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SUMMARY

The paper introduces a methodology to compute strict upper and lower bounds for linear-functional outputs
of the exact solutions of the advection–diffusion–reaction equation. The bounds are computed using implicit
a posteriori error estimators from stabilized finite element approximations of the exact solution. The new
methodology extends the a posteriori error estimates yielding bounds for the standard Galerkin formulation
to be able to obtain bounds for stabilized formulations. This methodology is combined with both hybrid-flux
and flux-free techniques for error assessment. The application to stabilized formulations provides sharper
estimates than when applied to Galerkin methods. The best results are found in combination with the flux-free
technique. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The certification of numerical simulations of PDEs is fundamental in many engineering applica-
tions, where end-users aim at obtaining an approximation of a specific magnitude extracted from
the global solution (quantity of interest) with a prescribed accuracy.

Since the mid 2000s, attention has been devoted to provide certified bounds for quantities of inter-
est [1–8]. In particular, [9] presents a comparison of the performance of two of the main techniques
to compute guaranteed bounds for quantities of interest in the context of the advection–diffusion–
reaction equation: a standard residual type estimator (hybrid-flux) proposed in [10] and the new
flux-free technique proposed in [11].

For advection dominated problems, the use of stabilized formulations [12] is of utmost impor-
tance because Galerkin approximations are often corrupted by spurious node-to-node oscillations.
In the present paper, we develop an extension of the techniques presented in [9] to compute guar-
anteed bounds for quantities of interest from stabilized approximations of the exact solution. Thus,
strict bounds for quantities of interest are obtained using implicit residual error estimates, both using
hybrid-flux techniques [13, 14] and the flux-free technique first devised in [11].
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2. PROBLEM STATEMENT

2.1. Model problem

The steady advection–diffusion–reaction equation reads

�r � .�ru/C ˛ �ruC �uD f in �, (1a)

uD uD on �D, (1b)

�ru � nD g on �N, (1c)

where � is a plane polygonal domain whose boundary @� is partitioned into two disjoint sets �D

(of nonzero measure) and �N, and n is the outward unit normal vector to @�. The datum � is
assumed to be strictly positive and � is assumed to be non-negative.

The standard variational formulation of the problem consists of finding u 2 U such that

a.u, v/D `.v/ 8v 2 V , (2)

where a.�, �/ W H1.�/ � H1.�/ ! R and ` W H1.�/ ! R denote the bilinear and linear forms
respectively defined by

a.w, v/ WD
Z
�

Œ�rw �rvC .˛ �rw/vC �wv� d� and `.v/ WD

Z
�

f vd�C

Z
�N

gvd� ,

and U WD ¹v 2 H1.�/, vj�D D uDº and V WD ¹v 2 H1.�/, vj�D D 0º are the solution and test
spaces, H1.�/ being the standard Sobolev space.

The data are supposed to be sufficiently smooth and, for simplicity, the coefficients �, � and ˛ are
required to be continuous, piecewise polynomials in �, uD is assumed to be continuous, piecewise
polynomial on �D, whereas f and g are assumed to be piecewise polynomials not necessarily con-
tinuous. That is, f is assumed to be piecewise polynomial on subdomains of �, and g is assumed
to be piecewise polynomial on subdomains of �N.

The nonsymmetric bilinear form a.�, �/ is continuous and coercive in V . To ensure that, it is
assumed that Q� WD � � 1

2
r � ˛ > 0 in � and also that the Dirichlet boundary contains the inflow

boundaries, that is �� � �D for �� WD ¹x 2 @�,˛ � n< 0º.

2.2. Stabilized finite element approximation

Various stabilization techniques are available for advection–diffusion–reaction problems, all aim-
ing at precluding oscillations of the finite element approximations without requiring severe mesh
refinement [12]. However, in view of the developments in Section 4, the streamline upwind
Petrov–Galerkin method (SUPG) is adopted in this work (see Remark 1 for other possibilities).

The so-called SUPG/FEM is described using a triangulation of the computational domain � into
nel triangles where �k denotes a general triangle, k D 1, : : : ,nel, and the finite-dimensional spaces
Uh � U and Vh � V consisting of the usual continuous, piecewise-polynomial functions of degree
p > 1.

Then, for a given choice of the stabilization parameter to be specified, an approximation of the
true solution u is obtained by seeking uh 2 Uh such that

a.uh, v/C
nelX
kD1

Z
�k

�Pk RP .uh/˛ �rv d�D `.v/ 8v 2 Vh, (3)

where

RP .w/D�r � .�rw/C ˛ �rwC �w � f

denotes the strong residual of the differential Equation (1a), and �P
k

is the local stabilization param-
eter associated with element �k . Note that the superscript P is used to denote quantities related to
the original problem described by Equation (1) or (3).
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Remark 1
Although all the developments herein concern the SUPG method, the presented theory is also valid,
as it stands, for other stabilization techniques of the form

a.uh, v/C
nelX
kD1

Z
�k

�Pk P.uh/˛ �rv d�D `.v/ 8v 2 Vh, (4)

where P.�/ is a certain given operator. Two widely used choices are P D RP , which yields the
aforementioned consistent SUPG method, and P.v/D ˛ � rv, which yields the streamline-upwind
(SU) method. Note that although the present work covers some widely used stabilization techniques,
it does not cover the full spectrum of stabilization techniques. For instance, the only consistent
stabilization technique covered by this approach is the SUPG method, and thus for instance the
Galerkin-least-squares method is beyond the scope of the work. Other specific techniques should be
developed to broaden the extent of the work.

2.3. Goal oriented simulations: outputs and adjoint problem

The purpose of the present work is to develop a posteriori error estimators providing computable
bounds for a given quantity of interest (also called output) and giving local error indicators. The
local information is used to drive adaptive refinement procedures. The final aim is to achieve the
prescribed accuracy in the approximations of the quantities of interest.

When it comes to goal-oriented error estimation, controlling a global measure of the error in the
field solution u is not necessarily relevant. In this case, the interest is placed in certifying the accu-
racy of the desired output of the simulation, which depends on u, and is denoted by s WD `O.u/. In
particular, the objective is to provide upper and lower bounds for s, namely

slb 6 s 6 sub.

Here, the quantities of interest are restricted to depend linearly on u

`O.u/ WD

Z
�

f Oud�C

Z
�N

gOud� , (5)

but other quantities of interest may also be considered [3, 9, 15]. That data f O is assumed to be
piecewise polynomial on subdomains of � and gO is assumed to be piecewise polynomial on
subdomains of �N.

One of the key ingredients in developing strategies to compute bounds for the output s is the
definition of an auxiliary problem, denoted adjoint problem [9, 10, 14, 16, 17]. The variational form
of the adjoint problem consists of finding  2 V such that

a.v, /D `O.v/ 8v 2 V ,

which is equivalent to determine  such that

�r � .�r /� ˛ �r C .� �r � ˛/ D f O in �, (6a)

 D 0 on �D, (6b)

�r � nC ˛ � n D gO on �N. (6c)

Analogous to the direct (or primal) problem, the adjoint problem is solved numerically using the
SUPG method. Thus,  h 2 Vh is such that

a.v, h/�
nelX
kD1

Z
�k

�Dk RD. h/˛ �rv d�D `
O.v/ 8v 2 Vh, (7)

where

RD.w/D�r � .�rw/� ˛ �rwC .� �r � ˛/w � f O
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is the strong residual of the differential Equation (6a), and �D
k

is the stabilization parameter associ-
ated with the adjoint problem and the element �k . The choice of the stabilization parameter both
for the primal and adjoint problems is addressed in Section 6.

3. ENERGY REFORMULATION: REPRESENTATION OF THE OUTPUT BOUNDS

Bounds for the quantity of interest s D `O.u/ can be recovered from standard Galerkin
approximations of the primal and adjoint problems using the well-known inequality

`O.uh/�
1

2
k�es �

1

�
"sk2 6 `O.u/6 `O.uh/C

1

2
k�esC

1

�
"sk2, (8)

where k�k is the energy norm induced by the symmetric counterpart of the bilinear form a.�, �/,
es and "s 2 V are the solutions of the symmetrized residual equations, and � 2 R is an arbitrary
non-zero scalar parameter [9, 10, 14].

To be specific, let as.v,w/ WD .a.w, v/ C a.v,w//=2 be the symmetric counterpart of a.�, �/.
Then, kvk2 D as.v, v/ D a.v, v/ is generally referred to as the energy norm, and es 2 V and
"s 2 V , which are often dubbed as symmetric primal and adjoint errors, are the solutions of the
residual equations

as.es, v/D `.v/� a.uh, v/DWRP.v/ 8v 2 V , (9)

and

as."s, v/D `O.v/� a.v, h/DWR
D.v/ 8v 2 V , (10)

respectively. Note that problems (9) and (10) are a modified symmetric version of the standard
residual problems. In the standard residual problems characterizing the primal and adjoint errors,
e WD u� uh and " WD  �  h, the right hand side (r.h.s.) is the same as in Equations (9) and (10),
that is, the weak primal and adjoint residuals associated with the approximations uh and  h, RP.�/
and RD.�/ . However, the bilinear form a.�, �/ in the left hand side of the standard residual equations
is replaced by its symmetric counterpart as.�, �/.

Although inequality (8) does not directly yield a computable expression for the bounds of s
because it entails the solution of two global infinite dimensional boundary value problems, namely
(9) and (10), the obligation to exactly solve these two problems can be easily removed by noting
that it is sufficient to compute strict upper bounds of the energy norms k�es ˙ 1=�"sk. A com-
plete description of the procedure for the construction of these bounds is presented in [10] and [9],
where the bounds are computed using hybrid-flux and flux-free implicit residual a posteriori error
estimates, respectively.

Hence, it is possible to compute bounds for a quantity of interest s D `O.u/ given standard
Galerkin approximations of the primal and adjoint problems, uh and  h. However, the techniques
providing the bounds for s are not directly applicable when the approximations uh and  h are
computed using stabilized formulations.

The issues addressed in this article are as follows: (i) can one obtain upper and lower bounds
for the quantity of interest using stabilized approximations of the primal and adjoint problems, and
if so, (ii) is it possible to extend the a posteriori error estimates given in [10] and [9] allowing to
compute strict computable bounds?

The main difficulty of adapting the existing techniques to the use of stabilized methods is caused
by the fact that, in this case, the weak primal and adjoint residuals fail to verify the standard orthog-
onality condition—RP.v/ and RD.v/ are not necessarily zero for v 2 Vh,—which is required both
to derive inequality (8) and to formulate the residual type estimation strategies using a domain
decomposition technique.

Fortunately, a simple workaround allows to overcome this problem by introducing two straightfor-
ward modifications of the standard procedures. First, a similar expression to (8) holds by introducing
some additional terms accounting for the non-orthogonality of the primal residual with respect to
the finite element space Vh. Second, the error estimation strategies yielding strict upper bounds for
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k�es ˙ 1=�"sk2 are modified to handle error equations where the residuals, r.h.s. of Equations (9)
and (10), do not verify the Galerkin orthogonality property.

The following result shows how inequality (8) is modified to account for the non-orthogonality
of the residuals. The proof of this result is omitted here because it is analogous to the proof of
Theorem 1 in [9]—the only difference being that the term a.e, h/ D RP. h/ appearing in the
bounds does not necessarily vanish when working with stabilized approximations for the primal
problem.

Theorem 1
Let es and "s 2 V be such that for any v 2 V

as.es, v/DRP.v/ and as."s, v/DRD.v/.

Then,

`O.uh/CR
P. h/�

1

4
k�es �

1

�
"sk2 6 `O.u/6 `O.uh/CRP. h/C

1

4
k�esC

1

�
"sk2,

and therefore

`O.uh/CR
P. h/�

1

4
k�es �

1

�
"sk2ub 6 `O.u/6 `O.uh/CRP. h/C

1

4
k�esC

1

�
"sk2ub, (11)

where kvkub represents an upper bound for the value kvk.

Note that this theorem is valid even if the approximations uh and  h are not computed using
the SUPG/FEM because no assumptions are made on these approximations. This theorem is, then,
a generalization of the bounding inequality (8) used to obtain bounds for outputs from Galerkin
approximations of the primal and adjoint problems, where no requirements on uh and  h are done.

The importance of this theorem is that it reduces the problem of obtaining upper and lower bounds
for s to obtaining upper bounds for the energy norm of the symmetric errors in the direct and adjoint
problem. Using this result, a procedure to obtain bounds for s may be sketched as follows:

1. Compute the SUPG finite element approximation of the primal problem: find uh 2 Uh
such that

a.uh, v/C
nelX
kD1

Z
�k

�Pk RP .uh/˛ �rv d�D `.v/ 8v 2 Vh.

2. Introduce the adjoint problem associated with the selected output and compute its SUPG finite
element approximation: find  h 2 Vh such that

a.v, h/�
nelX
kD1

Z
�k

�Dk RD. h/˛ �rv d�D `
O.v/ 8v 2 Vh.

3. Recover the bounds for the output from the three following steps:
3.1 Introduce the modified symmetric versions of the residual problems: find es and "s 2 V

such that

as.es, v/DRP.v/ , as."s, v/DRD.v/ 8v 2 V , (12)

where as.�, �/ is the symmetric counterpart of a.�, �/

as.w, v/D
Z
�

Œ�rw �rvC Q�wv�d�C
1

2

Z
�N

˛ � nwvd� . (13)

3.2 Compute the upper and lower bounds for s, slb 6 s 6 sub, as

slb WD `O.uh/CR
P. h/�

1

4
k�es �

1

�
"sk2ub

sub WD `O.uh/CR
P. h/C

1

4
k�esC

1

�
"sk2ub,
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where kvkub represents an upper bound for the value of kvk and � 2 R is an arbitrary
scalar non-zero parameter.

The computation of strict computable upper bounds for the energy norm forms the subject of the
next section. This approach is then used to compute k�es˙ 1=� "sk2ub.

4. UPPER BOUNDS FOR THE ENERGY NORM: COMPLEMENTARY
ENERGY RELAXATION

Consider the auxiliary function ´ 2 V solution of

as.´, v/DR�.v/ 8v 2 V , (14)

where R�.v/D ˛RP.v/C ˇRD.v/ for ˛,ˇ 2R. Note that ˛ D 1 and ˇ D 0 yields ´D es and that
˛ D 0 and ˇ D 1 yields ´ D "s. Moreover, ˛ D � and ˇ D ˙1=� will be used later to obtain the
required upper bounds for k�es˙ 1=� "sk2.

The purpose of this section is to establish a procedure to compute upper bounds of k´k2. Note that
the strategies presented in the series of papers [2–4, 9, 10, 18] may not be directly applied because
they rely on the Galerkin orthogonality property of the residual R�.�/. In this work, two different
approaches to recover upper bounds for k´k2 are presented. The first approach is a modification
of [9], which allows to recover bounds for k´k2 from SUPG approximations of the primal and
adjoint problems using a flux-free error estimation strategy. The second approach consists of tak-
ing some of the ideas presented in [10] and [19] to be able to recover strict bounds of k´k2 using
hybrid-flux strategies.

Both approaches rely on the use of the standard complementary energy approach. The key idea
is to relax the continuous problem of finding ´ 2 V fulfilling Equation (14) into obtaining a pair of
dual estimates Oq 2 ŒL2.�/�2 and Or 2 L2.�/ such thatZ

�

Œ� Oq �rvC Q� Orv� d�C
1

2

Z
�N

˛ � n Orvd� D as.´, v/DR�.v/ 8v 2 V . (15)

The dual estimates Oq and Or are then combined to build up an upper bound for k´k. This is stated in
the following theorem (see [9] for a proof).

Theorem 2
Let Oq 2 ŒL2.�/�2 and Or 2 L2.�/ be two dual estimates fulfilling Equation (15). Then, an upper
bound for the energy norm of the solution ´ of (14) is computed as

k´k2 6
Z
�

�
� Oq � Oq C Q� Or2

�
d�C

1

2

Z
�N

˛ � n Or2d� . (16)

Moreover, the previous inequality turns out to be an equality for Oq D r´ and Or D ´.

Theorem 2 allows to compute strict upper bounds for k´k recovering two globally equilibrated
dual estimates Oq and Or , that is, verifying Equation (15). The essential feature of the method is that if
the fields f , g, f O and gO are piecewise polynomial, it is possible to determine—amongst all the
dual estimates Oq 2 ŒL2.�/�2 and Or 2 L2.�/ verifying Equation (15)—two piecewise polynomial
fields verifying Equation (15). That is, for a given suitable interpolation degree q, it is possible to

find Oq 2
h
OPq.�/

i2
and Or 2 OPq.�/ verifying Equation (15) where

OPq.�/ WD ¹v 2 L2.�/, vj�k 2 P
q.�k/º,

[10, 20]. A more detailed discussion on the proper choice of the interpolation degree q is given in
Sections 4.2 and 4.3.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:483–509
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Therefore, the computation of strict upper bounds for k´k is reduced to a discrete problem: deter-

mine Oq 2
h
OPq.�/

i2
and Or 2 OPq.�/ verifying Equation (15). Moreover, for a fixed q 2 N, the

optimal choice is to determine Oq and Or verifying (15) and minimizing the upper boundZ
�

�
� Oq � Oq C Q� Or2

�
d�C

1

2

Z
�N

˛ � n Or2d� .

This problem is discrete (with finite number of DOF) but global, that is, affecting the whole domain
�. Thankfully, proper domain decomposition techniques allow decomposing the global discrete
problem into local problems. That is, the piecewise polynomial fields Oq and Or are to be computed
solving local discrete problems.

However, the existing domain decomposition techniques can not be directly applied if the resid-
ual R�.�/ does not verify the Galerkin orthogonality condition. This section considers the two
most used classical domain decomposition techniques—the flux-free approach and the hybrid-flux
approach—and extends these techniques to be able to deal with non-orthogonal residuals.

Recall that the flux-free is based on the partition-of-unity property, which is used to localize the
problems in � to subdomains different than elements. That is, the local problems for the dual esti-
mates Oq and Or are posed over patches of elements. By contrast, in the hybrid-flux approach, the
dual estimates Oq and Or are computed solving local independent problems in each element of the
mesh. This requires the use of flux-equilibration techniques to properly set the boundary conditions
for the local elementary problems. First, the equilibrated residual method is used to compute the
equilibrated fluxes at the inter-elementary edges of the mesh and these fluxes are then used as local
boundary conditions to compute the dual estimates Oq and Or in each triangle of the mesh. The advan-
tage of the flux-free approach is that the local problems are self-equilibrated, and therefore, it avoids
the use of flux-equilibration techniques.

4.1. Modified Galerkin orthogonality property

Recall that in the case that uh and  h are not computed using the standard Galerkin method, the
residuals RP.v/ and RD.v/, and thus R�.v/, do not verify the Galerkin orthogonality property, that
is, also R�.v/ is not necessarily zero for v 2 Vh.

However, from Equations (3) and (7), the primal and adjoint residuals satisfy

RP.v/�

nelX
kD1

Z
�k

�Pk RP .uh/˛ �rv d�D 0 8v 2 Vh, (17)

and

RD.v/C

nelX
kD1

Z
�k

�Dk RD. h/˛ �rv d�D 0 8v 2 Vh, (18)

respectively.
These equations—which may be seen as a modified orthogonality of the weak residuals—are

an essential tool to develop the error estimation strategies presented in this section. Henceforth,
Equations (17) and (18) will be named after modified orthogonality properties.

Nota that multiplying Equations (17) and (18) by the coefficients ˛ and ˇ, respectively, yield the
subsequent modified orthogonality of the combined residual R�.�/

R�.v/C

nelX
kD1

Z
�k

�
�˛�Pk RP .uh/C ˇ�

D
k RD. h/

�
˛ �rv d�D 0 8v 2 Vh. (19)
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4.2. Local computation of the dual estimates Oq and Or using a flux-free approach

This section is devoted to detail the computation of the piecewise polynomial dual estimates Oq and
Or using the flux-free approach proposed in [11]. The strategy proposed in [9] can not be directly
applied because the residuals are not orthogonal to Vh. However, a simple workaround is proposed,
using the modified orthogonality properties of the primal and adjoint residuals, Equations (17), (18)
and (19).

Let xi i D 1, : : : ,nnp denote the vertices of the elements (triangles) in the computational mesh
(thus linked to Uh) and 	i denote the corresponding linear shape functions, which are such that
	i .xj /D ıij . The support of 	i is denoted by !i , and it is called the star centered in, or associated
with, vertex xi . It is important to recall that the linear shape functions based on the vertices are a
partition of unity, namely

nnpX
iD1

	i D 1. (20)

Let also V.!i / and OPq.!i / denote the local restrictions of the spaces V and OPq.�/ to the star !i .
Formally, any function v 2 V.!i / or v 2 OPq.!i / is not defined in the whole domain �, but only in
the star !i . However, here, any v 2 V.!i / or v 2 OPq.!i / is naturally extended to � by setting the
values outside !i to zero. Thus, functions in V.!i / are H1 functions in !i , but generally discon-
tinuous across the boundary of the star !i , whereas functions in OPq.!i / are piecewise polynomial
functions in the triangles contained in !i vanishing on the elements outside !i .

The dual estimates Oq and Or are computed as

Oq D

nnpX
iD1

Oqi and Or D

nnpX
iD1

Or i (21)

where the local estimates Oqi 2
h
OPq.!i /

i2
and Or i 2 OPq.!i /, defined inside the star !i , are such that

for any v 2 V.!i /Z
!i

h
� Oqi �rvC Q� Or iv

i
d�C

1

2

Z
�N\@!i

˛ � n Or ivd� DR�.	iv/C
X

�k�!
i

Z
�k

f ?i v d� (22)

where

f ?i D
�
�˛�Pk RP .uh/C ˇ�

D
k RD. h/

�
˛ �r	i .

Remark 2
Note that in [9], the r.h.s. of the local problems for Oqi and Or i is simply R�.	iv/. If the same r.h.s. is
chosen here, the local problem (22) is not necessarily solvable, that is, it does not necessarily admit
a solution. The new additional term added in the r.h.s. enforces local solvability of the problems
while preserving the global upper bound property.

This new definition of the r.h.s. causes that problems given in Equation (22) to have at least one
solution. Indeed, if !i is a star associated with a strictly positive reaction term Q� j!i > 0 or it inter-
sects the Neumann boundary and ˛ � nj�N\@!i ¤ 0, the solvability of the local Equation (22) is
ensured. On the contrary, the kernel of the bilinear operator appearing in the left hand side (l.h.s.)
is the one-dimensional space of constants, P0.!i /, and Equation (22) is solvable if and only if the
compatibility condition holds, namely

R�.	ic/C
X

�k�!
i

Z
�k

f ?i c d�D 0 8c 2 P0.!i /.
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Now, substituting the definition of f ?i into the previous equation, taking into account that c is con-
stant in the star !i and finally noting that the support of the function r	i is the star !i , yields that
the compatibility condition is equivalent to

0D cR�.	i /C
X

�k�!
i

Z
�k

�
�˛�Pk RP .uh/C ˇ�

D
k RD. h/

�
˛ �r	ic d�

D c

"
R�.	i /C

nelX
kD1

Z
�k

�
�˛�Pk RP .uh/C ˇ�

D
k RD. h/

�
˛ �r	i d�

#

which follows replacing v D 	i 2 Vh in Equation (19).

Theorem 3
The dual estimates Oq D

Pnnp
iD1 Oq

i and Or D
Pnnp
iD1 Or

i , where Oqi and Or i verify the local problems given
in (22), verify the hypothesis of Theorem 2 and therefore

k´k2 6
Z
�

�
� Oq � Oq C Q� Or2

�
d�C

1

2

Z
�N

˛ � n Or2d� .

Proof
The dual estimates Oq and Or verify Equation (15), and therefore, Theorem 3 is a straightforward
particularization of Theorem 2. Indeed, let v 2 V , which implies vj!i 2 V.!i / and consider the
definition of the dual estimates—Equation (21)—and the local Equations (22) to obtainZ

�

Œ� Oq �rvC Q� Orv�d�C
1

2

Z
�N

˛ � n Orvd�

D

nnpX
iD1

²Z
!i

h
� Oqi �rvC Q� Or iv

i
d�C

1

2

Z
�N\@!i

˛ � n Or ivd�

³

D

nnpX
iD1

8<:R�.	iv/C X
�k�!

i

Z
�k

f ?i v d�

9=; .

Then, rearranging terms using the linearity of the residual R�.�/, the partition-of-unity property—
Equation (20)—and

X
!i\�k¤;

f ?i D 0 (23)

yield the desired resultZ
�

Œ� Oq �rvC Q� Orv�d�C
1

2

Z
�N

˛ � n Orvd�

D

nnpX
iD1

°
R�.	iv/C

X
�k�!

i

Z
�k

f ?i v d�
±

.

DR�

 nnpX
iD1

	iv

!
C

nelX
kD1

Z
�k

� X
!i\�k¤;

f ?i

�
v d�DR�.v/.
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Equality (23) is easily obtained, noting that because the support of the function f ?i is !i , the sum
may be extended not only to the stars intersecting�k , but to all the stars, and then rearranging terms

X
!i\�k¤;

f ?i D

nnpX
iD1

f ?i D

nnpX
iD1

�
�˛�Pk RP .uh/C ˇ�

D
k RD. h/

�
˛ �r	i

D
�
�˛�Pk RP .uh/C ˇ�

D
k RD. h/

�
˛ �r

 nnpX
iD1

	i

!
D
�
�˛�Pk RP .uh/C ˇ�

D
k RD. h/

�
˛ �r1D 0

where the partition-of-unity property—Equation (20)—has been used. �

The computation of the dual estimates Oqi and Or i verifying Equation (22) is done using the same
strategy as in [9]. Note that the only difference between the computation of the estimates when intro-
ducing stabilization techniques is the new term accounting for the non-orthogonality of the residuals
appearing in the local equations. This new added termX

�k�!
i

Z
�k

f ?i v d�,

which vanishes if no stabilization is used, �P
k
D �D

k
D 0, involves only a modification of the source

term of the local problem.
Thus, following the notation used in [9], the r.h.s. of Equation (22) can be rewritten as

R�.	iv/D

Z
!i
f �i vd�C

Z
�N\@!i

g�i vd� �

Z
!i
� Oqih �rvd�,

where the following compact notation is introduced

f �i D ˛ Œ	if � 	i˛ �ruh � �	iuh � �ruh �r	i �

C ˇ
�
	if

O � h˛ �r	i � �	i h � �r h �r	i
�
C f ?i ,

g�i D ˛	igC ˇ	ig
O and Oqih D ˛	iruhC ˇ

�
	ir hC

1

�
	i h˛

	
,

and therefore, introducing the new unknown Oq?i� D Oq
i C Oqih, the strong form to compute the dual

estimates Oq?i� 2
h
OPq.!i /

i2
and Or i 2 OPq.!i / is,

��r � Oq?i� C Q� Or
i D f �i in !i

� Oq?i� � nC
1

2
˛ � n Or i D g�i on 
 2 �N \ @!

i

� Oq?i� � nD 0 on 
 2 @!i � ¹�N [ �Dº

�� Oq?i�

ˇ̌̌
�k
� nk C � Oq

?i
�

ˇ̌̌
�l
� nl D 0 on 
 2 @�k \ @�l , �k ,�l � !i ,

where nk and nl are the outward normal to the elements �k and �l respectively. See [9] for a
detailed derivation of the strong form of the local problem (22).

Remark 3

The strong problem for the dual estimates Oq?i� 2
h
OPq.!i /

i2
and Or i 2 OPq.!i / admits a solution as

long as a proper interpolation degree q is chosen.
In particular, assuming � and � to be piecewise constant, solvability is guaranteed if

q >max.deg.g�i /, deg.f �i /C 1/.
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To be more precise, if the Neumann data g and gO are piecewise polynomials of degree mg in the
boundary �N, then deg.g�i / D mg C 1. Also, if the interior data f and f O are in 2 OPmf .�/

and the velocity field ˛ 2
h
OPm˛ .�/

i2
, deg.f �i / D max.mf C 1,m˛.p � 1/ C 1,p C 1,m2˛

.p � 1/,m˛p,m˛mf /. Thus,

q >max
�
mg C 1,mf C 2,m˛pC 1,pC 2,m2˛.p � 1/C 1,m˛mf C 1

�
, (24)

The previous restriction is the worst case scenario because depending on the problem to be solved,
for instance, for problems without reaction term � D 0 or without applied Neumann boundary con-
ditions (or homogeneous ones), some of the restrictions can be removed or weakened. In particular,
in advection–diffusion problems associated to � D 0, the term q > p C 2 may be replaced by
q > pC 1.

Also, it is worth noting that the last two terms in Equation (24), namely m2˛.p � 1/ C 1 and
m˛mf C 1, only appear when stabilization techniques are used. Even in this case, for piecewise
constant or linear velocity fields, these terms have no influence in the selection of the interpolation
degree q.

4.3. Local computation of the dual estimates Oq and Or using hybrid-flux techniques

This section is devoted to detail the computation of the piecewise polynomial dual estimates Oq and Or
using the hybrid-flux technique described in [13]. In fact, this strategy is a modification of the tech-
nique presented in [10]—which provides a tool to compute strict bounds for quantities of interest
for the advection–diffusion–reaction equation using standard Galerkin approximations of the primal
and adjoint problems—based on the strategy developed in [19]—which provides a tool to compute
asymptotic bounds for quantities of interest from SUPG method approximations of the primal and
adjoint problems.

Hybrid-flux methods (or equilibrated residual methods) may be seen as a domain decomposition
strategy, which allows to decompose the global problem (15) into solving local problems in each
element of the finite element mesh. This approach is standard and it is widely used in a posteriori
error estimation for steady problems [13,14,21]. The key point is to be able to compute equilibrated
fluxes at the inter-elementary edges of the mesh, which are then used as local boundary conditions
for the local elementary problems. Standard constructions of the equilibrated fluxes require the r.h.s.
of the residual problem given in (15), that is, R�.�/, to be orthogonal to the finite element space Vh.
However, the strategy proposed in [19], may be used in the context of the SUPG method to provide
a simple workaround to the problem of R�.�/ being non-orthogonal to Vh.

Equilibrated residual methods compute the dual fields Oq and Or verifying Equation (15), by means

of computing two piecewise polynomial fields Oq 2
hbP q.�/i2 and Or 2 bP q.�/ such thatZ

�

Œ� Oq �rvC Q� Orv�d�C
1

2

Z
�N

˛ � n Orvd� DR�.v/C
X
�2�h

Z
�

�Œv�d� 8v 2bV . (25)

Here, the ‘broken’ space bV is bV WD ¹v 2 L2.�/, vj�k 2 H1.�k/º, that is, functions in bV are
allowed to present discontinuities across the edges of the mesh and are not forced to verify the
Dirichlet boundary conditions, �h denotes the set of all the edges contained in the interior of
the mesh or on the Dirichlet boundary, � 2

Qnel
kD1

H� 12 .@�k/ are the equilibrated fluxes added
to the r.h.s. of Equation (25) in order to yield equilibrated and thus solvable local problems in each
element and Œv�j� is the jump of the function v along the edge 
 if it is an interior edge or Œv�j@� D v
for the exterior edges. In order to properly define the jump of a function across the mesh edges, an
arbitrary ordering of the elements of the mesh is introduced and &k is defined as

&k.x/D

´
�1 x 2 N�k \ N�l , k < l

C1 otherwise.
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In this case

Œv�j� D

´
vj�k &k C vj�l &l if 
 D�k \�l 2 �h

v if 
 2 �D,

where the values of vj�k and vj�l at the edge 
 are computed in using the traces of the funcions
vj�k and vj�l on 
 .

The different existing equilibration techniques differ in the choice of the equilibrated fluxes �
which may be computed with an asymptotic complexity that is linear in the number of vertices of
the mesh using, for instance, the procedure proposed by Ladevèze and Leguillon in [13].

It is a relatively simple matter to see that the dual estimates Oq and Or computed from Equation (25)
verify Equation (15). Indeed, for any v 2 V , that is, for any v in H1.�/ vanishing on the Dirichlet
boundary of the domain, Z

�

�Œv�d� D 0

for all 
 2 �h, � 2
Qnel
kD1

H� 12 .@�k/.
Therefore, taking v 2 V �bV in Equation (25) yieldsZ

�

Œ� Oq �rvC Q� Orv� d�C
1

2

Z
�N

˛ � n Orvd� DR�.v/C
X
�2�h

Z
�

�Œv�d� DR�.v/,

as required in Equation (15).
Note that for a given choice of the equilibrated fluxes �, the dual estimates Oq and Or solution

of (25) can be computed solving independent problems posed over the elements of the mesh: find
Oqk 2 ŒPq.�k/�

2 and Ork 2 Pq.�k/ such thatZ
�k

h
� Oqk �rvC Q� Orkv

i
d�C

1

2

Z
�N\@�k

˛�n Orkvd� DR�k.v/C

Z
@�kn�N

&k�vd� 8v 2H1.�k/.

(26)

Remark 4
It is tacitly assumed that problems given in Equation (26) have at least one solution. For elements
�k associated with a strictly positive reaction term Q� j�k > 0 or intersecting the Neumann boundary
and ˛ � nj�N\@�k ¤ 0 the kernel of the r.h.s. of Equation (26) is empty, and therefore, Equation (26)
has a unique solution. On the contrary, the kernel of the r.h.s. are the constant functions. In this case,
the problem is solvable if and only if the following compatibility condition holds:

R�k.1/C

Z
@�kn�N

&k�d� D 0, (27)

that is, if the r.h.s. of Equation (26) vanishes for v D 1j�k . This previous condition expresses
that the boundary data must be in equilibrium with the interior load so that the local problems are
solvable. This is precisely the required condition for the fluxes � to be equilibrated.

Remark 5
To enforce the compatibility condition, Equation (27), the equilibrated fluxes �, in the case where
uh and  h are the Galerkin approximations of u and  , are forced to verify

R�.v/C
X
�2�h

Z
�

�Œv�d� D 0 8v 2bVh, (28)

wherebVh is obtained from Vh relaxing both the Dirichlet homogeneous boundary conditions and the
continuity of the functions across the edges of �h. Note that for 1j�k 2

bVh, the previous condition
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yields to the compatibility condition. However, when using the SUPG approximations, it is not pos-
sible to compute a set of equilibrated fluxes � verifying Equation (28) due to the non-orthogonality
of the residual R�.�/ with respect to Vh. Indeed, take v 2 V �bVh, then, because Œv�j� D 0 8
 2 �h
Equation (28) becomes R�.v/D 0, which does not necessarily hold.

Luckily, [19] proposes a simple workaround to this problem. The equilibrated fluxes are forced
to verify

R�.v/C

nelX
kD1

Z
�k

�
�˛�Pk RP .uh/C ˇ�

D
k RD. h/

�
˛ �rv d�C

X
�2�h

Z
�

�Œv�d� D 0 8v 2bVh,

(29)
instead of Equation (28). Note that again for 1j�k 2

bVh, the previous condition yields to the com-
patibility condition because the additional term vanishes for v being constant inside the elements of
the mesh. Moreover, the set of conditions posed by Equation (29) are now compatible because for
any v 2 Vh �bVh,

R�.v/C

nelX
kD1

Z
�k

�
�˛�Pk RP .uh/C ˇ�

D
k RD. h/

�
˛ �rv d�D 0,

due to Equation (19).

Therefore, the strategy to compute the dual estimates Oq and Or solution of (25) is equivalent to the
strategy proposed in [10], that is, for each element of the mesh, the restriction of the dual estimates Oq
and Or to the element, Oqk and Ork , are computed solving the local Equation (26). The only difference
is that now, the equilibrated fluxes are found solving the modified Equation (29).

Remark 6
The strong problem for the dual estimates (26) admits a solution as long as a proper interpolation
degree q is chosen [10]. The same derivation applies in this context because the stabilization term
only affects the computation of the equilibrated fluxes, which again can be taken to be functions of
degree p in the edges of the mesh, independently of the stabilization terms. In particular, following
the notation of Remark 3, it can be stated that

q >max.mg ,mf C 1,m˛p,pC 1/, (30)

As in the flux-free context, the previous restriction is the worst case scenario. In particular, the
term q > pC 1 appears only for � > 0. For � D 0, this restriction turns into q > p.

Thus, regarding the choice of the interpolation degree of the dual estimates, q, the hybrid-flux
technique presents two advantages: (1) the local problems are not weighted by the linear shape
functions 	i and therefore the minimum value of the local polynomial order, q, is one less than
for the flux-free technique; and (2) the stabilization term plays a role only in computing the equi-
librated fluxes, �. Thus, the choice of the interpolation degree q depends linearly on m˛ (and not
quadratically as in the flux-free case for stabilized techniques).

4.4. Computational cost versus accuracy

This section is devoted to compare the computational effort required to solve the local problems
for both the flux-free and the hybrid-flux approach versus the accuracy of the methods. The expla-
nation given herein is valid whether the bounds are computed either using stabilized or standard
finite element techniques, since the presented extension does not affect the computational cost of
the methods. However, this section is included to clarify and illustrate the resemblances/differences
of the two presented strategies.

In both cases, the cost of computing strict upper bounds for quantities of interest is proportional to
the number of vertex nodes in the mesh once the adjoint finite element approximation has been com-
puted. Indeed, given the finite element approximation uh, the computation of the bounds starts by
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solving the adjoint problem using finite elements. In general, both finite element approximations are
computed using the same interpolation degree p, and thus, the first step of the bounding procedure
has the same cost as the primal problem. Given the primal and adjoint finite element approxima-
tions, in the flux-free approach, a local problem for each star is solved with a constant cost that
only depends on the interpolation polynomial degree q of the dual estimates, and in the hybrid-flux
approach, first a local problem for each star is solved with a constant cost that only depends on
the interpolation polynomial degree p, and then a local problem for each element is solved with a
constant cost that only depends on the interpolation polynomial degree q for the dual estimates.

Both approaches require looping on the vertex nodes of the mesh, and the hybrid-flux approach
requires an extra loop on the elements of the mesh. The cost of the vertex loop for the flux-free
strategy is more expensive than the same loop for the hybrid-flux approach because the unknowns
for the flux-free local problems are directly the dual estimates (both in the edges and interior of
the triangles), whereas the unknowns for the hybrid-flux approach in the first vertex-loop stage are
the equilibrated fluxes (polynomials of degree p at the edges of the elements incident to the node).
During the second stage, the hybrid-flux approach unknowns are also the dual estimates of interpo-
lation degree q but the advantage is that the problems are solved independently on each element of
the mesh.

Although the cost of the flux-free technique is slightly higher, numerical examples show that the
use of flux-free techniques yields tighter bounds for the quantities of interest. Increasing the local
interpolation degree q in both approaches improves the bounds because the dual estimates have more
DOFs that can be used to optimize the bounds. However, based on the authors’ experience, there
is no considerable gain in increasing the interpolation degree q, especially in the flux-free context
[20]. Thus, it is advisable to use the least possible interpolation degree q in both approaches, also in
the hybrid-flux approach because the quality of the bounds is mainly governed by the quality of the
equilibrated fluxes and not by the interpolation degree q. Even if the local interpolation degree q is
increased in the hybrid-flux approach, in general, this approach is not able to achieve the accuracy
of the flux-free approach, thus, increasing the computational cost does not yield the same accuracy.

5. BOUNDS FOR THE QUANTITY OF INTEREST S D `O.U/: AN ALGORITHMIC
SUMMARY

According to Theorem 1, upper and lower bounds of s D `O.u/ are available once upper bounds
of the energy norm k´k are obtained for the two combinations .˛,ˇ/ D .�, 1=�/ and .˛,ˇ/ D
.�,�1=�/.

The general strategy to obtain these upper bounds is devised in the previous section. Due to the
linearity of the problem, obtaining the estimates for these two values ´ D �es ˙ 1=�"s is equiva-
lent to obtaining the estimates for ´ D es and ´ D "s separately, that is, for the two combinations
.˛,ˇ/D .1, 0/ and .˛,ˇ/D .0, 1/.

This section summarizes the main steps to compute bounds for `O.u/ for both the flux-free and
the hybrid-flux approaches.

5.1. Computation of the output bounds using the flux-free approach

The main steps of the procedure to compute bounds for `O.u/ using the flux-free approach are
the following:

1. Compute the primal and adjoint SUPG approximations, uh and  h, respectively.
2. For each star !i (associated with node xi of the mesh), compute the primal and adjoint dual

estimates OqiP , OqiD 2
h
OPq.!i /

i2
and Or iP , Or iD 2 OP

q.!i / such that for all v 2 V.!i /Z
!i

h
� OqiP �rvC Q� Or

i
P v
i
d�C

1

2

Z
�N\@!i

˛ � n Or iP vd�

DRP.	iv/�
X

�k�!
i

Z
�k

�Pk RP .uh/˛ �r	
iv d�,
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and Z
!i
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3. Recover the global estimates
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5. Recover the bounds for the output slb 6 s 6 sub as
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�PD DW sub, (31)

where sh D `O.uh/.

5.2. Computation of the output bounds using the hybrid-flux approach

The main steps of the procedure to compute bounds for `O.u/ using the hybrid-flux approach are
the following:

1. Compute the primal and adjoint SUPG approximations, uh and  h, respectively.
2. Compute �P and �D solutions of

RP.v/�

nelX
kD1

Z
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3. For each element of the mesh �k , compute the primal and adjoint dual estimates OqkP , OqkD 2
ŒPq.�k/�
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3 Compute the three scalar quantities
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4. Recover the bounds for the output slb 6 s 6 sub as
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1

2
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1

2
�PD 6 s 6 shCRP. h/C

1

2
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1

2
�PD DW sub, (32)

where sh D `O.uh/.

6. NUMERICAL EXAMPLES

This section presents the performance of the estimates providing the bounds for quantities of inter-
est in three numerical examples, which are defined in a two-dimensional domain, and which are
discretized using conforming piecewise linear finite elements.

In all the examples, both the primal and adjoint approximations uh and  h are computed using
both the standard Galerkin FEM and the SUPG method. When using stabilization techniques, as the
SUPG method, the choice of the stabilization parameter plays a major role because the accuracy of
the discrete solution is highly influenced by this choice. The appropriate selection of this parameter
is not discussed here because the primary goal of this work is to show the performance of the error
estimation strategy. Thus, the stabilization parameter is chosen following [22]. However, the error
estimation procedure is valid for any choice of the definition of the stabilization parameter [23–26].

The stabilization parameter for the primal approximation uh is taken to be constant inside each
element �k of the mesh,

�Pk D
hk

2j˛jk

 
1C

9

.Pe/2
k

C

�
hk�k

2j˛jk

	2!� 12
, (33)

where hk is the element size—computed as the radius of the circumcircle of the triangle—j˛jk is a
measure of the norm of the velocity ˛ inside the element—computed as the norm of the velocity at
the barycenter of the triangle—and Pek is the local Péclet number defined as follows:

.Pe/k D
1

2
j˛jkhk�k .

Analogously, the stabilization parameter for the adjoint problem is

�Dk D
hk

2j˛jk

 
1C

9

.Pe/2
k

C

�
hk.�k � jr � ˛jk/

2j˛jk

	2!� 12
. (34)

Note that if the velocity field ˛ is divergence free, then the primal and adjoint stabilization
parameters coincide, �P

k
D �D

k
.

As mentioned earlier, in the following examples, both the Galerkin and SUPG approximations
of the problem are computed using linear elements, that is, the parameter describing the space dis-
cretization is p D 1, and the dual estimates providing the bounds for the output are computed using
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piecewise third order polynomials, which corresponds to q D 3. The dual estimates are computed
both using the flux-free and the hybrid-flux error estimation strategies (the later also called residual
equilibrated method). In the following, the notations FF and EQ are used in figures and tables to
denote the two previous techniques, respectively.

In the following, the bound average save WD .subC slb/=2 is taken as a new approximation of the
quantity of interest and the half bound gapD .sub� slb/=2 is seen as an error indicator. Note that
stating that slb and sub are exact upper bounds for the output s implies that s 2 .slb, sub/, which can
be rewritten as s D save˙.

The meshes are adapted to reduce the half bound gap . In the examples, a simple adaptive
strategy is used based on the decomposition of into local positive contributions from the elements:

D

nelX
kD1

k ,

where the element contribution to the half bound gap k is

k WD
1

4
�2�Pk C

1

4�2
�Dk .

Note that this decomposition is valid because

D
sub � slb

2
D
1

2
�P �D D

1

4
�2.�P /2C

1

4�2
.�D/2 D

nelX
kD1



1

4
�2�Pk C

1

4�2
�Dk

�
D

nelX
kD1

k .

The remeshing strategy consists in subdividing the elements with the larger values of k at each
step of the adaptive procedure.

6.1. Example 1: quasi-two-dimensional transport

The first example is the quasi-two-dimensional transport problem introduced in [10].
The advection–diffusion equation is considered in the unit square �D Œ0, 1�� Œ0, 1� with � D 1,

� D 0 and a uniform horizontal velocity field ˛D .˛, 0/.
The boundary conditions are of Dirichlet type on the lateral sides, u.1,y/ D 0 and u.0,y/ D 1,

and Neumann homogeneous on the top and bottom sides. The source term is f D 0 so that the
analytical solution is

u.x,y/D
e˛ � e˛x

e˛ � 1

and the quantity of interest is taken to be the average normal gradient on the right side of the domain,
namely

s D

Z 1

0

ru.1, y/ � nd� D
˛e˛

1� e˛
.

Following [10], this quantity of interest can be rewritten using the interior function � D x as
s D a.u,�/, which in turn using the Green’s formula can be rewritten as s D `O.u/ using
the functional

`O.v/D a.v,�/.

This quantity of interest is not directly in the form of (5), but using Green’s formula, a.v,�/ can be
rewritten similar to (5) with f O D�r � .�r�/�r �˛��˛ �r�C �� and gO D �r� �nC˛ �n�
for all v 2 V . However, it is worth noting that following the derivations included in [2], it is possible
to compute the dual estimates without doing the conversion of the functional `O.v/ in terms of f O

and gO, in a much simpler manner.
This example allows testing the quality of the bounds for the output for different values of ˛,

ranging from a pure diffusion problem to a advection-dominated advection–diffusion problem. Four
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different strategies are compared for the values of ˛ D 5, 150 and 500: the bounds obtained for
the stabilized hybrid-flux and flux-free strategies presented in this paper are compared with the
bounds obtained using the standard hybrid-flux and flux-free strategies presented in [10] and [9],
respectively. The results are shown in Figure 1 and Table I.

Figure 1 shows the convergence of the half- bound gap. As expected, the half-bound gap has a
quadratic rate of convergence in all the strategies, although this convergence rate is only achieved
in the asymptotic range. It can be appreciated that as the influence of the convective term becomes
more important, finer meshes are needed to reach the asymptotic range.
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Figure 1. Example 1: Convergence of the relative half bound gap (=s) for a uniform h-refinement proce-
dure obtained from standard Galerkin finite element and streamline upwind Petrov–Galerkin approximations

using both hybrid-flux and flux-free strategies.

Table I. Example 1: Bounds for a uniform h-refinement procedure obtained from standard
Galerkin finite element approximations and streamline upwind Petrov–Galerkin approximations

for different values of ˛ D 5, 50, and500.

˛ D 5 ˛ D 50 ˛ D 500
s D�5.033918 s D�50 s D�500

nel save =jsavej save =jsavej save =jsavej

FF
-G

al
er

ki
n 32 �5.02103 0.03474 13.85636 13.80392 273561.10163 1.11887

1152 �5.03362 0.00097 �50.00000 0.10165 �330.48485 15.68297
3872 �5.03383 0.00029 �50.00000 0.02963 �499.99731 3.17566
8192 �5.03388 0.00014 �50.00000 0.01384 �500.00000 1.50201

14112 �5.03389 0.00008 �50.00000 0.00798 �500.00000 0.86799

FF
-S

U
PG

32 -5.01987 0.03470 �50.08000 1.72392 �507.69541 20.57684
1152 �5.03362 0.00097 �50.00000 0.09685 �500.00000 3.20511
3872 �5.03383 0.00029 �50.00000 0.02926 �500.00000 1.55460
8192 �5.03388 0.00014 �50.00000 0.01377 �500.00000 0.93795

14112 �5.03389 0.00008 �50.00000 0.00796 �500.00000 0.62550

E
Q

-G
al

er
ki

n 32 �5.02872 0.05664 42.04600 6.81851 437796.96760 1.11699
1152 �5.03379 0.00166 �49.99259 0.16532 �245.33712 32.20248
3872 �5.03388 0.00050 �49.99772 0.04958 �499.78202 4.88044
8192 �5.03390 0.00023 �49.99891 0.02350 �499.89784 2.32843

14112 �5.03391 0.00014 �49.99936 0.01366 �499.94023 1.35665

E
Q

-S
U

PG

32 �5.03205 0.05456 �50.27436 2.04817 �546.27178 22.33189
1152 �5.03379 0.00166 �49.99375 0.14623 �499.66067 3.85809
3872 �5.03388 0.00050 �49.99788 0.04753 �499.88878 1.90775
8192 �5.03390 0.00023 �49.99895 0.02302 �499.94213 1.18005

14112 �5.03391 0.00014 �49.99937 0.01349 �499.96335 0.80898
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As noted in [9], the results herein confirm that the flux-free strategy has a better performance than
the hybrid-flux strategy, both for standard and stabilized formulations. Also, it can be seen that for
low values of the advection parameter, the bounds obtained using the standard Galerkin method are
pretty similar to the ones obtained using stabilized methods. However, as the advection parameter
increases, the stabilized formulations perform better than the non-stabilized ones. As observed in
[10] and [9], as the advection parameter increases, the bounds degenerate because of the introduction
of the symmetrized residual equations. As it can be seen, the use of stabilization techniques does not
avoid the blow-up of the bounds for highly dominated advection problems, but it allows alleviating
this behavior for intermediate values of ˛. Finally, it is worth noting that as the finite element mesh is
refined, the difference between the performance of standard and stabilized formulations diminishes
and both approaches provide similar results, as expected.

The performance of the bounds in an adaptive process is analyzed for the value ˛ D 500. Start-
ing with a structured mesh of 64 triangular elements, a series of adapted meshes is produced by
subdividing at each step the elements whose contribution to the half bound gap is larger than the
average contribution, that is,k >=nel. The adaptive procedure is guided by the indicators (local
half bound gap) provided by the strict flux-free error estimate, but at each step, the bounds provided
by the strict hybrid-flux strategy are also computed to compare the results. The initial mesh of 64
elements certifies a wide interval for the quantity of interest s D 20165.45˙131.51% using the stan-
dard Galerkin approach and s D�499.99˙ 1271.33% using the SUPG approach. After remeshing,
the bounds associated with the final mesh set a much narrower interval s D �500.00˙ 1.39% (for
the standard Galerkin approach for a mesh of 11422 elements) and s D �500.00˙ 0.72% (for the
SUPG approach for a mesh of 13280 elements). The results for the intermediate meshes can be seen
in Figure 2. It can be observed that stabilizing the solutions for large Péclet numbers helps in reduc-
ing the bound gap with no additional cost both for the hybrid-flux and flux-free approaches. Figure 3
shows the final adapted meshes obtained for both the Galerkin and SUPG approaches. The meshes
are refined in the areas where either the primal or adjoint solutions present the boundary layers. The
main difference between both approaches is that, in the first iterations, the Galerkin method yields
a highly oscillating solution, which produces the refinement in areas where no refinement is needed
(interior of the square).

6.2. Example 2: Interior layers behind an obstacle

The second example is taken from [27]. The computational domain is

�D ¹.x,y/ 2 .�1, 1/2, jxj C jyj> 1=2º.
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Figure 2. Example 1: Convergence of the relative half bound gap (=jsj) for an adaptive h-refinement
procedure obtained from standard Galerkin finite element and streamline upwind Petrov–Galerkin approxi-

mations. Comparison with the results for the uniform mesh refinement.
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Figure 3. Example 1: Final adapted meshes obtained for both the Galerkin (left) and streamline upwind
Petrov–Galerkin (right) approaches consisting of 11422 and 13280 elements, respectively.

16

18

20

22

24

26

Figure 4. Example 2: Domain (left), initial mesh (both for the uniform and adaptive refinements) consisting
of 300 triangular linear elements (center) and local Péclet number distribution for the initial mesh (right).

where the hole inside the square is conceived as an obstacle inside the computational domain
(Figure 4). Equation (2) is solved in � with � D 1, � D 0 and a uniform horizontal velocity field
˛D .300, 0/. The boundary conditions are of Dirichlet type on all the boundaries, homogeneous in
the outer square and equal to 1 in the interior square, that is

uD D

²
1 for jxj C jyj D 1=2
0 elsewhere.

The obstacle inside the flow field gives rise to two interior layers and a boundary layer at the front
part of the obstacle (with respect to the flow) and a boundary layer at the part of the boundary behind
the obstacle.

The quantity of interest is the integral of the solution in the region �O 2 � \ Œ0, 1�2 which
corresponds to f O D 1 in �O and zero elsewhere.

The quality of the bounds is analyzed first for a uniform mesh refinement. The primal and adjoint
solutions obtained with the mesh of 8012 elements are shown in Figure 5. As it can be seen, neither
the Galerkin nor the SUPG manage to properly suppress the spurious local oscillations appear-
ing in the discrete solutions for this quite fine uniformly-refined mesh. However, even though the
proposed stabilization technique does not completely remove the spurious oscillations, the SUPG
method provides a much more accurate solution than the Galerkin method.

The results of the a posteriori error estimates presented in this paper are displayed in Table II
and in Figure 6. As it can be seen, for coarse meshes, the use of stabilization techniques pro-
vides a clear reduction of the half bound gap that becomes less important as the finite element
mesh is refined. Also, again, the flux-free strategy provides better results than the hybrid-flux one.
It can also be appreciated that the standard method to obtain bounds for quantities of interest, even
when using stabilization strategies, yields poor results when using a uniform refinement (very fine
meshes are needed to effectively reduce the bound gaps). Thus, in this case, it is crucial to use
adaptive techniques.
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Figure 5. Example 2: Primal (top) and adjoint (bottom) solutions for the last mesh of the uniform refine-
ment (consisting of 8012 elements) obtained using the standard Galerkin finite element method (left) and

the streamline upwind Petrov–Galerkin method (right).

Table II. Example 2: Bounds for a uniform h-refinement procedure obtained from standard Galerkin
finite element and streamline upwind Petrov–Galerkin approximations.

Flux-free Hybrid-flux
nel sh slb sub  slb sub 

G
al

er
ki

n

300 0.429511 �20.630848 17.672803 19.151825 �37.282079 31.544310 34.413194
744 0.407245 �7.343591 8.283259 7.813425 �15.776144 16.418931 16.097538
1694 0.418403 �3.685801 4.320300 4.003050 �8.935262 9.011232 8.973247
3725 0.395036 �1.869613 2.650419 2.260016 �5.058863 5.745099 5.401981
8012 0.395134 �0.943283 1.691546 1.317414 �3.074477 3.685708 3.380092

SU
PG

300 0.407135 �5.336663 6.048435 5.692549 �11.895049 11.616651 11.755850
744 0.427548 �3.941503 4.680051 4.310777 �9.416113 9.122311 9.269212
1694 0.419324 �2.582214 3.321779 2.951997 �6.698040 6.685539 6.691789
3725 0.403191 �1.584882 2.349696 1.967289 �3.878484 4.349016 4.113750
8012 0.398523 �0.878744 1.646389 1.262566 �2.626193 3.182316 2.904255
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Figure 6. Example 2: Bounds for a uniform h-refinement procedure obtained from standard Galerkin finite
element and streamline upwind Petrov–Galerkin approximations (left) and its convergence (right).
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Table III. Example 2: Bounds for an adaptive h-refinement procedure obtained from standard Galerkin
finite element approximations.

Standard Galerkin finite element approximation
Flux-free Hybrid-flux

nel sh slb sub  slb sub 

300 0.429511 �20.630848 17.672803 19.151825 �37.282079 31.544310 34.413194
357 0.431046 �11.812368 10.758631 11.285499 �24.099566 21.238144 22.668855
415 0.394818 �6.887437 9.467279 8.177358 �15.872191 19.296528 17.584360
492 0.401901 �4.615369 5.155705 4.885537 �11.592608 11.844514 11.718561
577 0.399312 �2.731070 3.449440 3.090255 �8.311474 8.934480 8.622977
682 0.399517 �2.105179 2.619031 2.362105 �7.025657 7.210070 7.117863
794 0.392198 �1.205988 1.968473 1.587230 �5.302291 5.927614 5.614953
923 0.381479 �0.972389 1.666009 1.319199 �4.565030 5.216576 4.890803
1072 0.385116 �0.704109 1.404819 1.054464 �3.927010 4.565738 4.246374
1230 0.384589 �0.446016 1.198208 0.822112 �3.183883 3.910679 3.547281
1405 0.383902 �0.224545 1.002875 0.613710 �2.686555 3.452816 3.069686
1615 0.382516 �0.103822 0.868474 0.486148 �2.229312 2.983397 2.606355
1851 0.381386 �0.007228 0.769074 0.388151 �1.882978 2.636305 2.259642
2115 0.381416 0.079254 0.683584 0.302165 �1.677128 2.435176 2.056152
2397 0.381370 0.138560 0.624934 0.243187 �1.475130 2.227198 1.851164
2768 0.380450 0.188917 0.572342 0.191713 �1.380715 2.140712 1.760714
3198 0.380351 0.239798 0.519340 0.139771 �1.075553 1.832568 1.454060
3575 0.380190 0.277870 0.481789 0.101959 �0.789506 1.546283 1.167894
4022 0.380264 0.293013 0.466865 0.086926 �0.791676 1.550964 1.171320
4580 0.379990 0.308917 0.450748 0.070915 �0.704982 1.463868 1.084425
5186 0.379945 0.320062 0.439756 0.059847 �0.633929 1.391602 1.012765
6116 0.379935 0.336028 0.423666 0.043819 �0.415468 1.172784 0.794126
6840 0.379865 0.347440 0.412151 0.032355 �0.269414 1.027825 0.648620
7895 0.379881 0.353315 0.406319 0.026502 �0.230727 0.989450 0.610089
8967 0.379837 0.357404 0.402180 0.022388 �0.186034 0.944352 0.565193
10301 0.379816 0.360808 0.398750 0.018971 �0.156364 0.913923 0.535144
12126 0.379826 0.364697 0.394854 0.015079 �0.058975 0.817103 0.438039

The quality of the bounds is also analyzed for an adaptive refinement. A series of adapted meshes
is produced by subdividing, at each step, 10% of the elements, those with the larger contributions
to the half-bound gap, until  < 0.016. The adaptive procedure is guided by the indicators (local
half-bound gap) provided by the strict flux-free error estimate. However, in each step, the bounds
provided by the strict hybrid-flux strategy are also computed to compare the results.

The initial mesh of 300 elements certifies a wide interval for the quantity of interest
s D �1.479 ˙ 19.152 using the standard Galerkin approach and s D 0.356 ˙ 5.693 using the
SUPG approach. After remeshing, the bounds associated with the final mesh set a much narrower
interval s D 0.3798˙ 0.01508 (for the standard Galerkin approach for a mesh of 12126 elements)
and s D 0.3800˙ 0.01574 (for the SUPG approach for a mesh of 12330 elements). The results for
the intermediate meshes can be seen in Tables III and IV and in Figure 7.

It can be observed that stabilizing the solutions yields much better results for the coarser meshes,
and that both approaches converge to the same results for low local Péclet numbers. However, in
this particular example, because the SUPG approximations are not obtained using an optimal sta-
bilization parameter for very fine meshes, the SUPG approximation does not perform better than
the Galerkin approximation, and thus, the bounds for the output are also a little bit worse. Figure 8
displays the primal and adjoint solutions obtained in the final meshes along with the final adapted
meshes obtained for both the Galerkin and SUPG approaches. It can be observed that the meshes
are refined in the areas where either the primal or adjoint solutions present larger gradients and that
both approaches provide very close results.

6.3. Example 3: Inner shock front and boundary layer

The final example is an advection–diffusion problem posed on the unit square � D Œ0, 1� � Œ0, 1�
with � D 1, � D 0 and a uniform velocity field ˛ D .300, 150/. The r.h.s. is homogeneous, f D 0
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Table IV. Example 2: Bounds for an adaptive h-refinement procedure obtained from streamline upwind
Petrov–Galerkin approximations.

Stabilized SUPG finite element approximation
Flux-free Hybrid-flux

nel sh slb sub  slb sub 

300 0.407135 �5.336663 6.048435 5.692549 �11.895049 11.616651 11.755850
348 0.429727 �4.281018 4.983699 4.632359 �10.633115 10.369201 10.501158
418 0.428071 �3.166066 3.868888 3.517477 �9.588084 8.985694 9.286889
516 0.421839 �2.265427 2.983470 2.624448 �7.666838 7.408345 7.537592
610 0.403156 �1.464917 2.228815 1.846866 �5.698544 6.070066 5.884305
735 0.401751 �1.056960 1.829619 1.443289 �4.794489 5.237296 5.015893
918 0.395629 �0.608291 1.377529 0.992910 �3.717249 4.246143 3.981696
1139 0.388709 �0.326000 1.097425 0.711713 �2.993937 3.696043 3.344990
1347 0.386049 �0.189252 0.957050 0.573151 �2.588543 3.311109 2.949826
1634 0.385730 �0.030445 0.796235 0.413340 �2.016893 2.736674 2.376783
2017 0.382891 0.086123 0.677498 0.295688 �1.641892 2.387876 2.014884
2366 0.382033 0.142205 0.620629 0.239212 �1.611950 2.359493 1.985721
2830 0.381993 0.196499 0.565911 0.184706 �1.330300 2.063420 1.696860
3383 0.380941 0.247565 0.513481 0.132958 �1.108488 1.852603 1.480546
4032 0.380849 0.285735 0.474613 0.094439 �1.022337 1.762936 1.392637
4677 0.380305 0.306157 0.453796 0.073820 �0.839117 1.580229 1.209673
5456 0.380254 0.322223 0.438008 0.057893 �0.731359 1.482723 1.107041
6417 0.380200 0.336554 0.423612 0.043529 �0.553114 1.311487 0.932301
7347 0.380118 0.348275 0.411643 0.031684 �0.326203 1.084242 0.705222
8684 0.380082 0.355037 0.404833 0.024898 �0.257523 1.015184 0.636353
10264 0.379933 0.359460 0.400439 0.020490 �0.213317 0.973382 0.593350
12330 0.379947 0.364213 0.395691 0.015739 �0.108349 0.867665 0.488007

SUPG, streamline upwind Petrov–Galerkin.
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Figure 7. Example 2: Convergence of the half-bound gap for an adaptive h-refinement procedure obtained
from standard Galerkin finite element and streamline upwind Petrov–Galerkin approximations. Comparison

with the results for the uniform mesh refinement.

and on the whole boundary, Dirichlet boundary conditions are given uD D 1 at the lower and right
boundaries and uD D 0 elsewhere (Figure 9). This example has been presented in [28]. Owing to the
velocity field and the distribution of the boundary conditions, an inner shock front appears starting
in the lower left corner, and a boundary layer occurs at the right boundary, from y D 1=2 to y D 1.

The quantity of interest is taken to be the integral of the solution over the lower right half square,
namely

`O.u/D

Z
�O

u.x,y/d�
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Figure 8. Example 2: Primal (left) and adjoint (center) solutions for the last meshes of the adaptive refine-
ment obtained using the standard Galerkin FEM (top) and the streamline upwind Petrov–Galerkin method
(bottom). Final meshes consisting of 12126 elements for the Galerkin method (top-right) and 12330 for the

streamline upwind Petrov–Galerkin method (bottom-right).

Figure 9. Example 3: Domain (left), initial mesh (both for the uniform and adaptive refinements) consisting
of 32 triangular linear elements (middle) and final mesh of the adaptive procedure for the standard Galerkin

approach consisting of 12524 elements.

which corresponds to f O D 1 in�O and zero elsewhere. That is,�O D ¹.x,y/ 2�, x > yº as can
be seen in Figure 9. Both the primal and adjoint solutions obtained in the final mesh of the adaptive
procedure are shown in Figure 10.

The sensitivity of the proposed error estimation strategy is tested with respect to the definition
of the stabilization parameter. Although the optimal selection of this parameter is not addressed in
this paper because the choice of the stabilization significantly influences the quality of the discrete
solution, three different choices for the stabilization parameter have been considered here to be able
to compare the efficiency of the bounds for the quantity of interest.
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Figure 10. Example 3: Primal (left) and adjoint (right) solutions for the last mesh of the adaptive procedure.

The first choice of the stabilization parameter is the stabilization parameter used in the two
first examples given in Equations (33) and (34), denoted by �1

k
. Note that in this particular exam-

ple, the stabilization parameter for the primal and adjoint problems coincide because the velocity
field is divergence free. This stabilization parameter is compared with the well-known expression
hk=.2j˛jk/ .coth..Pe/k/� 1=.Pe/k/. To compute the previous expression, two different choices
for the element size are used: the smallest edge side of the triangle, h1

k
, and the diameter of the

element �k in the direction of the advection field ˛, h2
k

[24]. These two different expressions, to
compute the element size, yield two different choices of the stabilization parameter, denoted by �2

k

and �3
k

, respectively.
The quality of the bounds is analyzed for an adaptive refinement. A series of adapted meshes is

produced by subdividing at each step 10% of the elements, those with the larger contributions to
the half-bound gap, until < 0.002. The adaptive procedure is guided by the indicators (local half-
bound gap) provided by the strict flux-free error estimate. The results for the hybrid-flux method
are not reported because, as in the previous examples, its performance is much worse than the
flux-free method.

The initial mesh of 32 elements certifies a wide interval for the quantity of interest s D
40.085˙44.666 using the standard Galerkin approach and s1 D 0.340˙1.870, s2 D 0.341˙1.859
and s3 D 0.312˙ 1.777 for the three different SUPG approximations (associated with �1

k
, �2
k

and
�3
k

, respectively). As it can be seen, in the initial mesh, there is a great difference between the non-
stabilized formulations and the stabilized ones. The different choices of the stabilization parameter
yield similar results, the third one, being the best one for this problem.

After remeshing, the bounds associated with the final mesh set a much narrower interval s D
0.25793˙ 0.00194 D 0.25793˙ 0.75% (for the standard Galerkin approach for a mesh of 12524
elements), s1 D 0.25784 ˙ 0.00191 D 0.25784 ˙ 0.74% (for the SUPG approach for a mesh of
12507 elements), s2 D 0.25784˙ 0.00191D 0.25784˙ 0.74% (for the SUPG approach for a mesh
of 12418 elements) and s3 D 0.25786˙ 0.00187 D 0.25786˙ 0.72% (for the SUPG approach for
a mesh of 13280 elements).

The convergence of the bounds is shown in Figure 11. Again, for the coarser meshes, the use
of stabilization provides better results, and as the meshes are refined, the half-bound gap reduction
provided by stabilization techniques becomes less important. It can also be appreciated that once
the finite element meshes are fine enough, there is no big difference between Galerkin and SUPG.

The final mesh of the adaptive procedure for the standard Galerkin approach is shown in
Figure 10. The final meshes associated to the stabilized approaches are not shown because they
are practically identical to the one obtained using the standard Galerkin approach. Thus stabilized
techniques are well suited to drive goal-oriented adaptive procedures. It is worth noting for this
quantity of interest that the meshes are refined mainly in the boundary layer and that there is no
need to overly refine the interior shock front to obtain accurate approximations of the quantity
of interest.
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Figure 11. Example 3: Series of adapted h-refined. Bounds (left) and their convergence (right) for the stan-
dard Galerkin approach and the streamline upwind Petrov–Galerkin approach for the three different choices

of the stabilization parameter.

7. CONCLUSIONS

A simple and effective extension of guaranteed goal-oriented implicit residual estimators to sta-
bilized methods has been presented. Both hybrid-flux and flux-free strategies have been extended
to be able to deal with stabilized approximations of the exact solution. Thus, this paper intro-
duces two new techniques to compute strict upper and lower bounds for functional outputs from
stabilized approximations.

The proposed strategies are an extension of the flux-free technique presented in [11] and the
hybrid-flux technique presented in [10]. The flux-free estimates yield much sharper bounds than the
hybrid-flux approach both for the stabilized and non-stabilized approaches.

The presented strategies are only valid, as they stand, for stabilization techniques, which may be
rewritten in the form (4), including the widely used SUPG and SU techniques. Although the per-
formance of the estimates is only shown for the SUPG method, the results presented herein for the
SUPG methods using the hybdrid-flux equilibration are in very good agreement with the results pre-
sented in [19] for the SU method using also a modification of the hybrid-flux method. No significant
differences are observed between the performance of the estimates due to the choice of the stabiliza-
tion technique. Thus, it is expected that the fact of selecting one among the different stabilization
techniques represented by the form (4) does not affect the performance of the estimates.

As shown in [11], the bounds for the quantity of interest are not robust with respect to the advec-
tion parameter because the effectivity of the bounds deteriorate as the advection term becomes
dominant. In this work, sharper bounds that alleviate this behavior have been obtained combining
stabilization techniques along with goal-oriented adaptivity. Obtaining robust bounds for quantities
of interest in the context of advection-dominated problems is still an open research topic, this work
being a first contribution.

Finally, the indicators provided by the error estimators are well suited to guide goal-oriented adap-
tive procedures. It has also been observed that when adaptivity is used, special care should be taken
when defining the stabilization parameter to yield stabilized discrete approximations better than the
standard Galerkin approximations.
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