatives of N”(z;) by those of NP(z;)
as defined in Section 2. We have noted, however, that the extra cost of including the
terms involving the derivatives of ¢; is not large compared to other parts of a solutions.
Accordingly, all results reported here retain all terms in the derivatives.

The discrete equations for the differential equation and boundary conditions may be
written in matrix form as:

Ku = f

17

where K is a square coefficient matrix, f is a load vector consisting of the entries from
gi and f(z;), and u is the vector of unknown parameters defining the approxiate solution
4(z). A unique solution to this set of equations requires K to be non-singular (i.e.,
rank(K) = n). The rank of K depends both on the weighting function used to construct
the least square approximation as well as the number of functions used to define the
polynomials p. In order to keep the least square matrices as well conditioned as possible,
we use the shifted polynomial approximation

ple)=[1 z—z; (e—g;)® ... (@—a;)]"

to define the interpolations associated with N7 (z). The matrix K will be of correct rank
provided the weighting function can generate linearly independent equations. Since local
polynomials are used, this will always be achieved provided that the span of the weighting
function is appropriately defined.

As shown in the previous section, the accurate approximation of second derivatives
requires use of at least quadratic order polynomials in p(). In addition, the span of the
weighting function must be sufficient to keep the least squares matrix A non-singular at
every point in the domain and boundary points. Thus, the minimum span needed to define
quadratic interpolations of p(z) (i.e., p = k = 2) must include at least three mesh points
with non-zero contributions. If a weighting function which is zero at its boundary is placed
so that one of its boundary points lies exactly on a node, any span which is bigger than
three mesh spaces will be sufficient to have three non-zero terms in the difference quotient.
At the problem boundaries, however, only half of the associated weighting function span
will be used. Consequently, for weighting functions which go smoothly to zero at their
boundary, a span larger than four mesh spaces is required. The span should not be made
too large however, since the sparse structure of K will be lost. Furthermore, overly diffuse
solutions may result.

Use of hierarchical interpolations reduces the required span of the weighting function. For
example use of interpolations with k& = 0 requires only a span at each point for which the
domain is just covered (since any span will include its defining point, zy, the A matrix
will always be non-singular). For a uniformly spaced set of points this is any span greater
than one mesh spacing.

For the results shown below, unless stated otherwise, we have used weighting function
type 4 with a weight span 4.4 times the largest adjacent mesh space for the quadratic
interpolations with & = p = 2 and a weight span 2.01 times the mesh space for the
hierarchical quadratic interpolations with k =0 p = 2.

Example 1.

As a first example consider the solution of the differential equation

d*u
I |
dx?

in the domain 0 < z < 1 with the boundary conditions

u(0) =u(1)=0

18

The exact solution is given by

1
u(z) = 51(1 —2)

and has a maximum value of 0.125 at the midspan. For quadratic order interpolations
for p(2) the exact solution is recovered for all weighting functions with span greater than
4hy, where hy, is the largest distance between adjacent mesh points xx_; and xx41. The
solution is also recovered exactly when the approximate interpolation function derivatives
are employed.

Example 2.

As a second example consider the solution of the convection-diffusion equation

By
da? dz

in the domain 0 < z < 1 with the boundary conditions
u(0)=1; and wu(l)=0
The exact solution is given by

_ exp(b) — exp(bz)
u(e) = exp(b) — 1

For large b the solution converges to a step from 1 to 0 near x = 1. A solution for b = 10
for a problem with 9 points is shown in Figure 5.1 and was computed using quadratic
interpolations for each point (i.e., k = p = 2). The solution was then computed using 27
points and results are shown in Figure 5.2.

Collocation Moving Least Square ODE Solution

1

0.9r

0.8

o7k e

0.6

Zost
0.4f
oaf
0.2f

0.1

o . L L \ o L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 5.1. Convection Diffusion Solution: 9 Points with k£ = p = 2.

19

Collocation Moving Least Square ODE Solution

o . o o . o \ .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 5.2. Convection Diffusion Solution: 27 Points with k = p = 2.

A quadratic approximate solution using the p-order hierarchical interpolation de-
scribed in Section 3 leads to

i(z) = Z N7 (2)(uj + qozb})
=1

where
qo2 = [z 51?2]

2 (b
- (t

Using this interpolation in the differential equation and boundary conditions we have:

and

ZN?(M) (u; + QOzb?) =01

=1

- d*NY d2N? _
So(-o s b) () =f) i =21

1=1 T=T;

and

n
Y NP (zn) (ui + go2b?) = g5
=1
For a p-order polynomial approximation the total number of parameters at each point is
p—Fk+1 (ie., p— k parameters in each b? and the u; parameter); thus, for a quadratic
interpolation there are three parameters per point. Due to the presence of the additional
parameters it is necessary to construct the difference equation for p-order interpolations
at a total of n(p — k + 1) — 2 points instead of n points. Thus, it is now necessary in the
finite point collocation to select additional points for approximation. In the results shown

20

below the points have been spaced equally within each interval defined half-way between
the point immediately to the left and the right of the i-point. For the boundary points the
points are placed within the half interval near the end. This selection ensures that no two

points have the same coordinate and thus ensures that the approximations remain linearly
independent.

Repeating the solution for Example 1 using N? (i.e., Shepard approximation) with
quadratic hierarchical functions given by g2 again produces exact results. Repeating the
solution for Example 2 using the same type of approxaimation produces the results shown
in Figure 5.3 for 3 points (9 parameters) and in Figure 5.4 for 9 points (27 parameters).
The location of each collocation point is shown by an X in the figures.

While quite accurate results are obtained for this example by using a sufficient number
of parameters, use of yet larger values of b requires the introduction of some form of
numerical dissipation to mitigate unwanted oscillations in the approximate solution. This
has been noted previously for finite point methods by Onate et. al. [15].

Collocation Moving Least Square ODE Solution

1

0.9F

0.8

0.7F

0.6

u(x)

0.51

0.4

0.3F

0.2

01F

o . \ s . & L . L L &
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 5.3. Convection Diffusion Solution: 3 Points £k =0 p = 2.

21

Collocation Moving Least Square ODE Solution

.) L . o L L . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 5.4. Convection Diffusion Solution: 9 Points k =0 p = 2.

Example 3.

As a third example consider the solution of the differential equation representing a

string on an elastic foundation. Accordingly,

l2
—a%%—cu:f

in the domain 0 < & < 1 with the boundary conditions

w0)=u(l)=0
The exact solution is given by
u(z) ‘ sinh(ma)
w 1 — cosh(ma) 4 (1 — cosh(m)) Snh{r)

where for constant loading f the particular solution is

The data for the solution is taken as

a=001 c=f=1

The problem is solved using the finite point method with 27 points and k = p = 2 producing

the results shown in Figure 5.5.

The process was repeated using the hierarchical interpolations with £ = 0 and p = 2
using 9 points (which results in 27 parameters - the same as for the first case). The results
are shown in Figure 5.6. The hierarchical interpolations permit the solution to be obtained
using as few as two points. A solution with two points using an interpolations with k = 0

and p = 3 and 5 are shown in Figures 5.7 and 5.8.

22

Collocation Moving Least Square ODE Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 5.5. String on Elastic Foundation Solution: 27 Points, k = p = 2

Collocation Moving Least Square ODE Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 5.6. String on Elastic Foundation Solution: 9 Points, k =0 p =

Collocation Moving Least Square ODE Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 5.7. String on Elastic Foundation Solution: 2 Points, k =0 p =3

23

Collocation Moving Least Square ODE Solution

. L L . L s L . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
x-Coord

Figure 5.8. String on Elastic Foundation Solution: 2 Points, k =0 p =35

6. Solution of ODE by a Galerkin Method

The moving least square approximations described in Sections 2 and 3 may also be
used in a Galerkin method to solve second order ordinary differential equations. For an
arbitrary function W (z), a weak form for the differential equation may be written as:

L
dW du du
/(; [—dl—‘aﬁﬁ—W(bE-kcu—f(a))]da:—O

subject to the boundary conditions

and
u(L) = g2

The boundary conditions are included using a Lagrange multiplier approach where the
weak form is given by:

Lraw du du
A{%a%%—W(b%-}—cu—f@))]dw

+ WO\ + W(L)Ae + Wi [u(0) — g1] + W2 [u(L) — g2] = 0

A p-order polynomial approximation to the dependent variable may be taken as the
hierarchical moving least square functions

i(z) = Z N](-] (2)qjput
=1

where

aGp=[1 e—2; (@-2;" ... (z—z;)]

24

The weight functions are taken as the same functions, thus

Y MW
j=1
in which W]P are arbitrary parameters. Substituting the approximations into the weak
form yields the discrete problem
- - d(@i,N?) d(g;pN}) d(q;N7)

T ip Jp-Y; —T ar0 Pt — 0 . p
z;(Wlp) Z; {/0 [dx ¢ dx T &N |0 dx e, . Y
1= 1=

n

=1

> (WA [N2(0) gL (0) M\ + NO(L) gL (L) \o] Z(WP)T / aLN? f(z)de
; 0
and the boundary equations

WlZN?(O)‘?jp(O)u]; = Wig

i=1

W, Z N]Q(L) qjp(L) “? = Wag
j=1

Since WP, Wy and W are arbitrary, the solution to the approximate weak form yields the
set of equations

= d(quNO) d(‘jij]Q) T 270 d(‘IJpN)

L
N2(0)gL(0) M + NO(L)gL(Z) Ay = / GIN f(2)dz ; i=1,2,...,n
0

and the two boundary equations

> NY(L)gip(D)ul = g,
1=1

which need to be solved for the parameters u and Lagrange multipliers \; and \;. In
matrix notation the discrete problem now has the form

SN

25

For differential equations where the parameter ¢ is zero the matrix K is singular (it pos-
sesses one singular mode of w constant); however, the total matrix equation still has a
solution. If it is desired to solve the equations without resorting to pivoting the alternative

regularized form
u|l _ | f
Al g

may be used. The value of ¥ may be chosen as any positive number.

The Galerkin form requires only first derivatives of the approximating functions as
opposed to the second derivatives required for the finite point method. This reduction,
however, is accompanied by a need to perform integrals over the domain. For the type 4
weighting functions all functions entering the approximation are polynomials and rational
polynomial expressions, thus, a closed form evaluation is difficult at best. Accordingly, in
the present study we evaluate the integrals using Gauss and Gauss-Lobatto quadrature over
each the intervals generated by the basis points in the moving least square representation
(zj for y = 1,2,...,n). As an example of the type of solutions possible we consider the
string on elastic foundataion problem given as Example 3 in the previous section. For
the property a = 0.004, ¢ = with loading f = 1 and zero boundary conditions a Galerkin
solution using 3 and 4 point Gauss quadrature and 4 and 5 point Gauss-Lobatto quadrature
is shown in Figures 6.1 to 6.4. A mesh consisting of 9 equally spaced points is used to
define the intervals for the solution and quadrature. The weight function is generated for
k=0 p=2 with a span of 4.4 mesh points.

(K +yCTC) CT
C 0

Galerkin Moving Least Square ODE Solution

u(x)

o . L L . & L . \ .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 6.1. String on Elastic Foundation Solution: 3-Point Gauss Quadrature.

The above sequence of problems was repeated with a weight having a span of 2.1 mesh
spaces, which produces a set of NV]0(.2,) that just overlap each other. The results are shown
in Figures 6.5 to 6.8. In general the smaller span produces answers which are somewhat
less sensitive to the quadrature. However, it is evident that the answers for a nine point
mesh depend on accurate evaluation of integrals to produce acceptable answers.

26

Galerkin Moving Least Square ODE Solution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 6.2. String on Elastic Foundation Solution: 4-Point Gauss Quadrature.

Galerkin Moving Least Square ODE Solution

u(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1
x-Coord

Figure 6.3. String on Elastic Foundation Solution: 4-Point Gauss-Lobatto Quadrature.

Galerkin Moving Least Square ODE Solution

o . L) . & L ' L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 6.4. String on Elastic Foundation Solution: 5-Point Gauss-Lobatto Quadrature.

27

Galerkin Moving Least Square ODE Solution

o ' L L . N L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x-Coord

Figure 6.5. String on Elastic Foundation Solution: 3-Point Gauss Quadrature.

Galerkin Moving Least Square ODE Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 6.6. String on Elastic Foundation Solution: 4-Point Gauss Quadrature.

Galerkin Moving Least Square ODE Solution

1 . L | o L L . L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-Coord

Figure 6.7. String on Elastic Foundation Solution: 4-Point Gauss-Lobatto Quadrature.

28

Galerkin Moving Least Square ODE Solution

o L L s L o L s L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x-Coord

Figure 6.8. String on Elastic Foundation Solution: 5-Point Gauss-Lobatto Quadrature.

7. Closure

In this report we have summarized some of the properties of moving least squares
approximations to functions in one variable. The use of MLS to generate shape functions
based on polynomial basis functions has been presented for the case where the moving
weighting function is approximated by different fixed weighting functions associated with
each point of the interpolation. The use of hierarchical enhancement of moving least
squares based on a partition of unity concept as described by Babuska and Melenk (1]
and Duarte and Oden [6] in conjunction with four types of weighting functions has also
been considered. Based on our evaluations using the four weighting function forms, we can
conclude, that to attain continuous functions and derivatives, functions with C{ continuity
on a ball of radius r; should have a ¢ value at least one greater than the number of
derivatives to be computed in collocating a differential equation or in a Galerkin weak
form of the differential equation.

Using the Type 4 polynomial based weighting functions described in Section 4 with
the parameter m selected as four solutions for simple ordinary differential equation are
constructed using a point collocation method (Section 5) and a Galerkin method (Section
6). Based on this study the results suggest that the point collocation method, also called
finite point method, has less sensitivity in selection of the approximation points than the
Galerkin scheme. Furthermore, the need for high quadrature order in the Galerkin scheme
renders it far more costly in generating the discrete equations than that for the finite point
method.

Hierarchical interpolation greatly reduces the cost for computing the weighted least
square approximations. Indeed, using Shepard interpolations it is only necessary to invert
a 1 x 1 matrix. Hierarchical interpolation also has the ability to eliminate the flat spots
often observed in Shepard interpolations (e.g., see Figure 4.5a). On the negative side,
however, is a need to generate additional points (than the x; points needed for the least
square approximation) for use with the finite point method, whereas a Galerkin method
does not present such difficulty. The generation of the additional points must ensure
that no linear dependence (or near linear dependence) results in the set of equations to be

29

solved for the unknown parameters defining the solution to the differential equation and its
boundary conditions. Work is in progress to investigate various alternatives for generating
optimally located additional points and to apply the method to problems in two and three
dimensions.

References

1.

10.

11

12,

13.

Babuska, I and J.M. Melenk. The Partition of Unity Finite Element Method, Techni-
cal Note BN-1185, Institute for Physical Science and Technology, University of Mary-
land, April 1995.

Batina, J.T. A Gridless Euler/navier Stokes Solution Algorithm for Complex-Aircraft
Applications, ATAA 93-0383, 31st Aerospace Science Meeting, Reno, Nevada, Jan
1993.

Belytschko, T., Y.Y. Lu and L. Gu. Element-Free Galerkin Methods, Int. J. Num.
Meth. Engrg., 37, 229-256, 1994.

Belytschko, T., Y.Y. Lu and L. Gu. Crack Propagation by Element-Free Galerkin
Methods, Engrg. Fracture Mech., 51, 295-315, 1995.

Duarte, C.A. A Review of Some Meshless Methods to Solve Partial Differential Equa-
tions, TICAM Report 95-06, The University of Texas, May 1995.

Duarte, C.A. and J.T. Oden. Hp Clouds - A Meshless Method to Solve Boundary
Value Problems, TICAM Report 95-05, The University of Texas, May 1995.

Lancaster, P. and K. Salkauskas. Surfaces Generated by Moving Least Squares Meth-
ods, Mathematics of Computation, 37, 141-158, 1981.

Liszka, T. An Interpolation Method for an Irregular Net of Nodes, Int. J. Num. Meth.
Engrg., 20, 1599-1612, 1984.

Liszka, T. and J. Orkisz. The Finite Difference Method at Arbitrary Irregular Grids
and its Application in Applied Mechanics, Comp. and Struct., 11, 83-95, 1980.

Liu, W.K., S. Jun and Y.F. Zhang. Reproducing Kernel Particle Methods, Int. J.
Num. Meth. wn Fluids, 20, 1081-1106, 1995.

Liu, W.K., S.J. Jun, S. Li, J. Adee and T. Belytschko. Reproducing Kernel Particle
Methods for Structural Dynamics, Int. J. Num. Meth. Engrg., 38, 1655-1679, 1995.

Liu, W.K., S. Li and T. Belytschko. Moving Least Square Kernel Galerkin Method (I)
Methodology and Convergence, Report Tech-ME-95-3-XX, Northwestern University,
March 1995.

Liu, W.K., Y. Chen, S. Jun, J.S. Chen, T. Belytschko, C. Pan, R.A. Uras and C.T.
Chang. Overview and Applications of the Reproducing Kernel Particle Methods,
(manuscript), August 1995.

30

14.

15.

16-

17,

18.

19,

20.

21.

22,

Lu, Y.Y., T. Belytschko and L. Gu. A New Implementation fo the Element-Free
Galerkin Method, Comp. Meth. in Appl. Mech. Engrg., 113, 397-414, 1994.

Onate, E., S. Idelsohn, and O.C. Zienkiewicz. Finite Point Methods in Computa-
tional Mechanics, CIMNE Report 67, International Center for Numerical Methods in
Engineering, Barcelona, Spain, July 1995.

Orkisz, J. and M. Pazanowski. Analysis of Residual Stresses by the Generalized Finite
Difference Method, Proc. 4th. Int. Conf. Comp. Plast., Barcelona, Spain, 189-200,
1995.

Nayroles, B., G. Touzot, and P. Villon. La méthode des éléments diffus, C.R. Acad.
Sci. Paris, 313, Série II, 133-138, 1991.

Nayroles, B., G. Touzot, and P. Villon. L’approximation diffuse, C.R. Acad. Scu.
Paris, 313, Série 11, 293-296, 1991.

Nayroles, B., G. Touzot, and P. Villon. Generalizing the Finite Element Method:
Diffuse Approximations and Diffuse Elements, Computer Mechanics, 10, 307-318,
1992.

Rudin, W. Principles of Mathematical Analysis, 3rd. ed., McGraw Hill, 1976.

Shepard, D. A Two-Dimensional Interpolation Function for Irregularly Spaced Points,
Procedings ACM National Conference, 517-524, 1968.

Tabbara, M., T. Blacker and T. Belytschko. Finite Element Derivative Recovery
by Moving Least Square Interpolates, Comp. Meth. in Appl. Mech. Engrg., 117,
211-223, 1994.

31

