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Abstract. In future cities, micrometeorological predictions will be essential to various services such as
drone operations. However, the real-time prediction is difficult even by using a super-computer. To re-
duce the computation cost, super-resolution (SR) techniques can be utilized, which infer high-resolution
images from low-resolution ones. The present paper confirms the validity of three-dimensional (3D) SR
for micrometeorology prediction in an urban city. A new neural network is proposed to simultaneously
super-resolve 3D temperature and velocity fields. The network is trained using the micrometeorology
simulations that incorporate the buildings and 3D radiative transfer. The error of the 3D SR is suffi-
ciently small: 0.14 K for temperature and 0.38 m s~ for velocity. The computation time of the 3D SR is
negligible, implying the feasibility of real-time predictions for the urban micrometeorology.

1 INTRODUCTION

In future cities, various IoT devices will constantly access meteorological data and social network
information on cloud networks. Each system using IoT devices will provide a variety of services in
response to complex changes in weather and society without people being aware of it. Such social
services will require real-time predictions of urban micrometeorology.

The authors’ research group has developed a micrometeorological model that can resolve buildings and
tree canopies at several meter resolution in urban areas (e.g., [1, 2, 3, 4]). However, the computational
cost of such simulations is high, and the real-time prediction is difficult even with a supercomputer.

Super-resolution (SR) refers to methods of estimating high-resolution (HR) images from those with
low-resolution (LR). SR is studied in computer vision as an application of neural networks (NNs) (e.g.,
[5, 6]). The success of such NNs has resulted in an increased number of studies that focus on the
SR in fluid mechanics (e.g., [7, 8, 9, 10]). Onishi et al. (2019) [10] proposed the super-resolution
simulation system using NN, where HR inferences are obtained with an NN from the LR results of
micrometeorology simulations. Once the NN is trained, it can make inferences at low computational
cost, which would make the real-time prediction possible.

The authors demonstrated the feasibility of super-resolution simulations for two-dimensional (2D)
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temperature [10, 11]. The three-dimensional (3D) flow field is necessary for its own application, but may
also be essential to make an overall inference more physically valid because 3D velocity advects scalars
such as temperature. The SR of 3D flow fields has been studied using NNs (e.g., [12, 13]); however,
most studies discuss canonical flows such as channel turbulence. Thus, the effectiveness of 3D SR for
complex flows in urban areas has not been validated.

This research aims to confirm the validity of 3D SR for micrometeorology simulations in urban cities.
The following things are demonstrated:

- The 3D SR of temperature is as accurate as the 2D SR, even though 3D SR is generally more
difficult.

- Not only temperature but also velocity can be super-resolved with high accuracy in 3D.

- The computation time of the 3D SR is sufficiently short, implying the feasibility of real-time
predictions.

The remaining paper is organized as follows. Section 2 describes the NNs for the 2D and 3D SR.
Section 3 gives the methods of training the NNs utilizing the data of the micrometeorology simulations
in Tokyo, Japan. Section 4 analyzes the results of the 2D and 3D SR. The conclusions are presented in
Section 5.

2 CONVOLUTIONAL NEURAL NETWORKS

This section describes the convolutional neural networks (CNNs) of the 2D and 3D SR. The former and
latter are referred to as 2dSR-Net and 3dSR-Net, respectively. The 2dSR-Net has been proposed in the
authors’ previous study [11], which super-resolves only the 2D temperature. In contrast, the 3dSR-Net
simultaneously super-resolves temperature and velocity.

2.1 Two-dimensional super-resolution network (2dSR-Net)

The 2dSR-Net [11] is based on the two CNNs [14, 15]. The network architecture is shown in Fig.
1. The output is the 2D temperature in the HR. The input consists of temperature, horizontal velocity,
building height, and downward shortwave radiation on the surface. The temperature and horizontal
velocity are in the LR, whereas the building height and shortwave radiation are in the HR. To align
the resolution, the bicubic interpolation is applied to the LR inputs. The temperature and velocity are
originally 3D fields from micrometeorology simulations, and the 2D fields are obtained from the grids
near the bottom surface.

The 2dSR-Net consists of three parts (Fig. 1): encoder, nonlinear mapping, and decoder. The encoder
separately converts each input of physics quantities into features. The nonlinear mapping contains an
attention module named the squeeze-and-excitation block [15]. This module gives a weight to each
feature, and this weight is multiplied to all pixel values of the feature. Finally, the decoder reconstructs
the HR temperature using the skip connection. The skip connection directly connects the input to the
output, allowing the 2dSR-Net to learn the difference between the HR and LR temperature.

2.2 Three-dimensional super-resolution network (3dSR-Net)

The 3dSR-Net is based on U-Nets [16, 17]. The network architecture is shown in Fig. 2. The output
is the 3D temperature and velocity fields in the HR. The input is composed of the 3D temperature and
velocity in the LR and the building mask in the HR. To align the resolution, the nearest-neighbor inter-
polation is applied to the LR inputs. The building mask takes O or 1, where it is O if a voxel, 3D version
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Figure 1: Network architecture of two-dimensional super-resolution net (2dSR-Net).

of pixel, is inside the building and otherwise 1.

The 3dSR-Net has the shape of U, consisting again of three parts (Fig. 2): encoder, nonlinear mapping,
and decoder. The encoder reduces the input size by convolutions and extracts the reduced-order features.
These features are mapped nonlinearly and passed to the decoder. The decoder restores the features to
the original size using upsampling algorithms. Here, a 3D version of the pixel shuffle [18] is employed.
The skip connection directly connects the feature in each resolution from the encoder to the decoder,
allowing the 3dSR-Net to reconstruct the difference between the HR and LR fields. The building mask
is fed into each block, where the resolution is adjusted using the spatial average.

3 METHODOLOGY

The 2dSR- and 3dSR-Nets were trained using the results of the micrometeorology simulations in
Tokyo, Japan. Section 3.1 briefly gives the configuration of the simulations. Section 3.2 describes the
training methods.

3.1 Micrometeorology simulations

This paper employs a multi-scale atmosphere-ocean coupled model named the Multi-Scale Simulator
for the Geoenvironment (MSSG) [1, 2, 3, 4]. MSSG covers global, meso-, and urban scales. For urban
scales, the atmospheric component of MSSG is used as a building-resolving large-eddy simulation (LES)
model, which can be coupled with a 3D radiative transfer model [4]. The governing equations are the
conservation equations of mass, momentum, and energy for compressible flows as well as the transport
equations for mixing ratios of water substances including water vapor, liquid, and ice cloud particles. A
detailed description of the numerical parameters is found in precursor studies [4, 10].

The domain of Tokyo is centered at 35.680882°N and 139.767019°E (Fig. 3). The horizontal size
is 2 km X 2 km with the 5-m resolution, and the vertical size is 1,500 m spanned by the 151 stretched
grids. This domain is embedded in the nested mesoscale simulation domains. Specifically, the mesoscale
simulations adopt three two-way-coupled nested systems as shown in Fig. 3 (Domains 1 to 3). The
boundary and initial conditions of the mesoscale simulations were taken from the Japan Meteorological
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Figure 2: Network architecture of three-dimensional super-resolution net (3dSR-Net). The label LkyReLU and
Upsmpl means Leaky ReLU and Upsample, respectively.
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Figure 3: Domains of mesoscale and large-eddy simulations around Tokyo, Japan. The rightest figure shows the
building height distribution in Domain Tokyo.

Agency (JMA) mesoscale analysis data (MANAL) [19], while those of the LESs were obtained from the
mesoscale simulations of Domain 3. To focus on heat mitigation, extremely hot days were selected with
the maximum temperature that exceeded 35°C. The 85 LESs were conducted between 2013 and 2015
for the 2D SR experiment, and the 57 LESs between 2013 and 2020 were performed for the 3D SR. The
integration time of each LES was one hour, where the first 10-min data were discarded and the rest of 50
min were used to obtain the 1-min-averaged fields.

3.2 Training methods of neural networks

The 2dSR- and 3dSR-Nets were trained with the pairs of the LR and HR data. All HR fields were
generated from the LESs described in the previous subsection. All LR fields were obtained by spatially
averaging the HR ones, where the window size was four in all directions. Thus, the resolution of LR
data is four times lower than that of HR data both in 2D and 3D. In 3D, the LR fields have value only
outside the LR buildings where the LR building mask is equal to 1. This mask was obtained from the LR
building height. This LR building height was calculated with the spatial average as well and will be used
in actual LR micrometeorology simulations.
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Adam optimizer was employed in training the NNs. The loss function was the mean squared error for
the 2dSR-Net, while it was the L1 loss for the 3dSR-Net.

All data were first sorted in chronological order, with the first 60% as training data, the next 20% as
validation data, and the last 20% as test data. In the 2D SR experiment, the training was finished by
early stopping with the patience parameter of 300 epochs. On the other hand, in the 3D SR experiment,
the training was ended at the 600th epoch, and the model weights giving the lowest validation loss were
recorded.

4 RESULTS

This section evaluates the 2dSR- and 3dSR-Nets using the test data, which are not used in training.
Section 4.1 discusses the result of the 2D SR of temperature. The 2D SR exhibits the sufficiently accurate
inference [11]. Section 4.2 demonstrates that the 3D SR of temperature is as accurate as the 2D SR.
Furthermore, the SR of velocity is examined, as the 3dSR-Net simultaneously super-resolves temperature
and velocity.

4.1 Two-dimensional super-resolution

The inference of the 2D SR is compared with a baseline of the bicubic interpolation. Figure 4 shows an
example of the SR of temperature. The 2dSR-Net reconstructs a temperature field similar to the ground
truth and greatly reduces the error near the building walls. In contract, the temperature field given by the
bicubic interpolation is blurred, and the error is larger than that of the 2dSR-Net.

Table 1 compares the root-mean-squared error of the 2dSR-Net with that of the bicubic interpolation.
The previous studies of LESs [20, 4] indicate that a required precision in the SR would be around 0.2 K.
The 2dSR-Net exhibits the error lower than this criterion: 0.146 K. The 2dSR-Net does not infer velocity
components, and the error values are blank for velocity in Table 1.

Table 1: Errors of super-resolved quantities. The symbol AT denotes the error in temperature, and Au, Av, and Aw
are the errors in eastward, northward, and vertical components of velocity, respectively.

Method AT [K] Au[ms '] Av[ms '] Aw[ms ]
Bicubic interpolation  0.279 - - -
2dSR-Net 0.146 - - -
3dSR-Net 0.139 0.343 0.382 0.213

4.2 Three-dimensional super-resolution

The 3dSR-Net simultaneously super-resolves temperature as well as velocity. Figure 5 shows an exam-
ple of the 3D SR at two altitude levels (5 and 25 m). The white areas denote the interior of the buildings,
where all physics quantities have no value. The building shape depends on the resolution. Narrow streets
between buildings are not represented in the LR, resulting in the increase of the white areas. This means
that the volume of flow fields available for inference is reduced in the LR. Nonetheless, all super-resolved
fields are similar to the ground truth: the temperature and velocity distributions are successfully recon-
structed even between the buildings [Fig. 5(a)]. This result suggests that the pattern matching between
the LR and HR is efficiently utilized in the 3D SR among temperature and velocity. Note that the pattern
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Figure 4: An example of the 2D super-resolution of temperature. The images in the second and third rows focus
on the rectangular areas in the first row.

matching is also referred to as the sparse-coding-based method (e.g., [14]). The error is larger near the
ground [Fig. 5(a)] and is reduced as the altitude becomes high [Fig. 5(b)]. This result is likely due to a
reduction in the number of grids inside the buildings at a higher altitude, which makes the 3D SR easier.

Table 1 shows the L1 loss of the 3dSR-Net for temperature and velocity. The altitude where the loss is
the largest was selected to each quantity, and its loss value is listed in Table 1. The accuracy of the 3D SR
of temperature is comparable to that of the 2D SR, even though 3D SR is generally more difficult. Note
that the training dataset comprises more micrometeorology simulations in the 2D SR (51 runs) than in the
3D SR (33 runs). The simultaneous SR of temperature and velocity might have reduced the error because
velocity advects temperature and the velocity distribution may be useful to infer the temperature. The
errors of the velocity components are also displayed in Table 1. All velocity errors are smaller than 0.4 m
s~!. When all quantities are non-dimensionalized, the velocity errors are comparable to the temperature
error, implying that the accuracy of the 3D SR of velocity is sufficiently high.

The total computation time is estimated to examine the possibility of real-time predictions. The one-
hour HR micrometeorology simulation takes around 8 hours using a super-computer. The computation
time of the LR counterpart is estimated at approximately 2 minutes. This LR simulation will generate 60
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Figure 5: An example of the 3D super-resolution of temperature and velocity. The altitude is (a) 5 m and (b)
25 m from the ground. The labels HR, LR, and SR mean high-resolution, low-resolution, and super-resolution,
respectively. The symbol T denotes temperature, and u, v, and w are eastward, northward, and vertical components
of velocity, respectively.

sets of 1-min-averaged 3D data. The SR of these data takes about 20 seconds using an NVIDIA A100
40GB PCle GPU board. Therefore, the total computation time to make a one-hour simulation is less
than 3 minutes. This estimation implies the feasibility of real-time predictions using the super-resolution
simulation system [10].

S CONCLUSIONS

The present paper has confirmed the validity of 3D SR for micrometeorology simulations in Tokyo,
Japan. A new neural network has been proposed to simultaneously super-resolve 3D temperature and
velocity fields. The network was trained using the micrometeorology simulations that incorporated the
buildings and 3D radiative transfer. The 3D SR of temperature is as accurate as the 2D SR, even though
3D SR is generally more difficult. The result indicates that the pattern matching between the LR and
HR is efficiently utilized in the 3D SR among temperature and velocity. Not only temperature but also
velocity can be super-resolved with high accuracy. The computation time of the 3D SR is sufficiently
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short: it takes about three minutes to obtain a one-hour simulation result. This estimation implies the
feasibility of real-time predictions for the urban micrometeorology.

There are at least two directions to future work. The first is the investigation of generalizability. The
2D SR is possible in another city that is not used to generate the training data [11]. It is not clear whether
similar results are obtained for the 3D SR. The second is the incorporation of physics loss such as the
residual of the continuity equation. Several studies indicate that the accuracy is enhanced when a physics
loss is taken into account (e.g., [21, 13]). It will be a first step to include the residual of the continuity
equation and to investigate a change in accuracy for the 3D SR.
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