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Abstract. Within this contribution, we discuss additional theoretical as well as numerical
aspects of the material model developed in [1, 2], where a ‘two-surface’ damage-plasticity model
is proposed accounting for induced damage anisotropy by means of a second order damage
tensor. The constitutive framework is stated in terms of logarithmic strain measures, while the
total strain is additively decomposed into elastic and plastic parts. Moreover, a novel gradient-
extension based on the damage tensor’s invariants is presented using the micromorphic approach
introduced in [3]. Finally, going beyond the numerical examples presented in [1, 2], we study
the model’s ability to cure mesh-dependency in a three-dimensional setup.

1 INTRODUCTION

The defects observed on the microstructure can be classified into microvoids and microcracks,
the former degrading the material more or less directionally independent. The latter, on the
other hand, induce a strong anisotropy even in initially isotropic materials. Continuum mechan-
ical models that take this anisotropy into account are essential for estimating the stiffness, and
thus, the load-bearing capacity of structures that are damaged. In this context, non-proportional
load paths, such as those occurring in forming processes, are also known to trigger this kind of
induced anisotropy.
Within this contribution, in line with Continuum Damage Mechanics (CDM), we account for
damage anisotropy by means of a second order damage tensor (see [4]) in a phenomenological and
smeared sense. The CDM modeling approach is used for a wide range of materials and damage
behaviors, ranging from initially isotropic materials (e.g. [5]) to initially anisotropic materials
with different constituents (e.g. [6]), and further, is employed in the context of scale transitions
(e.g. [7]). In this regard, [8] recently formulated a finite strain framework that interprets the
second order damage tensor in terms of structural tensors. This approach is also followed in
[1, 2], but in the logarithmic strain space, where additionally a novel gradient-extension is intro-
duced. The latter extension is necessary to overcome mesh-dependency, a well-known problem
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of so-called local damage models, to which the class of CDM models belongs. In view of the
many possibilities known in the literature for introducing a gradient-extension, the latter authors
decided to use the micromorphic approach [3, 9], which provides a rather flexible and general
framework for introducing additional length scales into the material formulation.
In this contribution, we first consider various aspects of the model developed in [1], discussing
here in further detail the invariance to superimposed rotations of the intermediate configura-
tion. In addition, the assumption of an additive decomposition of the total strain and the
choice of local variables for the gradient extension are briefly discussed (Sec. 2). In Sec. 3, the
transformation from logarithmic strain space to the Lagrangian one is presented, where a nu-
merically more efficient calculation method is addressed. Finally, the model is investigated in a
three-dimensional context using a tensile specimen (Sec. 4).

2 CONSTITUTIVE FRAMEWORK

Additive decomposition. In finite elasto-plasticity modeling, the multiplicative decom-
position F = FeFp into elastic and plastic parts is well established, which introduces an in-
termediate configuration in addition to the reference and current configuration. Further, both
parts possess their polar decompositions into a rotational and stretch tensor, i.e. Fe = ReUe

and Fp = RpUp with Re/p ∈ SO(3). Since both stretch tensors are defined with respect to
different configurations, we make further use of the polar decomposition Fp = VpRp. These
stretch tensors are suitable to define the following logarithmic strain measures

ε := ln (U) , εp := ln (Up) , ηe := ln (Ue) , ηp := ln (Vp) = Rp εp R
T
p (1)

where the polar decomposition of the deformation gradient F = RU with R ∈ SO(3) is utilized.
Considering both the property of the logarithm ln (A) = 1/2 ln

(
A2
)

for any positive definite
tensor A and U2

e = F−T
p U2F−1

p , one may rewrite the elastic logarithmic strain as

ηe =
1

2
ln
(
U2

e

)
= Rp

1

2
ln
(
U−1

p U2U−1
p

)
RT

p =: Rp εe R
T
p (2)

where εe is the elastic strain measure with respect to the reference configuration, which is pushed
to the intermediate one by Rp. Having further the properties ln

(
A−1

)
= − ln (A) as well as

ln (AB) = ln (A) + ln (B) if and only if A and B commute in mind, the additive decomposition
of the strain is motivated

η̄e := Rp (ε− εp)RT
p =: Rp ε̄e R

T
p . (3)

Obviously, ηe and η̄e, and thus also εe and ε̄e, are only equal in case of coaxial loading. How-
ever, assuming small elastic strains, the additive decomposition is suitable to capture the elastic
strains within the material (cf. [10]). Noteworthy, [11] investigated the additive split in the
context of excessive strains for coaxial and non-coaxial loading coupled to damage and provided
interesting results on the structural performance.

Mapping of damage tensor. In line with [8], we assume a symmetric and semi-positive
definite referential damage tensor Dr, which is pushed to the intermediate configuration in
analogy to εe, ε̄e and εp

D = Rp Dr R
T
p . (4)
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Hence, the eigenvalues of both tensors remain the same, while their eigenvectors are transformed
by Rp. Further, the mapping (4) prevents undesired inelastic scaling effects. Besides these prop-
erties, a virgin material is characterized by Dr = D = 0, while a ‘fully broken’ state corresponds
to Dr = D = I.

Rotational non-uniqueness. The multiplicative decomposition of the deformation gradi-
ent suffers from an inherent problem of rotational non-uniqueness. Hence, a decomposition
including superimposed rotations of the intermediate configuration in the sense of

F = FeFp = FeQ
TQFp =: F ∗

e F
∗
p , Q ∈ SO(3) (5)

can be equivalently stated. Considering the polar decomposition of F ∗
p = QFp = QRpUp =

R∗
pUp where R∗

p ∈ SO(3), one recognizes that this non-uniqueness only affects Rp, while Up is
uniquely defined. In further consequence, for the mapping chosen in Equation (4), one must
ensure that the Helmholtz free energy ψ is independent of the rotational non-uniqueness, in
order to obtain a physically reasonable material formulation, i.e.

ψ (η̄e,ηp,D) = ψ
(
η̄∗e ,η

∗
p,D

∗) (6)

with η̄∗e = R∗
p (ε− εp) R∗T

p , η∗p = R∗
p εpR

∗T
p , and D∗ = R∗

pDrR
∗T
p . Therefore, we assume

the Helmholtz free energy to be a scalar-valued isotropic function of its arguments. Since the
following relations hold true

tr ((η̄∗e)a) = tr ((η̄e)
a) , tr

((
η∗p
)a)

= tr ((ηp)
a) , tr ((D∗)a) = tr ((D)a) , a ∈ {1, 2, 3}

tr
(

(η̄e)
b (ηp)

c (D)d
)

= tr
(

(η̄∗e)b
(
η∗p
)c

(D∗)d
)
, b, c, d ∈ {0, 1, 2}

(7)

the presented framework using the mapping (4) indeed is invariant with respect to superimposed
rotations of the intermediate configuration.

Choice of local variables for gradient-extension The micromorphic approach introduced
in [3, 9] introduces a set of ‘non-local’ variables d̄ on a global level. These variables are strongly
coupled to the same number of inherent variables of the material formulation, which will be
referred as ‘local’ variables d. Noteworthy, the latter mentioned should not be understood as
additional constitutive variables rather than the constitutive variables themselves or functions
of those. Here, three ‘local’ variables are introduced, which are chosen as the invariants of the
damage tensor

d =
(
tr (D) , tr

(
D2
)
, tr
(
D3
))
. (8)

Besides the invariant-based gradient-extension, several other possibilities are known in the lit-
erature, for instance, enhancing the damage hardening variable (see [12]) or the components
of the damage tensor (see e.g. [13]). Although the invariant-based approach is quite general,
the question arises whether it is possible to reduce the number of variables. Having in mind
that the volumetric part of the damage tensor represents isotropic damage, while the remaining
deviatoric part is responsible for the anisotropic nature, one might use the following set

d =

(
tr (D)

3
, tr
(

dev (D)2
))

(9)
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which is a novel approach in gradient-extended anisotropic damage. A further benefit of this
latter choice is that it reduces to the gradient-extension proposed by [14] in case of isotropic
damage. However, investigating this kind of approach in further detail is out of the scope of this
contribution.

2.1 Helmholtz free energy

In the following, the Helmholtz free energy is assumed to be additively decomposable

ψ = ψe (η̄e,D) + ψp (ηp,D, κp) + ψd (D, κd) + ψd̄

(
d, d̄,Grad

(
d̄
))

(10)

where ψe represents the elastically stored energy, ψp takes kinematic and isotropic plastic hard-
ening into account, damage hardening is given by ψd, and ψd̄ is a ‘coupling’ or ‘non-local’ energy
term ensuring both a strong coupling between d and d̄ as well as introduces an internal length
scale into the material formulation. Moreover, ψd prevents the eigenvalues of D and Dr to
exceed the value one and is in line with [12]. Additionally, κp and κd represent scalar hardening
variables for plasticity and damage, respectively.

2.2 Micromorphically extended Clausius-Duhem inequality

Evaluating the micromorphically extended Clasuius-Duhem inequality in the logarithmic
strain space

−ψ̇ + T : ε̇+ ξ0i · ˙̄d + Ξ0i : Grad
(

˙̄d
)

︸ ︷︷ ︸
micromorphic extension

≥ 0 (11)

by inserting the assumed Helmholtz free energy in Equation (10), the following reduced dissi-
pation inequality is obtained

(T −X) : ε̇p +Rp κ̇p + Y : Ḋr +Rd κ̇d ≥ 0 (12)

under consideration of the state laws

T = RT
p

∂ψ

∂η̄e
Rp, ξ0i =

∂ψ

∂d̄
, Ξ0i =

∂ψ

∂Grad
(
d̄
) . (13)

In Equation (11), T is the ‘material’ stress work-conjugated to the logarithmic strain rate, while
both ξ0i and Ξ0i are so-called ‘generalized’ stresses. The thermodynamically consistent driving
forces occurring in Equation (12) can be clearly distinguished into plastic and damage parts.
First, we introduce the following plastic driving forces

X := RT
p

∂ψ

∂ηp
Rp, Rp := − ∂ψ

∂κp
(14)

with X being the plastic backstress tensor and Rp the plastic isotropic hardening force. Fur-
thermore, the damage driving forces are obtained as

Y := −RT
p

∂ψ

∂D
Rp, Rd := − ∂ψ

∂κd
(15)
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where Y is the damage driving force and Rd being a damage hardening force. It should be noted
that Y is composed out of four individual contribution, which result from the elastic, plastic,
damage hardening, and ‘non-local’ energy terms. For the latter, it is important to note that
d is a function that depends solely on D. Hence, the arguments of the ‘non-local’ energy in
Equation (10) can be written as ψd̄ = ψ̄d̄

(
D, d̄,Grad

(
d̄
))

. Moreover, it is worth noted that the
plastic rotation tensor Rp remains undetermined in the present framework, which is considered
an advantage. In order to guarantee that the dissipation inequality is fulfilled for arbitrary
processes, meaningful evolution equations are chosen in the following, whereby a ‘two-surface’
approach is followed. These particular choices, however, do not restrict the generality of the
model in any way.

Plastic regime. For the plastic regime, a von Mises-type yield criterion is chosen with re-
spect to the so-called effective continuum

Φp :=

√
3 J̃2 − (σy0 − R̃p) ≤ 0, J̃2 :=

(
1

2
tr
(

dev (T −X)2
))∣∣∣∣

D=0

, R̃p = Rp

∣∣∣∣
D=0

(16)

with σy0 denoting the plastic onset. For the evolution equations, the principle of maximum
dissipation is followed, i.e.

ε̇p = γ̇p
∂Φp

∂T
= γ̇pM−1 :

∂Φp

∂T̃
, κ̇p = γ̇p

∂Φp

∂Rp
=
γ̇p
fd
, M :=

∂T

∂T̃
(17)

where M is a fourth order damage mapping tensor, which transforms the constitutively depen-
dent variables from the effective to the ‘damaged’ space. Further, γ̇p is the plastic multiplier,
while fd denotes the scalar degradation function and will be introduced in Section 2.3. Karush-
Kuhn-Tucker (KKT) conditions close the set of plastic constitutive equations.

Damage regime. In analogy to the plastic regime, the onset of damage is characterized by

Φd :=
√

3Y+ : Ad : Y+ − (Y0 −Rd) ≤ 0 (18)

with the damage threshold Y0 and

Y+ =

3∑
i=1

〈Yi〉 nY
i ⊗ nY

i , Adijkl = (δik −Drik)
(
δjl −Drjl

)
. (19)

In the latter equation, Yi and ni denote the eigenvalues and eigenvectors of Y , respectively.
Additionally, 〈•〉 defines the Macaulay brackets and the fourth order tensor Ad equips the model
with greater flexibility, whereby the definition in Equation (19) is given with respect to the
Cartesian basis system. Similar to the plastic regime, the evolution equations are obtained by
following the principle of maximum dissipation

Ḋr = γ̇d
∂Φd

∂Y
= γ̇dQ+

∂Φd

∂Y+
Q+, κ̇d = γ̇d

∂Φd

∂Rd
= γ̇d (20)

with the definition of the mapping tensorQ+ =
∑3

i=1〈Yi〉H nY
i ⊗nY

i , where 〈•〉H is the Heaviside
step function. The damage set of constitutive equations is closed by individual KKT conditions
with the damage multiplier γ̇d.

5



H. Holthusen, T. Brepols, J.-W. Simon and S. Reese

2.3 Specific choices of energy terms

So far, the derivation of the model was kept quite general, in order not to restrict the model
to a particular choice of energy terms. However, to study the model in a more detailed manner,
the following energies are chosen

� Elastic energy: It is assumed that anisotropic damage results from isochoric deformations,
while isotropic damage is associated with volumetric deformations (cf. e.g. [15]). In case
of logarithmic strains, the energy can be easily decomposed into volumetric and isochoric
deformations (cf. e.g. [16])

ψe = µe tr
(

dev (η̄e)
2 (I −D)

)
+ fd

Ke

2
tr (η̄e)

2 (21)

� Plastic energy: Chosen in line with the previous one but extended by an exponential hard-
ening term

ψp = µp tr
(

dev (ηp)
2 (I −D)

)
+ fd

Kp

2
tr (ηp)

2 + fd rp

(
κp +

exp (−sp κp)− 1

sp

)
(22)

� Damage energy: Includes exponential and linear hardening, and moreover, a limit function
for the eigenvalues Di of D is involved

ψd = rd

(
κd +

exp (−sd κd)− 1

sd

)
+
Hd

2
κ2
d +Kh

3∑
i=1

(
−2
√

1−Di −Di + 2
)

(23)

� Micromorphic energy: Ensures a strong coupling of the ‘local’ variables with their ‘non-
local’ counterparts, and further, introduces an internal length scale by taking the La-
grangian gradient of d̄ into account (cf. e.g. [14])

ψd̄ =
H

2

3∑
i=1

(
di − d̄i

)2
+
A

2

3∑
i=1

Grad
(
d̄i
)
·Grad

(
d̄i
)

(24)

In the above, µe and Ke are the elastic shear and bulk modulus, µp and Kp can be interpreted
analogously, while rp, sp, rd, and sd describe exponential hardening of plasticity and damage.
Additionally, linear damage hardening is described by Hd and the eigenvalue limitation by Kh,
while H is a penalty factor and A characterizes the internal length scale. The degradation
function is given by fd = 1− tr(D)

3 .

2.4 Weak forms

The weak forms which need to be solved on a global level read as follows

gu(u, d̄, δu) :=

∫
B0

S : δE dV −
∫
B0

f0 · δu dV −
∫
∂tB0

t0 · δu dA = 0 (25)

gd̄(u, d̄, δd̄) :=

∫
B0

ξ0i · δd̄ dV +

∫
B0

Ξ0i : Grad
(
δd̄
)

dV = 0 (26)

6



H. Holthusen, T. Brepols, J.-W. Simon and S. Reese

with the test functions δu and δd̄, the second Piola-Kirchhoff stress tensor S, the virtual Green-
Lagrange strain δE := sym

(
F TGrad (δu)

)
, the referential body force vector f0, and the refer-

ential traction vector t0. Both weak forms are nonlinear functions of their arguments, and thus,
need to be solved using Newton-Raphson’s method.

3 TRANSFORMATION OF ALGORITHMIC TANGENT OPERATORS

To be applicable in standard finite element formulations, the weak form of linear momentum
(25) is stated in terms of Lagrangian quantities. In contrast, the entire constitutive framework
is expressed in terms of logarithmic strain measures, and thus, the constitutively dependent
variables as well as the material tangent operators need to be transformed to the Lagrangian
space. Employing both that ε solely depends on C := U2 and the fact that the stress power
in logarithmic and Lagrangian space has to be equal, the transformation of the second Piola-
Kirchhoff stress is found

ε̇ = 2
∂ε

∂C︸ ︷︷ ︸
=:Q

:
1

2
Ċ, T : ε̇

!
= S :

1

2
Ċ → S = T : Q. (27)

Since the evolution equations introduced in Section 2.2 are discretized in time within a time
interval t ∈ [tn, tn+1], the unknown variables which have to be solved on a local level are γ̇pn+1 ,
εpn+1 , γ̇dn+1 , and Drn+1 . All of them being discretized using the backward Euler method. Algo-
rithmically, these variables are implicit functions of Cn+1 and d̄n+1. Hence, in an algorithmic
sense, one may write Sn+1 = S̄n+1

(
Cn+1, d̄n+1

)
as well as dn+1 = d̆n+1

(
Cn+1, d̄n+1

)
. In anal-

ogy, the logarithmic stress reads Tn+1 = T̄n+1

(
εn+1, d̄n+1

)
. A straightforward incrementation

of these latter equations leads to the following expressions

∆S = 2
∂Sn+1

∂Cn+1
:

1

2
∆C +

∂Sn+1

∂d̄n+1
·∆d̄, ∆d = 2

∂dn+1

∂Cn+1
:

1

2
∆C +

∂dn+1

∂d̄n+1
·∆d̄ (28)

with the global increments ∆C and ∆d̄. Following a similar procedure for Tn+1 and Qn+1, the
increments of Sn+1 and dn+1, taking into account Equation (27), can also be written as

∆S = ∆Tn+1 : Qn+1 + Tn+1 : ∆Qn+1 =

(
Qn+1 :

∂Tn+1

∂εn+1
: Qn+1 + Tn+1 :

6
Ln+1

)
:

1

2
∆C

+ Qn+1 :
∂Tn+1

∂d̄n+1
·∆d̄

(29)

∆d =
∂dn+1

∂εn+1
: Qn+1 :

1

2
∆C +

∂dn+1

∂d̄n+1
·∆d̄ (30)

with the sixth order tensor
6
L := 4 ∂2ε

∂C∂C . Both Q and
6
L can be determined analytically (cf. [17]),

but require both eigenvalues and eigenvectors, and thus, are numerically expensive to determine.
However, if one considers thatC has no complex eigenvalues, the calculation can be implemented
numerically extremely efficient by means of algorithmic differentiation using the trigonometric
solution of the eigenvalue problem. A technique based on this type of approach to compute
the matrix logarithm as well as its derivatives is presented in [18] using generating functions,
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which is not only very efficient but also quite accurate in terms of numerics. The material
tangent operators in the logarithmic space are obtained using the algorithmic differentiation
tool AceGen.

4 NUMERICAL EXAMPLE

In this numerical example, a tensile specimen is considered in a three-dimensional setting,
whose boundary value problem is taken from the literature [19] and is depicted in Figure 1.
Hexahedral finite elements with trilinear shape functions are used for discretization. The tensile
specimen is uniaxially constrained, while the displacement in y direction is increased over time.
Furthermore, due to symmetry, only one eighth of the entire geometry is simulated. Notewor-
thy, only Neumann boundary conditions are considered for the micromorphic boundary value
problem, which are set to zero.
The material parameters for this example are taken from [1, 14]: µe = 55000 [MPa], Ke =
61666.6̄ [MPa], µp = 62.5 [MPa], Kp = 0 [MPa], rp = 125 [MPa], sp = 5 [-], σy0 = 100 [MPa],
Hd = 1 [MPa], rd = 5 [MPa], sd = 100 [-], Kh = 0.1 [MPa], Y0 = 2.5 [MPa] as well as A = 75
[MPa mm2] and H = 105 [MPa]. It should be noted that an additional parameter used for a
Taylor expansion of damage hardening is ad = 0.9999999 [-] (cf. [1]).
The specimen is loaded in a monotonic way, where the displacements at the outer edges are
steadily increased. A careful mesh convergence is performed using 580, 4113, 13660, and 18510
finite elements, which is shown in Figure 2. The finite element mesh of the finest discretization
is shown in Figure 3. It is appealing to recognize convergence in both the onset of damage
and the amount of dissipation. At the end of the simulation, the structural specimen can be
considered ‘fully broken’, since the final value of the load is about two percent of the maximum
value reached during the loading and a clear crack going through the specimen can be observed.
Moreover, Figure 3 provides the contour plots of the main damage components as well as the
accumulated plastic strain at the end of simulation using the finest mesh. A strong necking is
clearly visible in the middle of the specimen. In this context, Dryy can be interpreted as cracks in
the plane perpendicular to the loading direction, which is why this plane is the most degraded.
Slightly less degraded is the component Drzz , while the component Drxx merely reaches a value
of 0.8 [-]. In addition, the accumulated plastic strain κp can be understood as a measure of
plasticity evolved, which is most pronounced in the region of necking.
Overall, it can be concluded that the developed material model is capable of providing plausible
results even in a three-dimensional context.

5 CONCLUSION

Within this contribution, the model of [1], which couples elasto-plasticity to anisotropic dam-
age for initially isotropic materials, was discussed in further detail. In addition, pathological
mesh-dependency was cured by gradient-extended invariants of the second order damage tensor,
resulting in three global unknowns in addition to the displacement field.
First of all, it was shown that the mapping for the damage tensor chosen in [1] indeed is invariant
with respect to superimposed rotations of the intermediate configuration. Noteworthy, assuming
an additive decomposition of the total strain does not harm the findings made in any way. As a
consequence, it is not necessary to make any assumptions about, for instance, the plastic spin.
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F2F2 us12.5us

50

905 5

3

20

[mm]

R15
y

xz

Figure 1: Geometry and boundary value problem. The specimen is loaded uniaxially, while the red
edges remain perpendicular to the red forces. The displacements us (blue) are measured halfway between
the center and the outer (red) edges of the specimen. The forces (red) are measured at the outer edges.
Due to symmetry, only one eighth of the geometry is simulated.

Moreover, an alternative choice of the invariants used for gradient-extension was discussed here,
which is based on the volumetric-deviatoric decoupling of the second order damage tensor.
For the numerical implementation, the weak form of linear momentum was expressed in terms of
Lagrangian quantities, in order to be able to use the proposed model in standard finite element
formulation. Therefore, the Lagrangian strains must be transformed to the logarithmic space
and both the constitutively dependent variables as well as their algorithmic consistent tangent
operators vice versa. In order to decrease the numerical effort required, it might be suitable to
work with a combination of generating functions and algorithmic differentiation.
Lastly, the material model was examined in a three-dimensional numerical example to assess
the ability of the proposed gradient-extension to cure mesh-dependency. Since coupled damage-
plasticity simulations generally are very expensive in terms of numerical computation time,
future works should focus on how to decrease the numerical effort, for instance, using adaptive
mesh refinement or reduced integration (see e.g. [20]).
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and T. Brepols acknowledge the funding of the project RE 1057/51-1 (DFG, Project number
453715964).

REFERENCES

[1] H. Holthusen, T. Brepols, S. Reese, and J.-W. Simon. A two-surface gradient-extended
anisotropic damage model using a second order damage tensor coupled to additive plasticity
in the logarithmic strain space. Journal of the Mechanics and Physics of Solids, (2022)
163:104833.

[2] H. Holthusen, T. Brepols, S. Reese, and J.-W. Simon. A novel gradient-extended anisotropic
two-surface damage-plasticity model for finite deformations. In: COMPLAS 2021, (2022)
1-12.

[3] S. Forest. Micromorphic approach for gradient elasticity, viscoplasticity, and damage. Jour-

9



H. Holthusen, T. Brepols, J.-W. Simon and S. Reese

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

us/l × 102 [-]

F
2
/F

m
a
x

[-
]

no. of elements:

580
4113
13660
18510

Figure 2: Normalized force-displacement curves with maximum load Fmax = 6.044 [kN]. Note that this
value corresponds to the value of the whole geometry and not to the eighth, if symmetry is exploited.
The latter corresponds to a quarter of Fmax. The displacement is normalized to the total length of the
specimen l = 100 [mm]. For 18510 finite elements, the final value is about 0.02 [-]. The displacement us
is indicated in Figure 1.

nal of Engineering Mechanics, (2009) 135(3):117–131.

[4] S. Murakami. Mechanical Modeling of Material Damage. Journal of Applied Mechanics,
(1988) 55(2):280–286.

[5] H. Badreddine, K. Saanouni, and T. D. Nguyen. Damage anisotropy and its effect on
the plastic anisotropy evolution under finite strains. International Journal of Solids and
Structures, (2015) 63:11–31.

[6] H. Holthusen, T. Brepols, S. Reese, and J.-W. Simon. An anisotropic constitutive model
for fiber-reinforced materials including gradient-extended damage and plasticity at finite
strains. Theoretical and Applied Fracture Mechanics, (2020) 108:102642.

[7] L. Poggenpohl, H. Holthusen, and J.-W. Simon. Failure zone homogenization for model-
ing damage- and debonding-induced softening in composites including gradient-extended
damage at finite strains. International Journal of Plasticity, (2022) 154:103277.

[8] S. Reese, T. Brepols, M. Fassin, L. Poggenpohl and S. Wulfinghoff. Using structural tensors
for inelastic material modeling in the finite strain regime – a novel approach to anisotropic
damage. Journal of the Mechanics and Physics of Solids, (2021) 146:104174.

[9] S. Forest. Nonlinear regularization operators as derived from the micromorphic approach to
gradient elasticity, viscoplasticity and damage. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, (2016) 472(2188):20150755.

[10] C. Miehe, N. Apel, and M. Lambrecht. Anisotropic additive plasticity in the logarithmic
strain space: modular kinematic formulation and implementation based on incremental

10



H. Holthusen, T. Brepols, J.-W. Simon and S. Reese

Drxx Dryy

Drzz
κp κ

p
[-

]

D
r i

i
[-

]

1.0, 1.8

0.0, 0.0

Figure 3: Left: Finite element mesh with 18510 elements, five layers are used in thickness direction.
Middle: Contour plots of damage components Drxx , Dryy , Drzz , and accumulated plastic strain κp at
the end of simulation (us = 10 [mm]). The maximum value of 1.0 [-] corresponds to the damage values,
while 1.8 [-] is the maximum plastic strain value. Thin black lines illustrate the initial geometry.

minimization principles for standard materials. Computer Methods in Applied Mechanics
and Engineering, (2002) 191(47):5383 – 5425.

[11] J. Friedlein, J. Mergheim, and P. Steinmann. Observations on additive plasticity in the
logarithmic strain space at excessive strains. International Journal of Solids and Structures,
(2022) 239-240:111416.

[12] M. Fassin, R. Eggersmann, S. Wulfinghoff, and S. Reese. Gradient-extended anisotropic
brittle damage modeling using a second order damage tensor – theory, implementation and
numerical examples. International Journal of Solids and Structures, (2019) 167:93 – 126.

[13] K. Langenfeld and J. Mosler. A micromorphic approach for gradient-enhanced anisotropic
ductile damage. Computer Methods in Applied Mechanics and Engineering, (2020)
360:112717.

[14] T. Brepols, S. Wulfinghoff, and S. Reese. A gradient-extended two-surface damage-plasticity
model for large deformations. International Journal of Plasticity, (2020) 129:102635.

[15] R. Desmorat. Anisotropic damage modeling of concrete materials. International Journal of
Damage Mechanics, (2016) 25(6):818–852.

[16] J. C. Criscione, J. D. Humphrey, A. S. Douglas and W. C. Hunter. An invariant basis for
natural strain which yields orthogonal stress response terms in isotropic hyperelasticity.
Journal of the Mechanics and Physics of Solids, (2000) 48(12):2445-2465.

[17] C. Miehe and M. Lambrecht. Algorithms for computation of stresses and elasticity moduli
in terms of seth–hill’s family of generalized strain tensors. Communications in Numerical
Methods in Engineering, (2001) 17(5):337–353.

11



H. Holthusen, T. Brepols, J.-W. Simon and S. Reese

[18] B. Hudobovnik and J. Korelc. Closed-form representation of matrix functions in the for-
mulation of nonlinear material models. Finite Elements in Analysis and Design, (2016)
111:19-32.

[19] S. Felder, N. Kopic-Osmanovic, H. Holthusen, T. Brepols, and S. Reese. Thermo-
mechanically coupled gradient-extended damage-plasticity modeling of metallic materials
at finite strains. International Journal of Plasticity, (2022) 148:103142.

[20] O. Barfusz, T. van der Velden, T. Brepols, H. Holthusen, and S. Reese. A reduced
integration-based solid-shell finite element formulation for gradient-extended damage. Com-
puter Methods in Applied Mechanics and Engineering, (2021) 382:113884.

12


