
INFORMATION

Keywords:
Vulkan
local illumination
rasterization
design
implementation

DOI: 10.23967/j.rimni.2025.10.70899

Design and Implementation of a
Vulkan-Based Rasterization

System in the PC Environment
Mingyu Kim1 and Nakhoon Baek1,2,*

1 � School of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea

2  Data-Driven Intelligent Mobility ICT Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea

*Correspondence: Nakhoon Baek (nbaek@knu.ac.kr). This is an article distributed under the terms of the Creative
Commons BY-NC-SA license

Design and Implementation of a Vulkan-Based Rasterization System in the
PC Environment

Mingyu Kim1 and Nakhoon Baek1,2,*

1School of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
2Data-Driven Intelligent Mobility ICT Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea

ABSTRACT

Graphics application programming interfaces (APIs) for three-
dimensional (3D) rendering have been employed in computer graphics.
Traditional 3D graphics APIs, such as Open Graphics Library (OpenGL),
have structured the entire pipeline for the programmer’s convenience and
are relatively easy to use. With the advancement of graphics hardware
technology, new graphics APIs, including Vulkan, have been introduced
to control specific function units of the graphics card and reveal the
graphics processing power. Vulkan has many advantages, such as graphics
processing power and parallel processing support. However, it also has the
disadvantage of increasing the implementation costs because it requires
detailed controls. This paper aims to implement a rasterization pipeline
that applies a local illumination model with Vulkan. The implemented
system can be used for standardized 3D graphics tasks as is and can
also be used as a starting point for varying the pipeline configurations.
This work designs and implements a Vulkan-based local rasterization
pipeline. With this implemented platform, practical 3D rendering scenes
are executed to be compared and analyzed with the rendering results
from traditional OpenGL. The experimental results demonstrate the
correctness and efficiency of the implementation. The implementation
will be used as a testbed for various rendering experiments in the future.

OPEN ACCESS

Received: 27/07/2025

Accepted: 11/10/2025

Published: 23/01/2026

DOI
10.23967/j.rimni.2025.10.70899

Keywords:
Vulkan
local illumination
rasterization
design
implementation

1 Introduction
1.1 Drawbacks of Traditional APIs

Three-dimensional (3D) graphics output is widely used for typical 3D applications, virtual reality
applications, realistic renderings, and other applications. The 3D graphics rasterization processes have
primarily been employed for 3D interactive applications or computer games for more realistic graphics
output. This work aims to present a new design and implementation of the 3D graphics rasterization
process with one of the latest graphics application programming interfaces (APIs), Vulkan [1,2]. In
computer graphics, several widely used de facto standard libraries exist, including Open Graphics
Library (OpenGL) [3,4], DirectX [5], and Vulkan [1]. Among them, Vulkan is one of the latest and has
been designed to replace OpenGL completely.

1

mailto:nbaek@knu.ac.kr

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

Traditional graphics libraries, such as OpenGL, have some drawbacks. First, the traditional
graphics API was initially designed for fixed-function graphics processing units (GPUs). To ensure
that the existing graphics API operates on the current programmable GPUs, GPU vendors have added
many pre- and post-processing operations at the device driver level. Thus, performance differences
occur for the same application for each GPU vendor, and performance differences occur each time
the GPU driver is updated. When a GPU device driver is updated, its performance may increase or
decrease. Additionally, shader code processing methods also differ depending on the GPU vendor. In
the worst case, an application may run normally on one GPU but not on another GPU [6].

Mobile devices are now widely used, and unlike computer GPUs, mobile GPUs are designed to
support tile-based rendering. The traditional graphics APIs do not consider mobile GPUs, making
the performance worse. Graphics APIs designed for fixed-function GPUs are unsuitable for modern
mobile GPUs. Last, the traditional graphics APIs support only single-thread execution models. In this
case, the CPU computing power may be a bottleneck, making the GPUs work inefficiently.

1.2 Need for a New API, Vulkan
The new graphics API Vulkan was designed to resolve the drawbacks of traditional APIs.

Currently, the Vulkan graphics API has the following characteristics compared with other traditional
graphics APIs. Vulkan has adopted verbose programming, where programmers write code details to
control graphics devices. The clear advantage of Vulkan is that application performance may be
dramatically increased because unnecessary parts used by the device driver can be removed. However,
tremendous effort is required to make even a simple application program. Hence, a triangle cannot be
drawn with a few lines of code, as in OpenGL.

Vulkan has many strong points concerning traditional graphics APIs. However, its verbose
programming concept makes graphics programming more complicated and is not yet widely used.
Although it is widely known that Vulkan can execute a much wider variety of graphics work fast
and efficiently, it is currently challenging to find the results of various benchmarks. Vulkan uses a
single shader compiler to generate its byte code. All GPU vendors can use the same shader code, and
programmers can enjoy increased portability. Vulkan supports multithread programming models.

This paper presents a prototype of a local illumination framework to test whether existing OpenGL-
based programs can be regenerated more efficiently on Vulkan. The graphics framework can be used
immediately for various 3D graphics applications and experiments on the graphics pipelines. The
following sections present the design and implementation details.

2 Related Work

Although 3D graphics features are widely used, even with the best performance, the current
rasterization process has difficulty presenting light effects, such as shadows, reflection, and refraction,
in real time. Many researchers have tried to determine a solution using general-purpose computing on
GPUs (GPGPU), low-level APIs, and hybrid rendering techniques to overcome this limitation.

The GPGPU technology uses modern graphics cards for computational purposes. The Open
Computing Library (OpenCL) [7–10] and Compute Unified Device Architecture (CUDA) [11,12] are
representative APIs. Using GPGPU technology, some models have made the existing rasterization
pipeline into a fully programmable software graphics pipeline to achieve more flexibility [13–16].
Others have used ray tracing because it can handle massive data with many threads using GPGPU
technology. NVIDIA released a ray-tracing engine called OptiX [17,18], which uses the CUDA API,
and many researchers have focused on ray tracing while using it. Despite these efforts, existing

https://www.scipedia.com/public/Kim_et_al_2026 2

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

computer games or 3D interactive applications are challenging to apply because high-end graphics
techniques, such as ray tracing and radiosity, require a massive number of calculations.

Moreover, the CPU overhead was a significant problem in rendering, along with the increased
GPU performance. Introducing low-level APIs may be a solution to minimize the overhead. DirectX
12 [5], and Vulkan [2,6,19] are representative APIs. Vulkan supports a variety of platforms, including
Windows, Android, SteamOS, and even leading-edge game engines, including Unity [20], Unreal
Engine [21,22], and CryEngine [23].

Until now, traditional graphics APIs, such as OpenGL, have been used, and these APIs are moving
to Vulkan for efficiency. However, due to the complexity of Vulkan, its use has slowly been increasing.
Thus, various attempts have been made to compare Vulkan and OpenGL [24]. This paper aims to
construct a framework for local illumination using Vulkan.

3 Design of a Graphics Pipeline

The design purpose of Vulkan was to enable detailed control of each function unit in the graphics
card; hence, the entire 3D graphics pipeline is divided into relatively small parts (Fig. 1). Traditional
OpenGL has relatively large steps (Fig. 2), considering the programmer’s convenience. The Vulkan
rasterization pipeline is based on the original Vulkan pipeline and aims to include all the traditional
features of OpenGL.

Figure 1: Block diagram of the Vulkan 3D graphics pipeline [1]

https://www.scipedia.com/public/Kim_et_al_2026 3

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

Figure 2: Traditional OpenGL 3D graphics pipeline [25]

One of the most explicit differences between Vulkan and OpenGL graphics pipelines is how the
command queue works. OpenGL creates a command buffer for each function and submits it to the
physical execution queue in the graphics card. During these processing steps, the underlying graphics
card consumes execution time to submit the individual command buffer.

Vulkan uses batch processing by preparing the command buffers separately and submitting them
all at once. Therefore, even when operating in a single-thread environment, the execution speed of
Vulkan can be significantly faster than that of OpenGL. Additionally, Vulkan has the potential for
faster execution because it can support multithreading.

The Standard Portable Intermediate Representation (SPIR-V) [26] compiling system efficiently uses
the Vulkan pipeline. The SPIR-V compilers can hide the kernel source code from the public while
providing all the features with SPIR-V byte-code files.

The overall 3D graphics pipeline comprises three steps. The first step is reading the vertex and
index data from object files and creating vertex and index buffers. The second step reads the texture
and material data and makes descriptor sets for each texture with uniform buffers. Finally, this approach
binds the necessary buffers, push constants, and queue draw calls to command buffers for each sub-
mesh.

The overall design was converted to SPIR-V programs and Vulkan API function calls and works
as a rasterization framework to render the typical 3D graphics output. The rendering results from this
rasterization framework and their analysis are presented in the next section.

4 Implementation Results
4.1 Experimental Environment

This work implements an overall rasterization pipeline with the Vulkan library. A set of typical
OpenGL-based animation sequences were selected to check the correctness and efficiency of the
Vulkan implementation. From the Utah 3D Animation Repository [27] and the McGuire computer
graphics archive [28], the rasterization pipeline renders four scenes: fairy forest, living room, breakfast
room, and fireplace room (Fig. 3). These scenes consist of 174, 580, 674, and 143 K triangles.

https://www.scipedia.com/public/Kim_et_al_2026 4

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

Figure 3: Rendering sequences: (a) fairy forest, with public permission from the Utah 3D Animation
Repository [27]; (b) living room, (c) breakfast room, (d) fireplace room, with CC BY 3.0 permission from
the McGuire Computer Graphics Archive [28]

These scenes were originally designed to be rendered with OpenGL; hence, these scenes can be
rendered with the OpenGL library. These OpenGL rendering results are used as the correct results
to check the correctness of the implementation. The original OpenGL version and new Vulkan
rasterization were implemented on the same hardware platform, a Windows 11 computer with AMD
Ryzen 7, 8-core 3.70 GHz CPU with two graphics cards: Radeon RX Vega 56 and NVIDIA RTX
2080.

4.2 Proof of Correctness
The scene of the “fairy forest” in Fig. 4 is rendered using the Vulkan rasterization pipeline, as

presented in the left column of Fig. 4a. Then, it is re-rendered with the OpenGL functionalities, as
depicted in the middle column of Fig. 4b. The differences between these two renderings are presented in
the right column of Fig. 4c to check the correctness of the Vulkan rendering concerning the traditional
OpenGL rendering.

https://www.scipedia.com/public/Kim_et_al_2026 5

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

Figure 4: Rendering results for the fairy forest: (a) proposed results, (b) OpenGL results, (c) differences
(×32)

https://www.scipedia.com/public/Kim_et_al_2026 6

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

In the early stages of our experiments, we found some unexpected mismatches on these pixel-
by-pixel comparisons. Most of those differences were found in the textured regions, and we carefully
arranged the texture parameters for both graphics pipelines to the following values:

• texture magnification filter: linear

• texture minification filter: linear

• texture mip-map mode: all linear

• texture address mode: all repeat

• texture anisotropic filter: disabled

• unnormalized texture coordinates: disabled.

After these arrangements, most differences are found at the object boundaries. Since graphics
pipelines use a large amount of floating-point number computations especially for coordinate trans-
formations, we cannot completely avoid accumulated numerical differences between different graphics
pipelines, and it results in the slightly misaligned pixel positions at the object boundaries.

The rendered images are stored in the typical RGB format, where each pixel is represented in three
color tuples (red, green, and blue). Numerical values in these color tuples are expressed as 8-bit integer
values [0, 255]. Thus, the difference images in Fig. 4c may have pixel values from 0 to 255. However,
the experiment reveals that most actual differences were small enough to be much smaller than even
32. Therefore, the difference images were magnified for convenience with a scale factor of 32. Finally,
white pixels indicate no error (difference 0), whereas black pixels present a difference value of 32. Gray
pixels are in-between values of the pixel differences.

The same renderings were conducted for the other drawing scenes of the “living room”, “breakfast
room”, and “fireplace room”, taking their differences, as presented in Figs. 5–7, respectively. The
differences between these renderings were analyzed theoretically. Table 1 presents the mean squared
error (MSE), root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), and structural
similarity index measure (SSIM) values [29,30].

Figure 5: (Continued)

https://www.scipedia.com/public/Kim_et_al_2026 7

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

Figure 5: Rendering results for the living room: (a) proposed results, (b) OpenGL results, (c) differences
(×32)

Figure 6: (Continued)

https://www.scipedia.com/public/Kim_et_al_2026 8

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

Figure 6: Rendering results for the breakfast room: (a) proposed results, (b) OpenGL results, (c) differ-
ences (×32)

Figure 7: (Continued)

https://www.scipedia.com/public/Kim_et_al_2026 9

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

Figure 7: Rendering results for the fireplace room: (a) proposed results, (b) OpenGL results, (c) differ-
ences (×32)

Table 1: Rendering exactness: error values

MSE1 RMSE2 PSNR3 SSIM4

Fairy forest 1.915 1.384 42.486 0.999
Living room 1.790 1.338 43.075 0.999
Breakfast room 0.428 0.654 55.509 0.999
Fireplace room 0.690 0.831 51.353 0.999

Average 1.206 1.052 48.106 0.999
Note: 1 mean square error; 2 root mean square error; 3 peak signal-to-noise ratio; 4 structural similiarity
index measure.

Each red, green, and blue component of the images was evaluated separately, and the MSE was
calculated by measuring the average of these. Then, the errors are presented in an image format as the
difference images, allowing a check of where the errors mainly occur. Table 1 presents the results of
comparing the image quality numerically. The PSNR values are about 50, and the SSIM values are
about 0.999 or almost 1.0. Although these RMSE and PSNR values indicate some slight errors exist,
the values of SSIM reveal that the two images are structurally the same because the upper bound of
the SSIM is 1.0. Thus, the rendering results and OpenGL rendering results can be practically regarded
as the same.

4.3 Comparison of Efficiency
Tables 2 and 3 compare the rendering performance of the proposed Vulkan rasterization and

traditional OpenGL. The average and minimum values for the number of rendering frames per second
(fps) were calculated to measure the rendering speed. In Table 2, the average fps values indicate that
the proposed Vulkan rasterization pipeline can render the scenes 1.4136 to 2.6431 times faster than

https://www.scipedia.com/public/Kim_et_al_2026 10

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

traditional OpenGL rendering. The minimum fps values range from 1.4317 to 2.5685 times (Table 3).
The proposed Vulkan rasterization outperforms the traditional OpenGL-based rendering, which is
the reason for using Vulkan rather than OpenGL.

Table 2: Rendering performances: Average number of frames per second. (unit: frames per second)

Number of triangles
Radeon RX Vega 56 NVIDIA RTX 2080

OpenGL Proposed work Acceleration OpenGL Proposed work Acceleration
(a) (b) ratio (b/a) (a) (b) ratio (b/a)

Fairy forest (174 K) 677.54 1698.69 2.5071 750.23 1804.76 2.4056
Living room (580 K) 552.81 1285.92 2.3262 599.05 1583.36 2.6431
Breakfast room (674 K) 388.41 549.05 1.4136 428.01 804.57 1.8798
Fireplace room (143 K) 1145.29 1781.07 1.5551 1231.33 1991.09 1.6170
Average 691.01 1328.68 1.9228 752.16 1545.95 2.0554

Table 3: Rendering performances: Minimum number of frames per second. (unit: frames per second)

Number of triangles
Radeon RX Vega 56 NVIDIA RTX 2080

OpenGL Proposed work Acceleration OpenGL Proposed work Acceleration
(a) (b) ratio (b/a) (a) (b) ratio (b/a)

Fairy forest (174 K) 639.94 1479.55 2.3120 723.59 1518.08 2.0980
Living room (580 K) 519.24 1041.23 2.0053 529.32 1359.56 2.5685
Breakfast room (674 K) 349.69 500.64 1.4317 395.40 695.09 1.7579
Fireplace room (143 K) 1098.52 1617.17 1.4721 1115.78 1619.61 1.4515
Average 651.85 1159.65 1.7790 691.02 1298.09 1.8785

Introducing the new Vulkan standard, they emphasized that the new graphics library will reduce
the CPU loads. In our experiments, we also compared CPU and memory usages using the system query
API functions provided by the Windows operating system [31]. CPU usage was measured by averaging
the percentage of total CPU time spent on both of traditional OpenGL rendering and proposed Vulkan
rasterization. As shown in Table 4, CPU usage is reduced to at best 42% to at worst same to the
traditional OpenGL rendering. It is a noticeable improvement with our Vulkan rasterization, from
the viewpoint of the CPU usage.

For memory usage, we measured the actual RAM usage during execution and calculated the
average. As shown in Table 5, proposed Vulkan rasterization uses only 45% to 70% of the RAM
required by traditional OpenGL rendering. Since OpenGL operates as a state machine, it maintains
overall information including the current state, current texture image, and many others. For these
structural reasons, OpenGL’s memory usage explicitly increases, and this should be one of the reasons
for migrating to Vulkan.

https://www.scipedia.com/public/Kim_et_al_2026 11

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

Table 4: CPU usage: average percent of CPU load

Number of triangles
Radeon RX Vega 56 NVIDIA RTX 2080

OpenGL Proposed work Ratio OpenGL Proposed work Ratio
(a) (b) (b/a) (a) (b) (b/a)

Fairy forest (174 K) 15.860% 11.597% 0.731 22.210% 22.377% 1.008
Living% room (580 K) 15.457% 9.373% 0.606 20.550% 20.113% 0.979

Breakfast room (674 K) 19.773% 10.303% 0.521 27.020% 18.787% 0.695
Fireplace room (143 K) 26.077% 11.097% 0.426 25.183% 24.497% 0.973

Average 19.292% 10.593% 0.549 23.741% 21.443% 0.903

Table 5: Memory usage: average RAM requirements. (unit: MB)

Number of triangles
Radeon RX Vega 56 NVIDIA RTX 2080

OpenGL Proposed work Ratio OpenGL Proposed work Ratio
(a) (b) (b/a) (a) (b) (b/a)

Fairy forest (174 K) 250.102 135.990 0.544 218.145 153.691 0.705
Living% room (580 K) 300.733 180.849 0.601 301.153 206.200 0.685

Breakfast room (674 K) 240.549 126.753 0.527 248.339 150.178 0.605
Fireplace room (143 K) 239.677 108.583 0.453 215.680 130.782 0.606

Average 257.765 138.044 0.536 245.829 160.213 0.652

As a simple measure, the number of source code lines for both rendering implementations was
counted for the implementation cost, as listed in Table 6. The proposed Vulkan rasterization pipeline
requires 2.211 times more source code lines than the traditional OpenGL renderings. Vulkan is a low-
level library; hence, every detail of the device driver settings is needed, and the final source codes are
verbose. As demonstrated, the implementation cost is a weak point of Vulkan and should be reduced
for broader use. Reducing the source code complexity of proposed Vulkan rasterization would be one
of our future works.

Table 6: Implementation cost: comparing the number of source code lines

The number of source code lines

OpenGL implementation (a) 1102 lines
Proposed work (b) 2437 lines
Ratio (b/a) 2.211 times increased

5 Conclusions and Future Work

This paper presents examples of configuring a typical 3D graphics pipeline using Vulkan, revealing
its effectiveness by comparing it with OpenGL implementations. The experimental results demonstrate

https://www.scipedia.com/public/Kim_et_al_2026 12

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

that the Vulkan implementation worked much faster and more effectively than the OpenGL implemen-
tation. However, the number of source code lines increased considerably. A set of repeatedly used
Vulkan operations must be abstracted and simplified for efficient programming.

In the future, we will improve the proposed framework for various uses, including ray-tracing
effects. Ray tracing techniques were previously possible to implement using compute shaders in
traditional OpenGL rendering [3,4]. With the introduction of Vulkan ray tracing extensions [32–34],
API-level ray tracing development is now possible. In particular, Vulkan offers accelerated graphics
data structures like bounding volume hierarchy (BVH) and a more advanced shader architectures
than compute shaders, enabling more efficient implementations. Our rasterization framework would
be integrated with these extensions, particularly hardware acceleration including NVIDIA RT cores
[35] and Radeon RDNA2 [36], to integrate ray tracing effects into our Vulkan rasterization pipeline.
This integration would enable more realistic effects with relatively efficient rendering efforts, as one of
our explicit future works.

Another item for our consideration will be the mobile graphics environment. This paper focused on
the Vulkan rasterization in the desktop environment, and extension to the mobile environment is also
necessary. The unified memory architecture (UMA) can exhibit completely different characteristics
in terms of memory management, requiring additional experiments and analysis. Considering the
mobile graphics processor architectures and their emphasis on texture compression techniques, more
experiments and analyses for those configurations are necessary.

Acknowledgement: Not applicable.

Funding Statement: This work was supported by the IITP (Institute of Information & Communications
Technology Planning & Evaluation)—ITRC (Information Technology Research Center) grant funded
by the Korea government (Ministry of Science and ICT) (IITP-2025-RS-2024-00437756, 80%). This
study was supported by the BK21 FOUR project (AI-driven Convergence Software Education
Research Program) funded by the Ministry of Education, School of Computer Science and Engineer-
ing, Kyungpook National University, Korea (41202420214871, 10%). This research was supported by
the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MIST)
(RS-2023-00242528, 10%).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and first-stage design: Mingyu Kim, Nakhoon Baek; data collection: Mingyu Kim; analysis and
interpretation of results: Mingyu Kim, Nakhoon Baek; draft manuscript preparation: Mingyu Kim,
Nakhoon Baek; manuscript revise: Nakhoon Baek. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: The datasets generated during or analyzed during the current study
are available from the corresponding author on reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

https://www.scipedia.com/public/Kim_et_al_2026 13

https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

References
1. Khronos Vulkan Working Group. Vulkan specification, version 1.4.323. Beaverton, OR, USA: Khronos

Group; 2025.
2. Sellers G, Kessenich J. Vulkan programming guide: the official guide to learning vulkan. 1st ed. Boston,

MA, USA: Addison-Wesley Professional; 2016.
3. Segal M, Akeley K. The OpenGL graphics system: a specification, version 4.6 (core profile). Beaverton,

OR, USA: Khronos Group; 2022.
4. Gordon VS, Clevenger J. Computer graphics programming in OpenGL with C++. 1st ed. Herndon, VA,

USA: Mercury Learning and Information; 2024.
5. Luna F. Introduction to 3D game programming with DirectX 12. Herndon, VA, USA: Mercury Learning

and Information; 2016.
6. Bailey M. The Vulkan computer graphics API. In: ACM SIGGRAPH, 2023 courses. New York, NY, USA:

Association for Computing Machinery; 2023. doi:10.1145/3587423.3595529.
7. Munshi A, Gaster B, Mattson TG, Ginsburg D. OpenCL programming guide. Boston, MA, USA: Addison-

Wesley; 2011.
8. Khronos OpenCL Working Group. The OpenCL specification, version 1.2. Beaverton, OR, USA: Khronos

Group; 2012.
9. Khronos OpenCL Working Group. The OpenCL specification, version 2.2. Beaverton, OR, USA: Khronos

Group; 2019.
10. Khronos OpenCL Working Group. The OpenCL specification, version 3.0.19. Beaverton, OR, USA:

Khrono Group; 2025.
11. Sanders J, Kandrot E. CUDA by example: an introduction to general-purpose GPU programming. Boston,

MA, USA: Addison-Wesley; 2011.
12. NVIDIA. CUDA toolkit documentation, version 13.0, 2025 [Internet]. [cited 2025 Oct 1]. Available from:

https://docs.nvidia.com/cuda/.
13. Kenzel M, Kerbl B, Schmalstieg D, Steinberger M. A high-performance software graphics pipeline

architecture for the GPU. ACM Trans Graph. 2018;37(4):140. doi:10.1145/3197517.3201374.
14. Laine S, Karras T. High-performance software rasterization on GPUs. In: Proceedings of the ACM SIG-

GRAPH Symposium on High Performance Graphics. New York, NY, USA: Association for Computing
Machinery; 2011. p. 79–88.

15. Liu F, Huang M-C, Liu X-H, Wu E-H. FreePipe: a programmable parallel rendering architecture for
efficient multi-fragment effects. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games. New York, NY, USA: Association for Computing Machinery; 2010. p. 75–82.

16. Kim M, Baek N. A 3D graphics rendering pipeline implementation based on the OpenCL massively parallel
processing. J Supercomput. 2021;77(7):7351–67. doi:10.1007/s11227-020-03581-8.

17. Parker SG, Bigler J, Dietrich A, Friedrich H, Hoberock J, Luebke D, et al. OptiX: a general purpose ray
tracing engine. ACM Trans Graph. 2010;29(4):1–13.

18. Ludvigsen H, Elster AC. Real-time ray tracing using NVIDIA OptiX. In: 31st Annual Conference of the
European Association for Computer Graphics, Eurographics 2010—Tutorials; 2010 May 3–7; Norrköping,
Sweden. p. 65–8.

19. Zhang A, Chen K, Johan H, Erdt M. High performance city rendering in Vulkan. In: SIGGRAPH Asia 2018
Posters. New York, NY, USA: Association for Computing Machinery; 2018. doi:10.1145/3283289.3283342.

20. Suvak J. Learn Unity3D programming with unityscript: unity’s javascript for beginners. New York, NY,
USA: Apress; 2014.

21. Moniem MA. Mastering unreal engine 4.X. Birmingham, UK: Packt Publishing; 2016.
22. Sanders A. An introduction to unreal engine 4. Boca Raton, FL, USA: Taylor & Francis, CRC Press; 2016.

https://www.scipedia.com/public/Kim_et_al_2026 14

https://doi.org/10.1145/3587423.3595529
https://docs.nvidia.com/cuda/
https://doi.org/10.1145/3197517.3201374
https://doi.org/10.1007/s11227-020-03581-8
https://doi.org/10.1145/3283289.3283342
https://www.scipedia.com/public/Kim_et_al_2026

M. Kim and N. Baek,

Design and implementation of a vulkan-based rasterization

system in the PC environment,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 17

23. Hussain F, Hussain K. CryEngine basics: first steps in game development. Geneva, Switzerland: Sonar
Publishing; 2024.

24. Ferraz O, Menezes P, Silva V, Falcao G. Benchmarking vulkan vs OpenGL rendering on low-power edge
GPUs. In: 2021 International Conference on Graphics and Interaction (ICGI); 2021 Nov 4–5; Porto,
Portugal. p. 1–8.

25. Segal M, Akeley K. The OpenGL graphics system: a specification, version 3.3. Beaverton, OR, USA:
Khronos Group; 2010.

26. Khronos S.P.I.R.Working Group. SPIR-V specification, version 1.6, revision 6. Beaverton, OR, USA:
Khronos Group; 2025.

27. Ingo Wald. Utah 3D animation repository. [Internet]. 2025 [cited 2025 Oct 1]. Available from:
https://www.sci.utah.edu/.

28. McGuire M. Computer graphics archive. [Internet]. 2017 Jul [cited 2025 Oct 1]. Available from:
https://casual-effects.com/data/.

29. Horé A, Ziou D. Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern
Recognition; 2010 Aug 23–26; Istanbul, Turkey. p. 2366–9.

30. Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment. Electron Lett.
2008;44:800–1. doi:10.1049/el:20080522.

31. Pavel Yosifovich. Windows kernel programming. Redmond, WA, USA: Microsoft Press; 2021.
32. The Khronos Vulkan working group. Vulkan KHR acceleration structure-device extension. Beaverton, OR,

USA: Khronos Group; 2021.
33. The Khronos Vulkan working group. Vulkan KHR ray tracing pipeline-device extension. Beaverton, OR,

USA: Khronos Group; 2020.
34. The Khronos Vulkan working group. Vulkan KHR ray query-device extension. Beaverton, OR, USA:

Khronos Group; 2020.
35. NVIDIA. NVIDIA Turing GPU Arhictecture [Internet]. 2018 [cited 2025 Oct 1]. Available from: https://

images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDI
A-Turing-Architecture-Whitepaper.pdf.

36. Advanced Micro Devices. AMD RDNA performance guide [Internet]. 2024 [cited 2025 Oct 1]. Available
from: https://gpuopen.com/learn/rdna-performance-guide/.

https://www.scipedia.com/public/Kim_et_al_2026 15

https://www.sci.utah.edu/
https://casual-effects.com/data/
https://doi.org/10.1049/el:20080522
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://gpuopen.com/learn/rdna-performance-guide/
https://www.scipedia.com/public/Kim_et_al_2026

	Design and Implementation of a Vulkan-Based Rasterization System in the PC Environment
	1 Introduction
	2 Related Work
	3 Design of a Graphics Pipeline
	4 Implementation Results
	5 Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

