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ABSTRACT

Marine propeller design is a cornerstone of naval architecture and marine engineering, serving as a clas-
sic optimization problem that has captivated the attention of scholars, engineers, and practitioners for
generations. The challenge lies in developing efficient, reliable, and cost-effective propellers that excel
in a variety of operating conditions while adhering to strict environmental regulations and addressing
noise and vibration concerns. As a critical component in the propulsion systems of ships, submarines,
and other marine vessels, the marine propeller’s design directly impacts vessel performance, fuel con-
sumption, and emissions. Marine propellers often operate under uncertain conditions, including inflow,
rate of revolutions, and manufacturing tolerances. On the one hand, a deterministic design approach
that does not consider these stochastic inputs can lead to excessive sensitivity to slight variations in
operational conditions, resulting in a geometry that is sub-optimal for real-world functioning scenar-
ios. On the other hand, the computational effort required to quantify the design’s uncertainties may
be prohibitive even when mid-fidelity solvers, like Boundary Element Methods (BEM), are employed
in Simulation-Based Design Optimization. As in the case of deterministic design optimizations driven
by mid-fidelity codes, Machine Learning methodologies represent a computational booster of the pro-
cedure. By realizing computationally cheap yet accurate surrogate models of the key performance
indicators of the design, they allow for the hundreds of thousands of calculations needed by sampling
methods to evaluate the uncertainty of the design and drive the process towards configurations less
sensitive to inputs variations, making the non-deterministic design optimization a feasible alternative
to conventional deterministic design-by-optimization methodologies. In this paper, deterministic and
non-deterministic designs are carried out in the case of a conventional propeller, considering uncertain-
ties of the nominal functioning conditions. BEMs computations are used to train accurate Machine
Learning-based surrogate models. Thanks to their cost-effectiveness in the forward phase, they enable
the assessment of the uncertainties necessary for a non-deterministic design optimization framework.
In order to demonstrate the efficacy of the proposed methodology, the optimal geometries attained
through the utilization of surrogates are re-tested utilizing medium-fidelity BEM solvers to validate
the superior performance of the non-deterministic design approach.

Keywords: Robust Optimization; Boundary Element Methods; Surrogate Models; Machine Learning;
Simulation-Based Design Optimization.
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NOMENCLATURE

SBDO Simulation-Based Design Optimization
CFD Computational Fluid Dynamics
BEM Boundary Element Methods
RANS Reynolds-averaged Navier–Stokes
ML Machine Learning
DDSs Data-driven Surrogates
GA Genetic Algorithm
SVR Support Vector Regression
MAE Mean Absolute Error
AT Average Time
MS Model Selection
EE Error Estimation

1. INTRODUCTION

In the last few years, the design of marine propellers has significantly evolved. Basic vortex-lattice-
like lifting line and lifting surface methods were outclassed by Simulation-Based Design Optimization
(SBDO) approaches fed by medium- and high-fidelity Computational Fluid Dynamics (CFD) cal-
culations [2, 10], often supported by Machine Learning (ML) based surrogate models to overcome
computational resources’ limitations or comply with relatively short design deadlines [13]. In most
cases, only deterministic designs, i.e., for given functioning conditions, were addressed. This was a
natural consequence of the lifting line/lifting surface commonly used design methods and can be con-
sidered a limitation of the design process that can be addressed using SBDO methods. However, in
real functioning scenarios, propellers operate in conditions (e.g., inflow velocities and rate of revolu-
tions) that may have a certain level of uncertainty or, from the geometrical point of view, they may be
affected by tolerances that can nullify some of the advantages foreseen and expected by the optimiza-
tion of geometrical details not sufficiently monitored and accurately handled during the manufacturing
process. This uncertainty of the input parameters is reflected in the design performance and, conse-
quently, in the overall efficacy of the propulsion. Therefore, without considering the stochastic nature
of inputs, a deterministic design approach may result in excessive sensitivity to slight variations of
the operational conditions, leading to a final geometry that is not optimal in its real and uncertain
functioning scenario.

If, when using traditional vortex-based design methods, such as the lifting line methods [27, 32],
this issue related to sensitivity to disturbances was addressed by a balanced choice of the nominal
functioning of the propeller and a certain number of (manual) adjustments of the final geometry based
on off-design functioning prediction, the adoption of SBDO approaches fostered a more quantitative
and rationale process. As proposed in Bertetta et al. [2], controllable pitch propellers were designed
to comply with two functioning conditions (design and reduced ship seed), addressed only with pitch
variation and leading to suction and pressure side cavitation, by a design-by-optimization process.
Performance indicators of the propeller were collected for both functioning, and the optimal geometry
was finally selected as a balance of the contrasting objectives. Similar criteria inspired the design
of the high-speed propellers of [12], where the selection of the optimal propeller was supported by
the quantification of efficiency and cavitation in correspondence with some very off-design functioning
conditions related to the nature of the small and very high-speed ship the propeller was designed for.
The detailed investigation of selected propeller variants accounting for different phenomena not directly
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assessed in the optimization process was used in [1] to choose a final geometry suitable for pressure
pulses and hull interaction improvements. Recently, the propulsion of wind-assisted and wind-powered
vessels [17] required a reformulation of the design objectives through a re-definition of the operational
profile with the aim of determining the most important conditions for the route and arranging a
design procedure capable of accounting for the very different working regime associated with the
expected variations of the environmental conditions. Interactive Genetic Algorithm (GA) supported
the simulation-based design optimization [18] to include the designer experience automatically in the
design process for the reduction of the total energy consumption of the ship, which was assumed as
a sort of integrated design objective simultaneously accounting for the different functioning during
the ship route. Also, in this case, however, the propeller design was addressed within a deterministic
paradigm by designing several alternatives, one for each of the relevant functioning conditions observed
for the ship and by selecting the geometry which provides the best performances when tested in all the
other conditions. None of the previous cases, however, were formulated as a truly non-deterministic
design-by-optimization, and generally speaking, there are very few examples of robust design processes
applied to marine propellers in the literature. An example is given by [33] where CFD calculations
were employed for the uncertainty estimations of ducted propeller performances that drove the design
towards a robust design. Perturbation of the geometrical features and the functioning point (such
as the inflow velocities) of the propulsor were included in the analyses. Several techniques, like the
sparse grid quadrature method [16, 31], were used to reduce the theoretically exponential growth of
CFD simulations required for the characterization of uncertainties.

The cost of robust approaches consists, indeed, of the computational effort required to quantify the
uncertainties of the design, which may result in a prohibitive computational burden also when mid-
fidelity solvers, like BEM [14] of the current paper, are employed in the SBDO. However, robust design
through optimization is often necessary for marine propellers due to the highly uncertain and complex
operating conditions they are exposed to during their life [11]. Propellers are required to operate
with high efficiency across a range of operating conditions, including inflow and rate of revolutions,
minimizing at the same time the occurrence of cavitation. Achieving these objectives is extremely
important because cavitation can cause significant damage to the propeller blades and surrounding
structures, reducing the overall performance and service life of the propeller [25]. As such, propeller
design must be optimized to account for the complex hydrodynamic interactions between the flow field
and the propeller blades, ensuring that the risk of cavitation is always minimized while maintaining
high levels of efficiency. The development of reliable and flexible tools to address this problem is a fun-
damental step towards overall better propulsive performances as required by international regulation
bodies like IMO by means of EEOI and EEDI efficiency-related indexes.

As in the case of deterministic design optimizations driven by high-fidelity codes, ML methodologies
represent a computational booster of the procedure [22]. Surrogate-based optimization techniques may
replace the computationally expensive objective function with properly defined surrogate models, en-
abling optimization with fewer high-cost function evaluations. By realizing computationally cheap yet
accurate surrogate models of the key performance indicators of the design, they allow for the hundreds
of thousands of calculations needed by sampling methods to evaluate the uncertainty of the design
and drive the process towards configurations less sensitive to input variations. Surrogate models have
been successfully applied for handling complex and non-linear optimization problems [9] when coupled
with inspired by natural selection search techniques that iteratively modifies a population of candi-
date solutions to find the optimal solution making the non-deterministic design optimization a feasible
alternative to conventional deterministic design-by-optimization methodologies. In order to address
and reduce the computational requirements induced by the optimization process, in the present work,
we propose to overcome this limitation by exploiting a data-driven approach [15, 29]. Data-driven
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Surrogates (DDSs) allow to approximate the mid-fidelity BEM calculations accurately, exploited in
the optimization and as the primary reason for its computational requirements, without requiring to
perform too strong simplifications. DDSs can automatically learn a functional representing the out-
put of the BEM evaluations using a series of data generated by running multiple times (but less than
the optimization requirements) the solver. The main advantage of this approach is that the learned
functional is computationally inexpensive to apply, so overcoming the limitations of using the selected
BEM solver. On the contrary, the disadvantage is that the evaluation of this function is computation-
ally expensive to build. In fact, building a model using DDSs requires running the solver code multiple
times to generate the data and then training the functional with an ML algorithm. Nevertheless, once
this procedure is completed, the resulting learned functional can be reused inexpensively as often as
necessary. Note that this approach has already been exploited in the past to resolve many similar
problems [23].

Specifically, in this paper, deterministic and non-deterministic designs are carried out in the case of
a conventional propeller, considering uncertainties of the nominal functioning conditions. Among the
possible stochastic inputs to the propeller, the geometrical characteristics and functioning conditions
are the most important ones. The latter is the most usual since they are strictly related to the
vessel’s operations. Slight modifications of the ship displacement, or the occurrence of fouling on
the hull surface, can easily determine variations of the ship resistance and, then, of the propeller
rate of revolution to achieve the desired speed. Interactions with environmental currents change the
inflow field to the propeller. Moreover, ensuring robustness against functioning conditions intrinsically
presuppose robustness against geometrical uncertainties since any variation in the rate of revolution or
the inflow velocity can be interpreted such as a modification of the angle of attack and, consequently,
of the pitch/camber of the blade.

Mid-fidelity BEM calculations are used to train accurate DDSs, which, in turn, support the evaluation
of the uncertainties needed for non-deterministic optimization. They are also used to verify the final
geometries coming from the robust design process driven by the DDSs and assess the stabler behaviour
of these optimal geometries compared to that of the initial propeller assumed as the reference and,
in particular, to those obtained from a conventional, deterministic, design-by-optimization process.
This latter SBDO is carried out entirely using BEM calculations to follow the well-consolidated design
practice.

The rest of the paper is organised as follows. Section 2 will describe the baseline reference four-blade
propeller used to evaluate the improvements of the proposed non-deterministic design framework and
the data generated by running the BEM multiple times to create a dataset for the DDSs. Section 3 will
present our DDSs to approximate the BEM using the generated data of Section 2. Section 4 will present
the formalization of deterministic and non-deterministic optimization problems under consideration,
how we optimized them, and where the surrogates are employed to reduce the computational burden.
Section 5 will report the result of applying the methodology presented in Section 4 and 3 using the data
described in Section 2. Performances of propellers from deterministic and non-deterministic designs
are compared, and the effects of input variability are discussed. Section 6 will conclude the paper.

2. AVAILABLE DATA

This Section presents the dataset for the surrogate DDMs learning phase generated using the BEM.
The dataset, created through BEM simulations, forms a critical aspect of our study, providing a rich
source of information to train ML models for predicting propeller behaviour under different rotational
speeds and ship velocities. The dataset was carefully designed, processed, and validated to ensure its
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quality, enabling us to train DDSs models that generalize to real-world scenarios. We first introduce
in Section 2.1 the baseline reference propeller used to evaluate the improvements from the application
of our methodology. Then we describe the nature and characteristics of the dataset generated through
the BEM simulations in Section 2.2.

2.1 Reference Propeller

The improvements provided by a non-deterministic design have been tested starting from a custom
propeller design obtained for the MARINE Ferry [8]. This vessel is a fast twin-screw passenger vessel
designed by the Maritime Research Institute Netherlands as a benchmark test case representative of
modern ferries. The ship has a length of 190 m and can reach a design speed of 25 kn. It is equipped
with two inward over-the-top propellers and two spade rudders. The main particulars of the propeller
blade were not available. To this aim, we used a traditional lifting line/lifting surface method [3]
to identify the geometry of a four-blade propeller that represents the baseline reference to evaluate
the possible improvements granted by the application of i) a conventional deterministic SBDO (i.e.,
considering only the nominal functioning in the design by optimization process), ii) the SBDO process
carried out under uncertainties. This initial geometry has a diameter of 5.4 m and was designed for
a ship speed of 25 kn at 200 RPM to operate in the wake (circumferentially averaged) of Figure 1
having a wake fraction (1 − w) equal to 0.869. This corresponds to a nominal advance coefficient
of 0.616, a thrust coefficient KT equal to 0.0894 at a cavitation index σN based on the propeller
rate of revolution equal to 0.85. The wake-fraction has been obtained by means of the high-fidelity
RANS solver (OpenFOAM) calculations performed following the ITTC Recommended Procedure and
Guideline. An in-house developed procedure has been considered to set up the solver and the mesh
grids. A detailed description is omitted here for brevity, however, more details can be found in [34].

Figure 1: Nominal wake of the MARINE Ferry for the initial propeller design (left) and reference
propeller with computational grid for BEM calculations (right).

In correspondence with this design functioning condition, the propeller has an open water efficiency of
0.7255 and a cavitation extension on the back side at the tip equal to 0.055 m2 on each blade. Those
results have been achieved employing the BEM calculations using a surface mesh of 1000 panels per
blade, as shown in Figure 1. Those settings have been successively adopted for any propeller geometry
tested in this work when using the BEM code. Pressure side cavitation at the design functioning does
not occur. This shape has been considered the baseline performance at the nominal design functioning
to be improved by the optimization processes.
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To address the non-deterministic design, we perturbed the nominal functioning both in terms of
vessel speed and propeller rate of revolution, assuming for these two quantities probability normal
distributions centered in the nominal functioning condition (i.e., µvs = 25 kn and µn = 200 RPM).
Variances of the distributions were assumed equal to 0.04 and 16 for the ship speed and the propeller
rate of revolution respectively, leading to a range of variations (±2σ which represent the 95% of
values) of the advance coefficient J between 0.58 and 0.67 and of the cavitation index between 0.78
and 0.91. The predicted cavitation extension in correspondence of maximum and minimum values of
these parameters and at the design functioning are summarized in Figure 2. Pressure side cavitation
is always avoided, also in off-design functioning. In contrast, suction side cavitation always appears
as leading-edge sheet cavitation with significant tip vortex in correspondence with the most loaded
conditions.

Figure 2: Reference propeller estimated cavitation extension on the blade suction side using BEM
calculations. From top to bottom: σN = 0.91, 0.85, 0.78. From left to right: Ship speed of 24.2, 25
and 25.8 kn.

To train the DDSs, i.e. to populate a design space with thousands of geometrically different configu-
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rations, each characterized by their performances and then to run the SBDO, we applied our standard
parametrization of the propeller blade [2]. The blade parametrization is described using B-spline
curves representing the radial and sectional most relevant characteristics of the blade geometry (i.e.
pitch, chord, camber distributions and so on), as already successfully done in several other applica-
tions [10]. These curves are controlled by means of as few control points as possible able to generate
all the desired shapes, ensuring at the same time the smoothness of the final shape. Control points of
the curves turn into the design parameters and realize the design space for both the training phase of
the DDSs and the optimization. For this particular case, we assume a blade geometry described using
38 design parameters controlling the chord, the pitch, the skew and the maximum sectional camber
distributions along the blade span, in addition to the sectional hydrofoil shape through the camber
line and thickness along the chord. To simplify the description, the non-dimensional hydrofoil shape is
considered constant at any radial position. Blade thickness is recalculated for any analyzed geometry
depending on the design loading condition and chord, pitch and skew choice to account for structural
reasons, while the blade rake is always kept constant as the reference propeller. An example of the
parametric description is given in Figure 3, while the complete list of parameters utilized as input
space for the learning phase of the DDSS and design variables for the optimization problems of this
work and the relative range of variations are summarized in Table 1.

Figure 3: Parametric description using B-spline polygons of the reference propeller geometry.

2.2 Dataset Generation

In order to reduce the computational requirements needed to predict the propeller efficiency ηo, the
trust coefficient KT , torque coefficient KQ, pressure-side cavitation area Acav,front, and suction-side
cavitation area Acav,back), we propose to substitute the hydrodynamics analysis performed with the
BEM, with surrogate DDMs. In particular, the summary of the inputs feeding the surrogate models
and the related outputs is reported in Table 1, together with the ranges for building the dataset.

The database contains 50, 000 geometries generated randomly in the ranges reported in Table 1. For
each of the 50, 000 geometry, the BEM has been run to compute the output space quantities described
in Table 1. Each simulation took an average of 20 seconds on a machine equipped with two Intel
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Table 1: List of inputs and outputs of the surrogate models.

Name Description Range
In

p
u
t

S
p
a
c
e

vs Ship Speed [m/s] 12.2÷13.5

n Propeller rate of revolution [rpm] 190÷210

c2,x Radial position of chord control point n.2 [%] 0.55÷0.90

c3,x Radial position of chord control point n.3 0.65÷0.85

c1,y Chord of control point n.1 0.10÷0.20

c2,y Chord of control point n.2 [%] 0.00÷0.65

c3,y Chord of control point n.3 0.30÷0.45

s2,x Radial position of skew control point n.2 0.50÷0.70

s3,x Radial position of skew control point n.3 0.80÷0.90

s2,y Skew of control point n.2 -6.0÷ -2.0

s3,y Skew of control point n.3 -4.0÷ -1.0

s4,y Skew of control point n.4 11.0÷15.0

pd2,x Radial position of pitch control point n.2 0.25÷0.35

pd3,x Radial position of pitch control point n.3 0.635÷0.78

pd4,x Radial position of pitch control point n.4 0.85÷0.92

pd1,y Pitch of control point n.1 [%] 0.20÷0.80

pd2,y Pitch of control point n.2 0.75÷0.90

pd3,y Pitch of control point n.3 0.75÷0.90

pd4,y Pitch of control point n.4 0.60÷0.75

pd5,y Pitch of control point n.5 [%] 0.40÷0.80

f2,x Radial position of maximum sectional camber control point n.2 0.21÷0.35

f3,x Radial position of maximum sectional camber control point n.3 0.45÷0.65

f4,x Radial position of maximum sectional camber control point n.4 0.82÷0.90

f1,y Maximum sectional camber of control point n.1 0.00÷0.004

f2,y Maximum sectional camber of control point n.2 0.00÷0.004

f3,y Maximum sectional camber of control point n.3 0.00÷0.004

f4,y Maximum sectional camber of control point n.4 0.00÷0.004

f5,y Maximum sectional camber of control point n.5 0.00÷0.015

xt,3 Chordwise position of hydrofoil thickness control point n.3 [%] 0.30÷0.60

xt,4 Chordwise position of hydrofoil thickness control point n.4 0.40÷0.60

xt,5 Chordwise position of hydrofoil thickness control point n.5 [%] 0.20÷0.70

yt,2 Hydrofoil thickness of control point n.2 0.15÷0.20

yt,3 Hydrofoil thickness of control point n.3 [%] 0.40÷0.80

yt,4 Hydrofoil thickness of control point n.4 0.40÷0.70

yt,5 Hydrofoil thickness of control point n.5 [%] 0.30÷0.70

xf,2 Chordwise position of hydrofoil camber control point n.2 [%] 0.15÷0.35

xf,3 Chordwise position of hydrofoil camber control point n.3 0.30÷0.40

xf,4 Chordwise position of hydrofoil camber control point n.4 [%] 0.45÷0.70

yf,2 Hydrofoil camber of control point n.2 [%] 0.20÷0.65

yf,3 Hydrofoil camber of control point n.3 0.80÷1.15

yf,4 Hydrofoil camber of control point n.4 [%] 0.40÷0.75

O
u
tp

u
t

S
p
a
c
e

Acav,back Suction-side Cavitation Area –

Acav,face Face-side Cavitation Area –

η0 Efficiency –

KQ Torque Coefficient –

KT Thrust Coefficient –
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Xeon Silver 4216, 128 GB of RAM, and 512 GB SSD running Windows Server 2019 for a total of 280
hours for creating the entire dataset. Significant man-hours are also required for the modelling phase
before each simulation. Based on these computational requirements, it becomes evident that even
though the BEM solver is generally considered with a low computational impact, its use is inadequate
to optimize the propeller design for the robust optimization problem presented in this work. This is
also due to the fact that for each design, several calculations are needed to generate the distributions
of the output quantities. To address these computational barriers, we leverage surrogate DDMs.

3. SURROGATE MODELS

The problem that we want to face in this work is to predict the result of the BEM (i.e., Acav,face,
Acav,back, ηo, KQ, KT ) based on the input parameters reported in Table 1 using the data produced by
a 50, 000 BEM simulations (see Section 2). This problem can be easily mapped into a now-classical
supervised ML problem, particularly an ML regression problem [29]. In regression, we have an input
space X ⊆ Rd composed of d features (in our case the 41 input features), an output space Y ⊆ R
(in our case the 5 target features), and a series of n examples, a dataset, input/output relation
Dn = {(x1, y1), · · · , (xn, yn)} where xi ∈ X and yi ∈ Y ∀i ∈ {1, · · · , n}. The scope is to learn the
input/output relation µ : X → Y based just on Dn. Generally, µ is a probabilistic relation, but in
our case, this relation is induced by the BEM, so it is deterministic. An ML regression algorithm A ,
characterized by its hyperparameters H, selects a model f inside a set of possible ones F based on the
available data AH : Dn × F → f . In this work, we also request f to require as little computational
requirement as possible so the prediction (i.e., computation) of f(X) will be less time-consuming. F
is generally unknown and depends on the choice of A and H. Many different ML algorithms exist
in the literature [7, 15, 29, 35] but, even if the no-free-lunch theorem states [36] there is no way to
determine a-priory the best ML algorithms to use for a specific application, in this work we detail just
the model that performed best for space constraints. The error and the computational requirements
of f in approximating µ are measured by a prescribed metric M : f → R. We will use the Mean
Absolute Error (MAE) for the error, and for the computational requirements, we will use the Average
Time (AT) in making a prediction. For the sake of selecting the best ML algorithms and the related
optimal hyperparameters and to estimate the performance of the final model according to the desired
metrics, a statistically consistent Model Selection (MS) and Error Estimation (EE) phase needs to be
performed [26].

In this work, we leveraged the Kernel Methods, a family of techniques that exploits the “Kernel
trick” for distances to extend linear techniques to the solution of non-linear problems [28]. Kernel
methods select the model which minimizes the trade-off between the performance, measured with a
defined metric, over the data and the complexity of the solution, measured with different measures
of complexities [29, 30]. represents the most known and effective Kernel methods techniques. The
hyperparameters of the SVR are: the kernel, which is usually fixed to be Gaussian because of the
reasons described in [19], the kernel hyperparameter γ, which regulates the non-linearity of the solution,
the γ regularization hyperparameter C, which trades-off accuracy and complexity of the solution, and
ϵ which regulates the sparsity of the solution and then its computational requirements. C, γ, and ϵ
need to be tuned during the MS phase.

MS and EE deal with the problem of tuning and assessing the performance of an ML algorithm [26].
Researchers and practitioners commonly use resampling techniques since they work well in most
situations, which is why we will exploit them in this work. Other alternatives exist based on the
Statistical Learning Theory but tend to underperform resampling techniques in practice. Resampling
techniques are based on a simple idea: the original dataset Dn is resampled once or many (nr) times,
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with or without replacement, to build three independent datasets called learning, validation and test
sets, respectively Lr

l , Vr
v , and T r

t , with r ∈ {1, · · · , nr} such that Lr
l ∩ Vr

v = ⊘, Lr
l ∩ T r

t = ⊘,
Vr
v ∩ T r

t = ⊘, and Lr
l ∪Vr

v ∪ T r
t = Dn. Subsequently, to select the best hyperparameters’ combination

H in a set of possible ones H = {H1,H2, · · · } for the algorithm AH or, in other words, to perform the
MS phase, the following procedure has to be applied:

H∗ : arg min
H∈H

nr∑
r=1

M(AH(Lr
l ),Vr

v ), (1)

where AH(Lr
l ) is a model built with the algorithm A with its set of hyperparameters H and with the

data Lr
l , and where M(f,Vr

v ) is a desired metric. Since the data in Lr
l are independent of the data in

Vr
v , H∗ should be the set of hyperparameters which allows achieving a small error on a data set that

is independent of the training set.

Then, to evaluate the performance of the optimal model, which is f∗
A = AH∗(Dn) or, in other words,

to perform the EE phase, the following procedure has to be applied:

M(f∗
A ) =

1

nr

nr∑
r=1

M(AH∗(Lr
l ∪ Vr

v ), T r
t ). (2)

Since the data in Lr
l ∪ Vr

v are independent of the ones in T r
t , M(f∗

A ) is an unbiased estimator of the
true performance, measured with the metric M , of the final model [26].

In this work we will rely on Complete k-fold cross validation which means setting nr ≤
(
n
k

)(n−n
k

k

)
,

l = (k − 2)nk , v = n
k , and t = n

k and the resampling must be done without replacement [26].

4. PROPELLER DESIGN OPTIMIZATION FRAMEWORK

In this section, we introduce the formulation of optimization problems pertaining to both determin-
istic and non-deterministic methodologies for marine propeller design. We untangle the conventional
deterministic marine propeller optimization problem (Section 4.1), as well as a non-deterministic
optimization problem (Section 4.2) that incorporates uncertainties associated with the operational
environment and design parameters.

4.1 Classic Optimization Problem - the Deterministic Approach

The optimization problem for marine propeller design can be formulated as a multi-objective opti-
mization problem, where the aim is to find the best trade-off between competing objectives, subject
to various constraints. The objectives and constraints can be tailored to the specific requirements of
the propeller design project. Due to the objectives’ complex and conflicting nature, multi-objective
optimization techniques [4, 5] can be employed to efficiently search the design space and generate a
set of optimal solutions, known as the Pareto front. The final propeller design can be selected from
this front based on the designer’s preferences and priorities. A general formulation of the problem can
be given as follows:
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max
X∈R

η0(X)− (1− λ1)Acav,face(X)− (1− λ2)Acav,back(X) (3)

subject to


KT (X) ≤ KT,min

KT (X) ≥ KT,max

x1 = vs

x2 = n

,

where X = {x1, x2, · · · , xn} represents the vector of deterministic design variables (Input Space re-
ported in Table 1), obtained keeping the design variables x1 = vs and x2 = n equal to their design
values of 25 kn and 200 RPM, respectively. λ1 and λ2 in [0, 1] define the importance of the different
objectives, i.e., for λ → 1 we care more about the weight than the pressure-side cavitation area and
vice-versa for λ1 → 0. The same concept applies to λ2, for λ → 1 we care more about the weight than
the suction-side cavitation area and vice-versa for λ2 → 0. Solving Equation (3) for different values
of λ1 and λ2 allows for creating the so-called Pareto frontier in a computationally efficient way [6].

The optimization problem of Equation 3 has a non-linear and non-convex objective and a series of
non-linear constraints. In order to solve this problem, different approaches can be exploited [20].
A series of no-free-lunch theorems [37] ensure us that there is no way to choose apriori the best
optimization algorithms for a particular problem, and the only option is to empirically test multiple
approaches verifying which is actually the best one. Nonetheless, in this case, we decided to apply
the GA [21], supported by the other scholars’ findings and results as reported in []. Moreover, to the
author’s best knowledge, and based on the recent literature [20], this optimization algorithm reasonably
covers the most important approaches to solving the optimization problem of Equation (3). Since the
convergence of all these algorithms is influenced by the starting point, we employed a multi-start
strategy [24]. In particular, as starting point, we used: (i) the initial geometry described in Table 1
and (ii) 100 random points uniformly distributed in the domain induced by the linear constraints of
the optimization problem of Equation (3). The optimization methods have been implemented using
the Matlab 2022a1 environment. Table 2 summarizes the parameter setting of selected algorithms.

Table 2: Parameters setting for the optimization algorithm.

Algorithm Matlab Parameter Value(s)

Function

GA ga

Population size 5000

Elite count 250

Crossover Fraction 0.8

Pareto Fraction 0.35

Mutation function Uniform mutation

Crossover function Scattered crossover

4.2 Non-Deterministic Optimization Problem

This Section presents a methodological approach to address marine propellers’ non-deterministic opti-
mization design problem. The objective is to optimize propeller performance while considering uncer-
tainties in design variables. The methodology combines stochastic optimization techniques, surrogate

1https://www.mathworks.com/
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modelling, and robust design methods to find an optimal propeller design that is efficient, minimizing
cavitation occurrence, and resilient to uncertainties. In particular, we are interested in maximising
the cost function J(X), which is a measure of propeller performance (e.g., efficiency and cavitation)
that is to be optimized, requiring cavitation and efficiency variances to be minimal

max
X∈R

∫
vs

∫
n
[η0(X)− (1− λ1)Acav,face(X)− (1− λ2)Acav,back(X)]P (vs)P (n)dvsdn (4)

subject to

{
KT (X) ≥ KT,min

KT (X) ≤ KT,max

,

where X represents the vector of deterministic design variables (i.e., the features reported in Table 1).
Θ = {vs, n} represent the uncertain parameters considered in our non-deterministic optimization
problem, following known probability distributions, P (Θ), which have been determined based on the
author’s experience. In particular for this problem, P (vs) = (µvs , σvs) and P (n) = (µn, σn), where
µvs = 25 kn, µn = 200 RPM, σvs = 0.02 kn, and σvs = 4 RPM.

The non-deterministic optimization problem presented in Equation 4 demands computationally effi-
cient approaches, as using high-fidelity methods such as Reynolds-averaged Navier-Stokes equations,
large-eddy simulations, or direct numerical simulations would be prohibitively expensive and time-
consuming. Furthermore, even employing mid-fidelity techniques, like the BEM method, is still com-
putationally demanding due to the presence of uncertainties in the design process. To overcome these
challenges, we utilize surrogate DDSs developed in Section 3. These surrogate models offer rapid
and accurate approximations of the objective function, significantly enhancing the efficiency of the
optimization process. They reduce the computational load associated with evaluating the various
components (i.e., ηo, Acav,face, Acav,back) of J(X) while accounting for uncertainties.

Incorporating the uncertainties into the DDSs is achieved by constructing a probabilistic representation
of the objective function. This approach enables a robust optimization process that takes into account
the possible variations in design parameters and their potential effects on propeller performance. Ad-
ditionally, the DDSs can approximate multiple objective functions simultaneously, facilitating efficient
design space exploration and identification of Pareto-optimal solutions.

The optimization problem in Equation 4 is characterized by a non-linear and non-convex objective
function along with a set of non-linear constraints. Consequently, we apply the same solution strategy
discussed in Section 4.1 to address this problem effectively.

5. EXPERIMENTAL RESULTS

In this section, we will report the results of applying the methodology described in Sections 3 and 4
to solve the problem described in this work using the data described in Section 2. Specifically, in
Section 5.1, we tested the quality of the DDSs in predicting the 5 target features reported in Table 1,
in Section 5.2 we focused on classic optimization problem results, testing the DDS model, and in
Section 5.3, we report the results of the non-deterministic optimization framework. For both opti-
misation problems, a sub-set of the best candidates has been re-tested with the BEM code to asses
the functioning point within the functioning space (a regular distribution is considered made of 5x5
conditions) as for the reference propeller. This can give an equal description of the overall quality of
the new designs in a real scenario.

12
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5.1 Surrogate Accuracy

In this section, we will evaluate the performance of the DDSs utilizing the validation techniques out-
lined in Section 3. Specifically, we will examine the accuracy of the SVR algorithm used for construct-
ing the DDSs by employing the MAE for error quantification and the AT for assessing computational
requirements. We present the performance results using both quantitative and qualitative measures.
Table 3 provides the metrics employed for evaluating the algorithm’s performance across various target
features in constructing the surrogate model. Additionally, scatter plots illustrating these relationships
are depicted in Figures 4 and 5. By examining Table 3 and Figures 4 and 5, we observe that the DDSs
exhibit excellent performance in terms of both accuracies (with an error lower than 4% for all the
features) and time requirement (approximately 2 · 10−2 [s] for all target features). This performance
makes these surrogates highly suitable for integration within an optimization framework, as discussed
in Section 5.3. Notably, to achieve this level of accuracy, a mid-fidelity BEM simulation is typically
required. However, such simulations demand significantly higher computational time (approximately
20 seconds for each evaluation).

Table 3: Surrogate Models Validation: metrics employed to evaluate the performance (MAE and AT)
for the algorithm employed to build the DDSs

Target Feature MAE Average Time
10−2 [s]

Acav,back 0.1156± 0.0365 2.05
Acav,front 0.01355± 0.0113 2.12
ηo 0.0049± 0.0163 1.93
KQ 0.0021± 0.0112 1.84
KT 0.0013± 0.0125 1.88

Figure 4: DDSs validation: suction-side cavitation area Acav,back (left) and face-side cavitation area
Acav,face (right) scatter plots.
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Figure 5: DDSs validation: torque coefficient KT (left) and thrust coefficient KQ (right) scatter plots.

Figure 6: DDSs validation: efficiency ηo scatter plot.

5.2 Classic Optimization Problem Results

The computational equivalence between the BEM-based and surrogate-based optimization solvers is
primarily attributable to the training phase needed for the DDSs. Nonetheless, in the context of
robust optimisation, a BEM-based approach becomes infeasible. This infeasibility arises because each
design necessitates multiple evaluations under slightly varying operating conditions to determine the
objective function distribution. Given these considerations, the conventional design is derived using
the BEM-based procedure, while, conversely, the robust design employs a surrogate-based approach.
Figure 7 illustrates the optimization results obtained by means of the conventional approach, displaying
efficiency versus the extension area of suction-side cavitation evaluated at the design functioning only.
The data points are colour-coded based on the extension area of pressure-side cavitation, with the red
dot representing the reference propeller. The optimization process identifies propeller configurations
capable of simultaneous improvements of the two contrasting objectives of the design, which is a
very interesting result given the performances of the reference propeller that exhibits an already
significantly reduced extension of the cavitation at the design point (limited only to the outermost
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strip of panels at the tip of the blade) at an interesting level of efficiency. At constant suction
side cavitation area extensions, there are geometries ensuring an efficiency increase of up to 2.5%.
Keeping constant the delivered efficiency, cavitation extension can be completely nullified. In this
range of improvements, two optimal candidates emerge, C-29655 and C-61557. The former exhibits
exceptionally high efficiency, close to 74%, with a very limited suction-side cavitation area, making
it an attractive choice if higher efficiencies are preferred at the cost of a small amount of cavitation.
Considering the baseline propeller geometry, in correspondence with this design functioning condition,
has an open water efficiency of 0.7255, the improvement in efficiency is about 1.7% with a cavitation
extension more than halved. It is worth noting from the predicted cavitation extension at the design
point of Figure 14 that the cavitating behaviour of the selected propeller is completely different
compared to the reference geometry. The reduction of cavitation is achieved by the unloading of
the tip (not permitting further increases of the efficiency), which turns into the complete avoidance
of tip cavitation at the cost of an almost negligible leading edge sheet cavitation at midspan due
to the redistribution of the blade load to satisfy the delivered thrust constraint. Conversely, the
latter candidate maintains the efficiency of the reference propeller while entirely avoiding cavitation
on the blade at the design point. In both cases, pressure-side cavitation is absent. Only a few designs
located in the lower portion of the graph exhibit, indeed, substantial pressure-side cavitation extension.
This phenomenon typically occurs when the blade section experiences a negative angle of attack.
However, it seldom arises due to the lightly loaded design condition and moderate wake disturbances.
Since pressure-side cavitation also diminishes efficiency, which is one of the design objectives, the
optimization process infrequently identifies such geometries that, in any case, are discarded during the
selection process of the optimal candidates. The choice of these two candidates has twofold reasons.
While it demonstrates the capabilities of the SBDO in a usual design scenario, it will also point out the
limitations, in a real functioning environment, of propeller geometries obtained by a pure deterministic
design approach also when they are selected to favour the complete avoidance of undesired phenomena
like cavitation at the cost of no improvements in terms of efficiency.
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Figure 7: Conventional optimization history using BEM.
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5.3 Non-deterministic Optimization Problem Results

Figure 8 illustrates the robust optimization results obtained by using the DDS in place of truly BEM
calculations throughout the design process. The size of each data point represents the standard
deviation of propeller efficiency, while the colours indicate the standard deviation of suction-side
cavitation. Pressure side cavitation, not represented in this 4-dimensions diagram, sometimes occurs
at the design point, especially in off-design conditions. The optimal geometry is always chosen by
discarding all the propellers affected by this side effect.

Compared to the classic optimization problem, this formulation, which also takes into account vari-
ations in input parameters (i.e., propeller working conditions), tends to yield designs with lower
efficiency. While designs with efficiencies exceeding 2% at the design point were identified in the pre-
vious strategy, none surpass the 74% threshold in the robust optimization, not even when cavitation
extensions larger than the reference propeller are accepted. Nevertheless, many designs exhibit effi-
ciencies higher than the reference propeller. As expected, the best design improves efficiency compared
to the reference while simultaneously reducing cavitation extension, but based solely on the findings
presented in Figure 8, it appears that the robust optimization problem yields geometries that are less
overall effective compared to those from the conventional (truly BEM based) optimization problem.
This is undoubtedly true when looking at the propeller performances calculated with the DDS at the
design condition since the influence (and the performances) of off-design functioning are not immedi-
ately appreciable from this diagram. Alongside the reference design, marked with a red dot, one of the
best candidates, R-28709, is highlighted. This choice is based on values of sensitivity to modifications
of functioning conditions, measured through the variance of delivered efficiency and cavitation area,
well reduced with respect to the reference propeller. We accepted a non-excessively reduced value of
suction side cavitation considering the slightly higher uncertainty of DDS associated with this perfor-
mance parameter, especially for very low predicted values (Figure 4) and further verified on a series
of preliminary calculations.
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0.015
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0.025
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0.035

Figure 8: Robust optimization using the DDS. Bubble color identifies the standard deviation of the
suction side cavitation area. Bubble size identifies the standard deviation of the propeller efficiency.
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The improvements provided by the non-deterministic optimization are discussed in comparison to the
reference propeller that has been specifically analyzed in the same functioning scenario assumed for
the robust process. Also, the two optimal configurations from the conventional process are included to
highlight the risk of designs for nominal conditions only specifically. Quantitative comparisons with
C-61557 are given in Figures 9 and 11. Figures 10 and 12 account, instead, for geometry C-29655
from the conventional design process. Efficiency and predicted cavitation area, recomputed with the
BEM (then not those from the DDS), in both cases, are compared at the ship speeds encompassing
the uncertainty of working conditions as a function of the cavitation index (i.e., of the propeller rate
of revolution). Truly BEM calculations at the design point immediately highlight some differences
between the calculated (BEM) and the predicted (using DDS) value of efficiency of propeller R-28709,
which results slightly lower (from 0.736 using DDS to 0.727 using BEM) but higher than the reference
and in line with the uncertainties associated to the DDSs model. They also disclose the limitations of
a deterministic design, especially looking at the efficiency of C-29655, which is a clear example of very
high sensitivity to perturbations of design parameters. At nominal functioning, this propeller exhibits
the highest efficiency among the selected geometries. The rate of change of efficiency with respect to
the functioning condition (a measure of the sensitivity to perturbation that robust optimization tries
to minimize) is however the fastest and performances easily worsen in off-design even compared to
those of the reference propeller. C-61557, which has a design efficiency slightly lower than the reference
propeller as the cost of a complete cavitation avoidance at the same functioning point, evidence very
similar limitations of a conventional design process when tested in off-design conditions. Compared
to the reference propeller, the degradation of efficiency is faster, especially at lower cavitation indexes
(i.e., lower propeller advance coefficient). On the contrary, the performances of the propeller obtained
by the robust design are much more stable, as expected from non-deterministic methods. Although the
computed increase in efficiency may appear small, it is consistently maintained across a wide range of
functioning conditions. As a result, this geometry is clearly “overall” superior to conventional designs
and is either slightly better or at least equivalent to the reference geometry.

The convenience of the robust optimization framework is crystal clear when cavitation is considered.
Compared to the reference propeller, R-28709 shows a cavitation extension on the suction side always
lower regardless of the functioning condition. At the design point, the improvement is not outstanding,
as already observed in the Pareto diagram of Figure 8, and the propeller still shows a cavitating blade
tip only slightly reduced (Figure 15) if compared to that of the reference propeller of Figure 2. This is
the cost of dealing with uncertainties and of a balanced action of minimization of suction side cavitation
at the design functioning and minimization of the variance of the predicted cavitation extension in
off-design. Monitoring off-design cavitation and minimizing its variance lead to geometries capable
of substantial reduction of the occurrence of cavitation at the very low cavitation indexes included
in the analyses. In correspondence with the highly loaded conditions (ship speed lower than design,
cavitation index lower than 0.85), the advantages of the robust optimization are extraordinary, and
propeller R-28709 behaves far better than the reference and any conventionally optimized geometry.
These latter, in particular, disclose the risks of a deterministic design. Negligible variations of the
functioning point, easily ascribable to uncertainties of the ship working conditions, lead to disruptive
consequences in terms of cavitation occurrence. Even C-61557, which is the propeller with the best
performances in terms of cavitation at the design point (that indeed is completely nullified) and which
would have been a reasonable choice for cavitation avoidance based only on the results and the Pareto
frontier from the deterministic optimization, is entirely unsuitable to address with success off-design
functioning since even a 3% reduction of the cavitation index determines cavitation extensions larger
than the reference geometry without any appreciable advantage in terms of propulsive efficiency.

From a qualitative point of view, the calculated extensions of the sheet cavity bubble of Figures 13,
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Figure 9: Comparison of propeller efficiency as a function of the cavitation index for three ship
speeds. Robust propeller R-28709 compared to reference propeller and optimized propeller C-61557
from conventional optimization.

Figure 10: Comparison of propeller efficiency as a function of the cavitation index for three ship
speeds. Robust propeller R-28709 compared to reference propeller and optimized propeller C-29655
from conventional optimization.

14 and 15 further highlight the convenience of a robust design process. The occurrence of cavitation,
and the way this occurrence happens at different cavitation indexes, moreover, shed light on the blade
shapes of the different optimization methods favoured. The geometry of the reference propeller is
intrinsically robust against mid-chord bubble cavitation. The original pitch and chord distribution,
together with the sectional hydrofoil shape, realize over the entire range of advance coefficients under
investigation cavitation phenomena that always have the characteristics of tip vortex/sheet cavitation
from the leading edge. This means a shock-free geometry with a certain tendency to suction peaks on
the back side to ensure a certain margin against mid-chord bubble cavitation. Both propellers C-61557
and C-29655 have, instead, combined pitch/camber distributions designed to exploit the maximum
efficiency at the design point. In terms of pressure distributions, this means almost constant, and
extremely close to the vapour pressure, values of suction on the back of the propeller, that easily turn
into cavitation over a larger portion of the blade when the cavitation index is even slightly reduced. At
the lowest analyzed cavitation indexes, this explains the abrupt occurrence of cavitation observed for
C-61557 and C-29655 that, based on the simplified assumption of the BEM employed for calculations,
can be assumed of bubble type. As expected, R-28709 is much less sensitive to inflow conditions.
Including the sensitivity to the variations of the functioning conditions as additional objectives of the
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Figure 11: Comparison of suctions-side cavitation extension as a function of the cavitation index for
three ship speeds. Robust propeller R-28709 compared to reference propeller and optimized propeller
C-61557 from conventional optimization.

Figure 12: Comparison of suctions-side cavitation extension as a function of the cavitation index for
three ship speeds. Robust propeller R-28709 compared to reference propeller and optimized propeller
C-29655 from conventional optimization.

design process fostered the selection of geometries less prone to sudden variations of the performances.
This results in a propeller having a slightly higher expanded area ratio needed for a more uniform and
balanced pressure distribution on the blades at the cost of the negligible reduction in efficiency and
in a pitch distribution more loaded at the tip (Figure 16). Tip cavitation is observable earlier for this
geometry, but thanks to the blade shape, it is the only (and stabler) type of cavitation occurring for
this geometry.

6. CONCLUSIONS

This paper presents a non-deterministic design optimization framework for the design of marine pro-
pellers under uncertain functioning conditions. Traditional deterministic design approaches can lead
to blade geometries’ excessive sensitivity to even slight variations in operational conditions, easily re-
lated to uncertainties about the ship displacement or to the influence of sea currents, that in the end,
can nullify the effort of shape optimization. Accounting for the uncertainties of the design, however,
would require unaffordable computational costs, even if using mid-fidelity codes like the Boundary
Element Methods usually employed for propeller optimization, since hundreds of thousands of calcu-
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Figure 13: Cavitation extension on the blade-suction side. Optimized propeller C − 61557 from the
conventional optimization process. From top to bottom: σN = 0.91, 0.85, 0.78. From left to right:
Ship speed of 24.2, 25 and 25.8 kn.

lations would be needed to evaluate the sensitivity to geometric uncertainty or, as in the present case,
to variations of the functioning conditions. To overcome this “curse of dimensionality”, we leveraged
BEM-based Data-driven Surrogates models. They can be easily incorporated, and accurately substi-
tute Boundary Element Methods calculations, into an optimization approach, to develop an efficient
Simulation-Based Design Optimization framework for optimising marine propellers adhering to strict
performance requirements and, simultaneously, considering the uncertainties in design variables. To
this aim, we generated a dataset by running the Boundary Element Method multiple times on an
extensive set of randomly sampled geometries in the given design space to feed the learning phase
of Data-driven Surrogates and realize highly accurate surrogate models of the target performance
indicators to be efficiently used for the reduction of the computational burden of the optimization
process. The effectiveness of this approach strictly depends on the quality and quantity of data avail-
able for training the surrogate models. Results of Section 5.1 confirm this achievement. Then, we
employed these Data-driven Surrogates in a non-deterministic optimization process. Their computa-
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Figure 14: Cavitation extension on the blade suction side. Optimized propeller C − 29655 from the
conventional optimization process. From top to bottom: σN = 0.91, 0.85, 0.78. From left to right:
Ship speed of 24.2, 25 and 25.8 kn.

tional efficiency permitted the evaluation of the uncertainties of performances and, consequently, their
inclusion, as additional objectives and constraints, into the iterative design process. Specifically, the
variance of efficiency and suction side cavitation, as a consequence of given Gaussian distributions of
inflow speed and rate of revolution centered in the nominal functioning, were minimized to reduce
the rate of variations of these target features when the propellers operate in off-design conditions.
We also solved a conventional, deterministic, design-by-optimization problem starting from the same
reference propeller and considering the nominal functioning only. The comparison of the performances
of the optimal geometry from the robust design process with those of the initial propeller and those
of the geometries from the deterministic optimization framework unveils the convenience of the non-
deterministic approach. Including performance uncertainties makes propeller geometries significantly
less sensitive to functioning conditions. At the design functioning, the performances of the propeller
from the robust optimization are, as expected, not as good as those of propellers optimized for nominal
functioning only. The optimal robust design has a hint of tip vortex cavitation, and its efficiency is
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Figure 15: Cavitation extension on the blade suction side. Optimized propeller R-28709 from the
robust optimization process. From top to bottom: σN = 0.91, 0.85, 0.78. From left to right: Ship
speed of 24.2, 25 and 25.8 kn.

only slightly higher than the reference geometry, while the propellers from the deterministic optimiza-
tion completely avoid cavitation, or ensure an efficiency gain close to 2%. When the entire range of
functioning conditions is considered, the propellers designed under the robust assumption outperform
those from the conventional optimization framework, showing the benefits of a design under uncer-
tainties. Regardless of the functioning condition, the predicted cavitation extension on the suction
side is always substantially lower than the reference propeller and shows a more stable behaviour (es-
pecially compared to conventionally optimized propellers) against variation of the advance coefficient
and/or the cavitation index. Efficiency, too, is less affected by variations of the functioning point
and remains higher than the reference on a relatively large set of functioning conditions. Overall,
the non-deterministic optimization ensured better-balanced propellers, substantially less sensitive to
input variations at the cost of marginal reductions of nominal performances compared to propellers
optimized for nominal functioning only. This was possible thanks to Machine Learning methods that
accurately evaluated the hundreds of thousands of samples needed for the uncertainty assessment.
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Figure 16: Pitch and maximum sectional camber radial distributions of the propeller under investiga-
tion.
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