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Abstract 

We present a Direct Flexibility Method (DFM) for the solution of finite element equations. This method is based on a decomposition of 

the finite element model into substructures, which may reduce to individual elements. Substructures are preprocessed by the Direct Stiffness 

Method (DSM) to generate free-free flexibility matrices for floating substructures. The interface problem is solved for the interface forces 

and the solution recovered over substructure interiors. The DFM shares with the DSM the advantages of being automatic, maintaining 

locality and sparseness, efficiently handling continuum elements, and requiring only the availability of element stiffness libraries. The new 

method appears to be advantageous for specific applications. These include: massively parallel processing, inverse problems, treatment of 

rigid members and inclusions, and use of underintegrated elements without spurious-mode stabilization. 

1. Introduction 

This exposition consolidates material dispersed in previous reports and papers on flexibility methods in 

structural mechanics [l-6]. Those developments were motivated by needs of specific applications: inverse 
problems for damage detection, localized vibration control, and massively parallel computations. The underlying 

theme was the use of techniques of partitioned analysis originally developed for coupled problems [7-91. 
By now there are sufficient common ingredients in that material to piece together the basic steps of a solution 

method identified as Direct Flexibility Method or DFM. Notice that our title is ‘a DFM’ rather than ‘the DFM’. 

In fact, this is an instance of a class of methods generated from a general variational flexibility formulation 
presented in [6] and outlined in Section 8. That general formulation includes the well-known Classical Force 

Method (CFM) as well as the present DFM as special cases. The departure from the CFM emerges by exploiting 
two attributes of the Direct Stiffness Method (DSM) version of the Displacement Method: use of free-free 
element matrices, and element-by-element assembly. The motivation for combining features from both CFM and 

DSM has rich historical roots. In the following we highlight historical points relevant to the present exposition. 
The pre-computer form of the CFM had a long and distinguished history since the source contributions by 

Maxwell, Mohr and Castigliano. It was a favorite of experienced structural engineers because it provides 
directly the internal forces, which are of paramount interest in stress driven design. Because of its physical 
transparency of this form, which relies on the hand selection of redundant forces through appropriate cuts or 

releases, is still taught in introductory courses in structures. 
Semi-automatic matrix forms of the CFM evolved after World War II with the appearance of digital 

computers [ 10-141: the analyst still selects the force redundants but the resulting matrix equations were solved 
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by computer. As structural models increased in size and complexity while competition with the DSM heated up, 
methods for fully-automated, computer-based selection of redundants were developed in the 1960s [ 15-171. 
These developments did not, however, spare the Force Method from extinction when the Finite Element Method 

(FEM) spread beyond the aerospace industry through general-purpose codes [18]. The CFM had always been at 
its best for skeletal structural models: trusses and frameworks, in which there is a close relation between internal 

and nodal forces. It does continuum elements clumsily. A key computational deficiency is that numerically 

stable computer selection of redundants, as needed to compete against the fully automatic DSM, hinders the 
sparsity of the solution matrices. This makes a big difference as the size of continuum models grows. 

For example, in a 10 X 10 X 10 mesh of 8-node bricks the CFN-to-DSM solution time ratio exceeds one 
million. 

Since 1970 several investigators [ 19-271 have continued research in the Force Method for selected 
applications such as structural optimization. Those efforts have concentrated on two different areas. Activity 
continued in the CFM aimed at extracting a sparse null basis of the equilibrium matrix so as to produce a sparse 

symmetric redundant-flexibility matrix. This line of research, pursued by linear algebrists [19-221, appears to 
have been closed by 1990. Patnaik and coworkers [23-251 have developed a non-classical approach called the 

Integrated Force Method, which maintains sparsity for continuum elements at the expense of symmetry. 
Mathematically, the fundamental procedure adopted in the CFM is to decompose the solution of the 

governing equilibrium equations into particular and homogeneous parts. Physically, these decompositions lead 

to the statically determinate and indeterminate contributions to the complete solution. Regardless of interpreta- 

tion, not only the member flexibility matrices but also the assembled flexibility matrix pertaining to the statically 
indeterminate structure must have full rank, a property that hinders locality and sparsity. 

The present DFM retains several aspects of the CFM, such as symmetric equations and the use of flexibility 

matrices. The main deviation is in the problem decomposition methodology. In the present DFM a structure is 
partitioned into a number of substructures. Substructures may beJloating, that is, contain rigid body motions. An 
important consequence of this attribute is that, for each substructure, the corresponding flexibility and stiffness 

matrices become dual of each other. This endows the present DFM with the locality and sparseness enjoyed by 
the DSM. To achieve those goals we need to introduce new concepts and tools that are absent in the CFM, in 
particular rigid body motions, self-equilibrium conditions and the free-free flexibility. Thus, the present DFM 

shares many of the element-by-element processing features of the DSM, and in fact can make full use of 
standard finite element stiffness libraries. 

Work in the present DFM was initially motivated by applications to inverse problems in structural mechanics 

as well as massive parallel processing. An attractive, scalable parallel solution approach called FETI (Finite 
Element Tearing and Interconnecting) has been developed since 1990 by Farhat, Roux and coworkers. 
Formulation and applications of FETI methods are described in a recent comprehensive survey [28]. In terms of 

partitioned analysis procedures [7-91, FETI may be interpreted as a di&rentially partitioned solution procedure 
in which a large finite element model, embodying possibly millions of equations, is decomposed into 
nonoverlapping subdomains. Subdomains are connected by discrete or distributed Lagrange multipliers, which 
represent interaction forces. Each subdomain is mapped to a processor. The interior problem of disconnected 
subdomains is solved by the displacement method via local sparse solvers, whereas the interface connection 

problem is treated by a preconditioned, projected conjugate gradient solver. 
An alternative formulation of the FETI methods, called algebraically partitioned FETI or A-FETI [3,4], has 

been found to have deeper connections with the Force Method. That work, as well as related investigations into 
system identification and damage localization [l] led to a general variational derivation of a spectrum of 
flexibility-based methods [6]. The name ‘Direct Flexibility Method’ emphasizes the use of a new definition of 
flexibility matrix, which exists for floating elements or substructures. This free-freejexibility is dual to the well 
known free-free stiffness matrix that is the building block of the Direct Stiffness Method. 

We realize that the use of the qualifier ‘direct’ in the DFM may be subject to differing interpretations [29]. In 
the DSM, ‘direct’ refers to the immediate merge of free-free element stiffness matrices into the master stiffness 
matrix as elements are being formed. In the present paper ‘direct’ refers to the availability of free-free 
substructural flexibilities that are dual to the free-free stiffness matrices. These free-free substructural flexibility 
matrices need not be assembled when using parallel iterative algorithms such as the A-FETI method, thus their 
locality is preserved. 
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2. The Classical Matrix Force Method 

This section reviews the basic steps of the matrix CFM for treating a linear finite element model. The five 

governing matrix equations are 

Equilibrium: P=B,,f+B,x 

Constitutive (flexibility form): ti =Fj 

Compatibility: BTV=O (1) 

Displacement-deformation: u = (B,, + B,X>% 

Redundant forces: x=xf. 

Here f, p and X are vectors of applied, internal and redundant forces, respectively; ii and 6 are the vectors of 

node displacements and internal deformations work-conjugate to f and 5, respectively; B, and B, are matrices 
that decompose the internal forces into statically determinate and indeterminate components, respectively, and X 
is a matrix relating redundants to applied forces. In the constitutive relation (lb), F denotes the block-diagonal 

deformational flexibility matrix 

F = diag(F’) (2) 

in which F” is the deformational-flexibility matrix of the eth finite element or substructure, called the 

compliance by some authors. A superposed bar is used to distinguish this classical flexibility, which plays no 

role in the present DFM, from the free-free flexibility matrix F introduced later. It should be noted that the 

deformation flexibility F is required to be non-singular. 
In Eqs. (1) we have largely followed the format of Pestel and Leckie [30] wherein subscripts 0 and I refer to 

determinate and indeterminate portions of the problem, respectively. If the structure is statically determinate, B, , 
X and 2 are void, and (la) suffices for the analysis. 

The main decision for carrying out this method is the selection of redundants x, because all other steps are 

thereby determined. Matrices B,, and B, are constructed through a variety of techniques driven by considerations 

discussed below. Matrices D,, = BiFB,, D,, = BTFB, = Di, and D,, = BTFB, are then computed. The 
redundant forces, internal forces and node displacements are obtained in tandem from 

X=Xf= -D,,‘D,,,f, 

b = B,,f + B,x = (B, + B,X)f , (3) 

U = (B,, + B,X)TFj = (D,,, - D:,D;,‘D,,)f= F,qf. 

Matrix D, , must be non-singular in order for the global flexibility matrix F,, which is the inverse of the global 

stiffness matrix K,, to be uniquely determined. It is this non-singularity requirement that leads to the loss of 
locality and sparsity, a property enjoyed by the DSM. Only a minor part of the computations (3) can be carried 
out element by element, thus making the CFM non-competitive against the DSM. 

Ideally, the choice of 2 should yield a well conditioned and sparse B, matrix. Those attributes are inherited by 
D, , = BYFB,, which is the coefficient matrix in the computationally dominant solution step D, ,x = -D,,j For 
relatively simple truss and framework structures the hand selection of good redundants is well understood after 

decades of experience. As an illustration, in the four-bay Union-Jack plane truss shown in Fig. l(a) four 

diagonal members are cut as depicted in Fig. l(b), and their internal axial forces chosen as redundants x, 
through x4. This is known to be a good selection because the redundants are strongly linearly independent, 
which helps numerical condition, and the effect of the force-pairs x, is localized, which helps sparsity. Note, 
however, that the effect of applied forces on the statically determinate subproblem (the truss upon removal of 
the four redundant members) is not necessarily localized. For example, the top force F shown in Fig. l(c) 
stresses almost all members. This is a consequence of the requirement of statical determinancy: any applied 
force must reach the supports through loud paths that traverse that structure. 

Human selection of good redundants becomes progressively difficult, however, as skeletal structures increase 
in complexity. And it would be unthinkable for the discrete models of plates, shells and three-dimensional 
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Table 1 

Matrix notational conventions 

Symbol Description 

4, B, 
C, H 
D,,w ,D,, 
D, 
F 
F 

F, 
K 

K, 
I 
G 
L 

P, 
P, 
R 
T 
u 
X 

w, Y 
0 

U, 
u _g 
” 
2 
ru 

A,> 

1::: 

(.),, 
(. ),> 
(. ), 
c.1, 

(.J,, 

Load-influence and self-strain matrices in CFM 

Auxiliary matrices in computation of free-free flexibility 

Solution submatrices in CFM 

Diagonal matrix L ‘L 
Block diagonal substructural flexibility 

Deformational flexibility matrix in CFM 

Flexibility of the total assembled structure 

Block diagonal substructural stiffness 

Stiffness of the total assembled structure 

Identity matrix (I,: k X k identity matrix) 

Globalization matrix: generalized inverse of L 
Localization matrix linking local and global freedoms 

Rigid-body mode projector 

Projector for RTL 
Substructural rigid-mode matrix 

Transformation matrix in computation of free-free flexibility 

Boundary localization matrix 

Redundant influence matrix in CFM 

Symmetric matrices appearing in iterative solution 

Null matrix or vector 

Deformational displacements 

Known portion of deformational displacements 

Internal forces for all substructures 

Applied forces for all substructures 

Applied forces in the CFM 

Globally (assembled) applied force 

Interface residuals in iterative solution 

Total substructural displacements 

Total node displacements in the CFM 

Rigid body mode displacements 

Total interface displacement at global level 

Generalized deformations in CFM 

Redundants in CFM 

Rigid body mode amplitudes for all substructures 

Interface interaction forces for all substructures 

Pertaining to individual element (e) 

Pertaining to individual substructure (s) 

Pertaining to node n 

Pertaining to substructure boundary node freedoms 

Pertaining to substructure internal node freedoms 

Pertaining to substructure boundary force-specified freedoms 

Pertaining to substructure boundary displacement-specified freedoms 

solids. By 1960 it was evident that if the CFM was to compete against the up-and-coming, fully automatic 
Direct Stiffness Method [31-331, a computerized selection of x was required. Procedures informally known as 
‘structural cutters’ were developed [16,17]. The best ones operated by directly forming B, column by column 
without bothering about the physical interpretation of the x. Strong linear independence of the columns was 
enforced through pivoting techniques related to Gauss-Jordan elimination. Unfortunately, this strategy generally 
results in a dense B,, destroying the sparsity of D, , . When these procedures were tried on continuum models, 

large increases in storage and solution costs with respect to the DSM were observed. 
Loss of sparsity is not the only drawback. The CFM is based on equilibrium, constitutive and compatibility 

relations expressed in a node-to-n&e basis. Linkage of node to element properties presents no problems in bars 
and beams. For instance, the discrete constitutive equations u’ =F”j” of a two-node beam element are readily 
constructed, since the relative displacement and rotations of the end nodes may be chosen as deformation 
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(4 

(b) 

Cc) 

(4 

(e) 

Fig. I. (a) A four-bay, statically indeterminate plane truss; (b), (c): treatment by the Classical Force Method; (d)-(f): partitioned structures 
for the Direct Flexibility Method. The latter are discussed in Section 3. 

variables V” conjugate to the standard internal force resultants (axial forces, shears and moments) in 5”. Then p” 

and V‘ can be easily linked to nodal quantities to establish a split system of equilibrium and compatibility 
equations. 

Serious difficulties arise, however, in continuum models containing plates, shells or solid elements. The task 
becomes nontrivial in simple triangle and tetrahedron elements, and exceedingly hard in more complex ones. 

For example, consider a 20-node, 60-dof curved isoparametric brick: exactly 54 independent stress patterns must 

be chosen as internal forces along with 54 conjugate strains, and these linked to nodal forces and displacements. 
This is a formidable combinatorial problem. Now consider an internal node where eight such bricks meet. The 
nodal quantities will depend on 8 X 54 = 432 internal force patterns, which in turn depend on all connecting 

node variables. A ‘structure cutter’ traversing such a maze has negligible chance of finding a sparse basis. 
The foregoing review indicates that the fundamental CFM building block that consists of a nodally-connected, 

statically-determinate subproblem modified by a set of redundancies, gives rise to serious computational 
difficulties when applied to continuum models. These difficulties explain the disappearance of the CFM from 
general-purpose FE codes by 1970, and have motivated us to formulate the Direct Flexibility Method (DFM) 

along a different track. This method emphasizes substructural computations realized through appropriate model 
decompositions. In other words, the loss of locality and sparsity inherent in the CFM is obviated by carrying out 
the computations on disconnected substructures. In so doing one also automatically benefits from locality of 

force distributions. Locality improves sparsity and exploitation of parallelism, and facilitates the treatment of 
inverse problems. 

3. DFM Step 1: Model decomposition 

The main steps of the present DFM are illustrated in Fig. 2. This section focuses on the first step. The original 
finite element model is decomposed into nonoverlapping substructures satisfying certain rank requirements 
discussed below. A substructure may reduce to an individual finite element as a special case. This configuration 

is called the partitioned structure. In nonstructural applications of the DFM, the term partitioned model may be 
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Fig. 2. The main steps of the DFM. Thumbnail FE pictures pertain to the plane stress mesh shown in more detail in Figs. 3 and 4 

used. Readers familiar with partitioned analysis concepts will observe that the DFM adopts element-by-element 
partitions, rather than node-by-node partitions characteristic of the CFM. 

Each node of the partitioned structure is assigned a nonnegative integer attribute V called its valency. If the 

node is located on the boundary of one or more substructures, Vcounts the number of substructures it belong to. 
Otherwise V is zero. With the help of this counter nodes are classified into three types: 

Node-resident quantities such as forces and displacements are distinguished by the same qualifiers; for example 
inter$ace forces are only defined at nodes shared by two or more substructures. The term cross nodes is used in 

the original FETI method [28] to identify those with V 2 3. 
A substructure may possess N,. > 0 rigid-body modes when partitioned as shown in Fig. 2. If so it is called a 

floating substructure. If no rigid-body mode is suppressed the substructure is called free-free. If all of them are 
suppressed (N,. = 0) through appropriate support conditions, it is called jked. 

The decomposition step is best illustrated through examples. Fig. l(d) through l(f) show three partitioned 
configurations of the plane truss of Fig. l(a). The partitioned structure of Fig. l(d) results from a decomposition 
into four substructures, of which three are free-free (with N, = 3) and one fixed. Note that the rightmost 
substructure is statically indeterminate. Fig. I(e) continues the decomposition down to 21 individual elements, 
all of which are free-free. The decomposition of Fig. l(f) gives rise to a mechanism due to the rightmost 
substructure. Partitioning that gives rise to mechanisms requires special treatment, which will not be considered 

in this paper. 
Fig. 3 illustrates the decomposition of a continuum model. Fig. 3(a) shows a square plane stress structure 

clamped along AB, which is discretized by a regular 4 X 4 mesh of four-node elements. Elements are identified 
by numbers (1) through (16) while nodes are identified by global numbers 1 to 25. Fig. 3(c) shows a generic 
element (e) and its local node numbering. 
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Fig. 3. (a) A regular 4 X 4 plane-stress mesh used as example in Sections 3-7 wheres (b) is a decomposition of (a) into four substructures. 

(c) shows a generic element (e) of the original stmcture, and (d) a generic substructure (s) before and after removal of its interior nodes. 

Fig. 3(b) depicts a partitioned structure consisting of four identical 4 X 4 disconnected substructures, 
identified as (1) through (4). In this case two substructures are free-free (with N, = 3) whereas two are fixed. 
Fig. 3(d) displays a generic substructure (s) before and after the interior nodes are eliminated as discussed in 

Step 4. The substructure nodes are identified as shown; for convenience the interior nodes are numbered last. 
Note that none of the decompositions illustrated in Figs. 1 and 3 would be acceptable for the CFM because the 

partitioned structures are mechanisms. 

4. Step 2: Flexibility formation 

The second DFM step involves the formation of the matrix flexibility equations for the partitioned 
substructures. On completion only the substructure boundary nodes remain, as illustrated in Fig. 3(d). The bulk 

of the work involves the formation of the substructure flexibility matrices. On distributed-memory parallel 
computers, this work is trivially task-parallelizable if each substructure is assigned to a separate processor. 

Consider an individual substructure (s) including internal nodes. The substructure is made free-free by 

replacing any supports by reaction node forces as necessary. and including these reactions in the interior node 
forces. The total number of nodal degrees of freedom is called N,. 

Being free-free, the substructure has N’z unsuppressed rigid body modes (RBM). Let a linearly independent 
modal basis for the RBM be chosen as columns of a matrix R" dimensioned N; X N’L, so that the rigid body 
nodal displacements can be represented as U: = R'd, where LY’ is a column vector containing N: RBM 
amplitudes. For computational convenience the columns are orthonormalized to satisfy (R')TR' = I. The direct 
construction of R" by geometric arguments is explained in Section 9. 

We often use in the sequel the orthogonal RBM projector 

P; =Z - RF(RA)T, (4) 

which is a symmetric and idempotent matrix: (P.1)' = P'L. 
For each substructure (s), the force equilibrium and the displacement decomposition can be expressed as (see 

Fig. 4): 
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w IBiE = 
Internal 

node forces Ps 

(4 bllc = 
Total node 

displacements us 

Applied 
node forces f * 

Illill 

+ 

Deformational node 
displacements dS 

u 
Interaction 

node forces Xi 

Rigid body node 

displacements I&’ 

Fig. 4. The composition of node force and displacement quantities for an individual substructure: (c) equilibrium, (d) kinematics. 

where A,, is the vector of interface nodal forces, and U’ is a Boolean matrix whose entries are one and zero for 
substructural interior and interface nodes, respectively. For example, for the case of a substructure made of four 
plane stress elements as shown in Fig. 3(d), U” becomes an (18 X 18) diagonal matrix whose first 16 entries are 

unity and the seventeen and eighteen entries are zero as the interior node number is 9. 
Eq. (5a) states that the substructural internal node forces p” must be in equilibrium with the substructural 

applied forces f” and the interface forces A;I acting on the interface boundary. Eq. (5b) states that the nodal 

displacements us are the superposition of deformational displacements d” = P;u.’ and rigid displacements 
T” = (Z - P:)u” = R”cu”. Note that d” and rF are orthogonal because (Z - P’z)P: = 0. 

From the Principle of Virtual Work, the self-equilibrium of the substructure (s) can be mathematically 

expressed as 

(R”)Tp” = (R’)T(fs + u”A.;) = 0, (6) 

which implies that the sum of forces and moments for each substructure must be zero. 
We now introduce the dual relationships between the substructural stiffness K” and substructural flexibility 

F” . 

K.SUJ + =f” _t urn; ) F.rp” =d.r = u.Y _ R’a.r. 
(7) 

The stiffness equation (7a) for a partitioned substructure is well known. K” may be generated by standard DSM 
assembly techniques. Because of the ready availability of element stiffness routines, it is assumed that K” will be 
constructed first. On the other hand, the flexibility equation (7b) employs the so-called free-free substructural 

flexibility matrix F”, which represents a generalization of the classical deformational flexibility matrix. 
Specifically, K” and F” are the Moore-Penrose generalized inverses of each other given by 

F” = p;[K” + @@“)T] -’ = (F.\)T , K” = P:[F” + R”(R”)T] --I = (K”)T , 

K”F” _ F SK” _ (8) 
- -p:, 

K”P: = F”P; = 0 
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The most important property is that F’ and K” share the same eigenvector basis. Of the infinite number of 

generalized inverses of a singular K’, this is the only one enjoying that spectral property. If the substructure 

possesses no RBMs, R” is void, P: = I, and F’ and K” become the ordinary inverses of each other. The efficient 
computation of F‘ is discussed in Section 9. 

Having formed K’ by the DSM and R” geometrically, F” may be evaluated directly using the first of (8) if the 
substructure contains a few elements, or is an individual element. For substructures containing hundred or 
thousands of elements, exploitation of the natural sparseness of K‘ becomes important, and a procedure to that 
effect is discussed in a separate article [34]. 

5. DFM Step 3: Application of kinematic boundary conditions 

This step brings into play nodal displacement boundary conditions acting on an individual substructure s. A 

straightforward stiffness condensation method is presented here. Consider the following splitting of the first of 

(7): 

(9) 

in which subscripts S and d denote substructural freedoms where forces and displacements are specified, 
respectively. Suppose that U: = *’ u (, because of support conditions which as a special case includes 9, = 0. The 

first row of (9) now becomes 

K,,u, =f, + u,A, - K,&s/. (10) 

If we assume that the support conditions preclude all substructure rigid body modes, i.e. u, = d,: 

F;,p;=u; +(K;,.)-‘K;c,u^; j F”p”=d’+d’, F’=K,;’ (11) 

where the symbol (ti) implies that the substructural flexibility F’ is the ordinary inverse of the substructural 
stiffness matrix corresponding to the force-specified nodes. Likewise, the substructural displacements become 
the substructural deformations d“. Matrices F’, R‘ and the known displacement portion A’ are carried forward 
into the next step. In passing we note that the second row of (9) may be used to compute the boundary reaction 

forces Ad. 
As further discussed in Section 11, the case where support conditions suppress only a subset of the rigid body 

modes, leaving a floating substructure, is numerically difficult as it involves rank detection and the use of a 

generalized inverse in (11). A penalty approach that uses rigid (zero flexibility) boundary elements defers such 

modifications to subsequent steps and promises to overcome the problem of floating substructures. This method 

is not presented here because its efficient implementation is still under investigation. 

6. Preliminaries for interconnection operations 

The key data emerging from Step 3 is an array of matrices for the disconnected substructures: 

F’,R’, s= 132 ,..., y,, 

plus known vectors such as d’ and f ‘. In preparation for the interconnection calculations discussed in Section 7, 
we summarize here the quantities and relations required therein. The partitioned structure of Fig. 3 illustrates the 
definition of matrix and vectors. The assembled structure in Fig. 2 shows the interface nodes (18 local, 8 

global), which are left over after application of known force and displacement conditions. Those are used to 
define the following matrix and vector entities. 
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6. I. Assembly matrix 

First, we introduce a localization matrix L that relates the assembled global nodal displacements ux to the 

partitioned substructural displacements (including elements) us as 

u’ 
2 

u= u 

[*I 

=Lu,. (12) 

UN, 

Here, u’ include all degrees of freedom (interior and interface) of substructure (s). The localization matrix L is 

split into the substructural interior part Li and substructural boundary node part L,: 

4 0 
L= 0 L, [ I (13) 

Because the substructural interior nodes do not appear in the interconnection conditions, we focus on the 
boundary localization matrix L,. The matrix relates local to global interface freedoms only. The (i, j) entry is 

one if ith-local freedom links to the jth global freedom, and zero otherwise. For the example structure shown at 
the lower right corner in Fig. 2, this matrix is 36 X 16. To save space a node-by-node version of LT is shown 
below, with Z and 0 denoting the 2 X 2 identity and zero matrices, respectively: 

L;= L' L2 L3 L4 IT 

‘I 0 0 0 0 0 0 z 0 0 0 0 0 

0 0 0 z 0 0 0 0 0 0 0 z 0 0 0 0 0 0 
0 0 z 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 
0 z 0 0 0 0 z 0 z 0 0 0 0 0 0 0 z 0 = 0 0 0 0 0 z 0 0 0 0 0 0 0 

0 0 0 0 z 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 z 0 0 0 

-0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 I 

00001’ (14) 

z 0 0 0 0 
0 0 z 0 0 
0 z 0 0 0 

Extra spaces group the columns of Li into contributions from the four substructures. In practice this matrix can 

be represented compactly by a pointer array. The product D, = LEL, is a diagonal matrix: 

D, = LiL, = diag(2, 2,2,2,2,4,4,2,2,2,2,2,2,2, 2,2, 2). (15) 

The diagonal value, repeated for the x and y freedoms, counts how many substructures meet at a node. That 

count was called the nodal valency V in Section 3. The above matrix appears in the expression of the 
globalization matrix G,, which is the generalized Penrose left-inverse of L,: 

G, =L,(L;LJ' =L,(D,)-' , L;G,=Z. (16) 

This is identical in configuration to L, except that each l-entry changes to l/V. 
In order to obtain the interface flexibility matrices, we first construct the substructural flexibility matrix for 

each substructure as given by (8). Then referring to Fig. 3, we extract the interface flexibility matrix of all the 

substructures by using the following formula: 

F'O 0 0 

F,=UTFU, u=;, " F= 
h 

[ 0 F= 
0 0 

0 0 

0 0 I 
F3 0 

(17) 

OF4 

where Z, is the boundary-node Boolean operator of order 36 X 36 for the example problem pertaining to the 
matrix L,, and the substructural flexibility matrices F ', F ', F 3 and F 4 correspond to the partitioned case of Fig. 
5(a). Note that F1 and F 2 come from the displacement boundary-treated flexibility (11) whereas F 3 and F4 
come from the free-free flexibility formula (8). 

Similarly, the substructural interface rigid-body modes can be obtained as 
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Partitioned structure Partitioned structure Assembled structure 
with all DOF 

Fig. 5. The partitioned structure of Fig. 

interconnection calculations. 

with interface DOF only via interface DOF 

3 showing the total substructural nodes, and the interface nodes that will appear in the 

R,,=U’R, (18) 

where R’ and R2 are empty because substructures 1 and 2 are fully supported, and the sizes of R3 and R4 are 
18 x 3. 

6.2. Substructural and global vectors 

Six substructural column vectors appear in the interconnection step: (Y, d, f, Abb’ p and u. The common order 
of the last five vectors is denoted by N, and that of (Y by N,.. For example, d, A,,, and LY represent the total 

substructural quantities: 

(19) 

the last from the fact substructures (1) and (2) do not have rigid-body modes. Vectors p and u are defined in the 

same way as the deformation vector d. Two global vectors of forces and displacements appear: f, and u,. The 

common order off, and uR is denoted by N,. 
The linkage between the local and global forces is given by the dual of the displacement localization relation 

(12): 

f, = LTf exl = Lu, (20) 

6.3. Projectors 

A rigid-body mode projector is defined using the block diagonal R,: 

PI, = I - R,(R;R,)-‘R;I = P;,, . (21) 

This matrix needs not be explicitly constructed because it only appears in matrix-vector multiplies. Such 
operation: z = P,,,y =y - R,(RiR,)-‘Rly may be carried out locally, that is, in substructure-level computa- 
tions. 

In the iterative solution discussed in the next section, the following projector appears: 

P, = z - L,(LTLJ’LT 

in which L, = P,,L,. Using the Woodbury formula, (LTL,)-’ can be obtained as follows: 

(22) 
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w-’ = (LTLJ’ = D,-’ + D,-‘L;R,,Y-‘R;L,D,-’ , Y = R;(Z - L,D,?L;)R, . (23) 

Because D, is diagonal the only nontrivial factorization is now that of the N, X N, symmetric matrix Y. N, is at 

most 3Ns in two dimensions and 6N, in three. For example, if a 1000 X 1000 plane stress 2D mesh is partitioned 
into one hundred 100 X 100 substructures, matrix W is dimensioned 35 802 X 35 802 whereas Y is only 
300 X 300. In massively parallel processing, the factorization of Y, which is a symmetric sparse matrix, can be 

done in advance and then broadcast-copied to each processor. 

7. DFM Step 4: Interconnection 

The fourth DFM step involves the interconnection of the substructures thereby returning to the global level 

(cf. Fig. 2). The finite element interconnection equations are summarized below: 

Node by node equilibrium: p=f +UA f?, 

Constitutive (flexibility form): Fp = d + d = u - Ra + 2 , 

Substructure self-equilibrium: RTp = 0, 

Interface compatibility: UT@-LuJ=O, 

Interface equilibrium: L;Ah=o. 

(24) 

On eliminating p, d, u, the foregoing equations yield the following symmetric coupled system in which Ah, (Y 

and u,, are retained as unknowns: 

Here, u,, = U TV is the global displacement at the interface nodes and F,, = U TFU is the boundary flexibility. 
This is the DFM interconnection equation. It may be solved by direct or iterative methods. The iterative 

solution is more interesting as ingredient of a scalable parallel solver for very large systems. Only a summary of 

the method is given here; more details may be found in a separate article [4]. The residual of the first matrix 

equation is 

rA = lJ’(-Ff + d) - F,,h,, - R,a + Lhuh , (26) 

which physically measures the interface compatibility violation. Vectors (Y and u,, are eliminated by 
premultiplying rh by the projectors P, and P, defined in the previous section: 

r=P,P,r,=P,P,[lJT(d-Ff)-F,,A,,]. (27) 

This projected residual is used with a preconditioned conjugate gradient (PCG) solver. The following stiffness 

preconditioner has given good results: 

K’==PPKPP. /rhr/ (28) 

Here, K,, denotes the block-diagonal matrix of Schur-complement boundary stiffnesses (see Section 9 for 

details): 

Kh = diag(Kj,) , K; = P;[P:F;P; + R;[(R.;)TR;]-‘(R;)T]-’ . (29) 

All PCG steps can be carried out on a substructure by substructure basis except those involving P,. 

Matrix-vector operations with this projector, which represents the so-called ‘coarse problem’ can be streamlined 
through Eqs. (21)-(23) with Y prefactored before embarking in the PCG. Once A,, has converged to the desired 
accuracy, the other quantities can be recovered from 

u,, = W-‘L;(UTFf +d - F,A ,,), LY = R;(d + L,u,) , (30) 
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in which for the former the efficient form of W- ’ (23) should be used. 

If a direct method is chosen to solve (25) elimination of A,, and 1y yields 

L:K,,L,u, =.f, > (31) 

This is the equation of the substructured form of the Direct Stiffness Method. If every substructure reduced to 
one element, the conventional DSM is recovered. Since these direct methods are known not to scale when used 
on massively parallel computers with hundreds or thousands of processors, they are of little practical interest 

compared to the iterative approach for such applications. 
The last DFM step recovers the solution at non-interface nodes by standard back substitution techniques and 

need not be discussed here. 

8. Variational formulation 

The following material, extracted from [6], presents a variational framework for matrix flexibility methods 
and shows how the DFM fits in a class of such methods. To this end, we introduce the displacement-based 
discrete energy functional J for a linear structure under quasistatic loads given by 

J(u,~) = u;(f, - + Q,) 7 K,=L’KL, K = diag(K‘) (32) 

where K is the block diagonal collection of unassembled substructural stiffness matrices. 

Introducing the release u-Lu,~ of Eq. ( 12) through a Lagrange multiplier vector A,, converts (32) to a 
three-variable functional 

J(u,, A,,, u) = u;,(LTf - + LTKLu,) = u 
T( l > 

f - 2 Ku + A;BT(u - Lu,) , (33) 

where B is a constraint weighting matrix to be determined. This can be further expanded by dividing the 
substructural displacements into deformational and rigid: 

u=d+u,.=d+Ra, (34) 

which inserted into (33) yields a four-variable functional 

J( A,,, (Y, d, UJ = dT(f - $ Kd) + A;B’(d - Lu,) + AfRT(f + BA,) (35) 

The four state variables (d, A,,, a, ux) in the above equation are linearly independent provided that the constraint 
matrix B has full row rank. In other words, it is variationally complete. Under that condition the first variation is 

6.1 = GdT(f - Kd + BA,,) + &A; BT(d - Lu, + Ra) 

+ GaTRl‘(f + BA,,) - 8~; LTBA,, . (36) 

The stationarity condition SJ = 0 yields 

[ -; ;; -;‘J ilii)=( _;T’], R,=BTR, L,,=B*L. (37) 

Solving for the deformational displacement d from the first row of (37) gives 

d = F(f + BA,,) (38) 

where F is the block-diagonal matrix of free-free flexibilities. Substituting (38) into the second row of (37) 
leads to a general flexibility equation: 
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[_;; ; -;j{;}=[!T], F,=B=FB. (39) 

Different choices of B lead to different flexibility methods. The DFM system (27) results if B = U. It is shown 

in [6] that selecting B as a null basis of L leads to a desirable choice for solving inverse problems. The CFM (1) 
can also be precipitated by a special choice of B along with variable transformations to a redundant basis. 

9. Computing substructural RBMs and free-free flexibilities 

The rigid body modes of a free-free substructure can be computed either by numerically extracting a null 
basis of the substructural stiffness matrix, or by considering its self-equilibrium. The former method has the 
advantage of generality and of being applicable to floating and fixed structures. Nonetheless, for free-free 

substructures with hundreds or thousands of elements, it has been found that extraction of a null basis is not only 
expensive but can lead to significant loss of accuracy. On that account we describe here the self-equilibrium 

method. 
Suppose that free-free substructure s contains Ni nodes with the usual six degrees of freedom: three 

translations and three rotations, assigned at each. The translational nodal forces and nodal moments at node n, 

located at (x,, Y,. Y,>, are denoted by Qf = [Q,,, Q,,, Qz,lT and Mf = [n/r,,, MY,, MZIIIT, respectively. Self 
equilibrium requires that [ 171: 

(40) 

where 

(R;)‘=[; ;], ,y, =[ _CZZ’~;~ ;;f-r’ %a;‘::l] (41) 

n 0 n 

where (x,, y,, z,) are the coordinates of a reference point, which for convenience may be taken to be equal to 
the average of the substructure node coordinates. The first three rows correspond to the translational rigid body 
modes, and the last three to three rotational rigid body modes. For substructures containing other node freedom 

configurations the procedure is similar. It follows that the (unnormalized) RBM for the substructure is obtained 
by stacking those nodal matrices: 

(42) 

This matrix may be then orthonormalized if convenient for subsequent computations. The RBM for the set of all 

substructures is the block diagonal matrix 

R’ . . . 

R= R2 . . . 

1 

. (43) 

*.. R N’ 

We now turn to the computation of the free-free flexibility for substructure s and assume that K” has been 
assembled by the DSM executed for that substructure. Note that 

US = d’ + RSLY.r . 
(34) 

This is further partitioned as 
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{;j} ={ddj} +{;,I:} (44) 

where R:. is a square invertible submatrix. Solving for (Y” from the first row of (44) we obtain (Y’ = 

(R:)-'(u: - d:). We now introduce a deformation measure that represents a relative deformation of f-freedoms 
with respect to the c-freedoms: 

v’ = d; -R;(R,;)-'d: = Tu" , T=[-H Z], H=R;(R;)-' (45) 

where the s superscript in T and H, as well as in C and K, below, is suppressed for brevity. Using this relation, 
K" can be shown to be 

K‘=T7K,.T, (46) 

where K, is obtained by eliminating the rows and columns of K" that correspond to the degrees of freedom of u: 
in (44). Therefore, the free-free flexibility K" can be obtained from 

F‘ =P;[K' +R'(RS)']-' = TTCK;'CT, C=Z-Z-Z[z+HTZZ]-'HT. (47) 

It should be noted that for substructures with many DOFs, Ku is sparse while the symmetric matrix [I + HTH] 
appearing in C is at most a (6 X 6) matrix. Taking advantages of these properties is important to make the 
computation of F" efficient. 

There is an interesting relationship between these techniques and the computation of the condensed stiffness 

matrix in terms of the boundary freedoms, an operation common in finite element analysis. Here, the 
conventional method partitions the substructural stiffness matrix as 

(48) 

from which the condensed or Schur-complement stiffness matrix follows as K,, = K,,,, - K,,,K,'K,,. When the 

number of the internal freedoms far exceeds that of the boundary freedoms, the factorization of Kji can be 
expensive. In that case a more economical method is to compute KL,, using the boundary-node flexibility F,12 by 
the following formula: 

Kh =Z';[P:F;P,; +R,;[(R.;)TRj;]-'(R.;)T]-' (49) 

where RL is R" evaluated at the boundary nodes. This and related matrices are used for preconditioning of the 
projected residuals for iterative solutions of several methods presented in [4]. 

10. Illustrative examples 

IO. I. Free -free truss 

Before showing a continuum example, we demonstrate the present DFM using one simple example: a 

five-DOF free-free spring shown in Fig. 6. 
The elemental and global stiffness matrices, K and Kg, respectively, are given by 

GlobalNode ’ 2 3 4 5 
Numbering w 

Substructural (1) (2) (3) 
-w- Node Numbering , 

2 34 56 7 

Fig. 6. Partition of five-DOF free-free spring system into three substructures. 
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-1 -1 
-1 11 -10 

-10 10 
100 -100 

-100 100 
1000 -1000 

- 10000 1000 

1 -1 

-1 11 -10 1 
(50) 

K, = -10 110 -100 
-100 1100 - 1000 

- 1000 1000 1 

where omitted entries are zero. The element assembly operator L, the displacement compatibility matrix U, and 
the rigid-body modes R are obtained as 

L 

1 
1 

1 
= 

[ 1 1 
1 ’ 

u 

1 
1 

With (50) and (51) all the necessary quantities needed for the DFM equation (38) are now given. In practice, 

for computational convenience the rigid-body modes are usually normalized. 

10.2. Cantilever plate model 

As a continuum example, the square cantilever plate used as benchmark model problem by Farhat and Mandel 

[35] is analyzed. The plate is discretized with the 3-node ANDES plate bending elements of Militello and 
Felippa [36] and subjected to a uniform lateral load. The deformed shape of the plate for the case of a 16-by-16 
elements mesh is shown in Fig. 7. 

0.6 . 

OJ 
1 

Fig. 7. Deformed shape of 16 X 16 mesh for square cantilever plate. 
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Table 2 

Scalability test of FETI-1, FETI-2 and AFETI for cantilever plate problem (stopping criterion: global relative 2-norm residual clOmh) 

h/l Number of 

subdomains 

Number of 

iterations 

FETI- 1 

Number of 

iterations 

A-FETI 

Number of 

iterations 

FETI-2 

Lagrange 

multipliers 

A-FETI 

118 4 

l/8 16 

l/16 4 

l/l6 16 

1132 16 

I140 16 

l/80 I6 

I /90 36 

11120 64 

19 

14 

29 

40 

69 41 

82 45 

154 81 

238 120 

102 

306 

198 

594 

1170 

34 1396 

41 2898 

43 5430 

50 10122 

Table 2 presents conjugate-gradient iteration counts when this problem is solved using three different versions 
of the FETI parallel solvers. FETI-1 is the original, differentially partitioned FETI solver developed by Farhat 
and coworkers [28]. FETI-2 incorporates a more refined coarse mesh solver which significantly cuts the number 

of iterations for plates and shell problems [35]. A-FETI is the algebraically partitioned FETI based on projected 
DFM equation (26) and the preconditioner (27); implementation details are presented in [4]. The ratio h/l 

designates the element mesh size vs. the substructure size. 
As can be observed the number of A-FETI iterations falls in between those of FETI-1 and FETI-2, and are 

closer to the latter. FETI-2 has been shown to be scalable in the sense that the number of iterations should grow 

only as a multiple of log(l/h) under some coercivity conditions. That scalability has been recently tested on 
realistic aerospace problems with up to 4 million equations [37]. Relative CPU costs have not been compared 
because the implementations are not yet comparable on a maturity basis. 

11. Concluding remarks 

The DFM uses the same model information as the Direct Stiffness Method and does not require user inputs on 

redundant selection. The substructure flexibility matrices can be obtained from the stiffness equations and 
geometrically constructed rigid body modes. Consequently, the DFM can be implemented, as an alternative 

solution algorithm, within the architecture of a standard FEM code with substructuring capabilities. 

Based on our experience, the DFM appears to be attractive for the following special applications. 
(1) As a variant of the original FETI method [28] for scalable solution of large systems on massively parallel 

computers. This version was originally derived through algebraic partitioning of the DSM equations [3,4]. 
Preliminary experience to date has been encouraging. 

(2) The inverse problem of extracting substructural flexibility matrices from the global flexibility constructed 
from experimental measurements. An important application of this procedure is damage localization [l]. 
A related problem is that of structural optimization under internal force constraints. 

(3) The treatment of structures with rigid members or inclusions. This can be done simply by setting the 
appropriate compliances or flexibilities to zero, without incurring numerical difficulties. A promising 

application is rigid multibody dynamics with selective flexible members. Note that for this case the DFM 
behaves as dual of the DSM. In the latter, holes or voids are easily handled by setting stiffnesses to zero. 

(4) The use of underintegrated isoparametric elements can be made attractive by treating the spurious modes 
as an extension of the RBM basis. This is being exploited in the development of nonlinear 3D analysis 
using one-point integrated elements while avoiding problem-dependent hourglass control strategies [38]. 

A yet unsettled part of the DFM is the best way to apply nodal support conditions, as well as the effective 
treatment of multipoint kinematic constraints such as rigid links and incompressibility. A algebraic treatment in 
Step 3 for the former was described. Although conceptually straightforward, this approach has two drawbacks: 

(1) The handling of partly supported floating substructures is numerically fuzzy because numerical rank 
detection is inherently a singular perturbation problem. 

(2) Program modularity is hindered by passing boundary condition information to substructure processors. 



336 C.A. Felippa, KC. Park I Compur. Methods Appl. Mech. Engrg. 149 (1997) 3/9-337 

Ideally, the application of all such conditions should ‘wait for the last moment’ as in the DSM. This 
would allow, for example, more efficient handling of multiple load cases as well as variable-stiffness 
support conditions. 

The last drawback may be circumvented by a penalty method presently under investigation, in which all 
single-freedom support boundary conditions are applied through fictitious linear or torsional spring elements. 
For infinitely-rigid springs it is sufficient to carry along the support reactions as interaction forces. If successful, 

this approach would allow all substructures to he treated as free-free up to Step 4, hence eliminating the 

modularity problem for single-freedom constraints. A key difference as regard penalty elements in the DSM 
should be noted: their stiffness can be made exactly infinite by setting their compliance to zero, an operation 

which does not cause numerical ill-conditioning. The treatment of rigid links and other multifreedom constraints 

could be done in principle through similar techniques but more research on their practical implementation is 
needed. 

Acknowledgments 

The present work has been supported by the National Science Foundation under NSF/HPCC Grant 
ASC-9217394 and by Sandia National Laboratories under Contracts AS-5666 and AS-9991. 

References 

rt1 

VI 

[31 

[41 

PI 

161 

[71 

PI 

191 

IlOl 

[III 

[I21 

[I31 

[I41 

[151 

[I61 

Cl71 
Cl81 

1191 

K.C. Park and K.F. Alvin, Extraction of substructural flexibility from measured global modes and mode shapes, Proc. 1996 AIAA 

SDM Conference, Paper No. AIAA 96-1297. Salt Lake City, Utah, April 1996; submitted to AIAA J. 

W.S. Hwang, K.W. Belvin and K.C. Park, Design of complex vibration control systems based on spatial energy transmission patterns, 

Proc. 1995 AIAA SDM Conference. Paper No. AIAA 95-138 1, April 18-2 I 1995, New Orleans, LA.; submitted to AIAA J. Guidance, 

Control Dynam. 

K.C. Park, M.R. Justino F. and C.A. Felippa, An algebraically partitioned FETI method for parallel structural analysis: algorithm 

description, Center for Aerospace Structures Report CU-CAS-96-06, University of Colorado, Boulder, CO, 1996; to appear in Int. J. 

Numer. Methods Engrg., 1997. 

M.R. Justin0 F., K.C. Park and C.A. Felippa, An algebraically partitioned FETI method for parallel structural analysis: performance 

evaluation, Center for Aerospace Structures Report CU-CAS-96-12, University of Colorado, Boulder, CO, 1996; to appear in Int. J. 

Numer. Methods Engrg., 1997. 

M.R. Justin0 F. and K.C. Park, A matrix-free algebraic FETI method for quasistatic nonlinear structural analysis, Center for Aerospace 

Structures, Report No. CU-CAS-96-19, University of Colordo, 1996; to be presented at the 4th U.S. National Congress on 

Computational Mechanics, 6-8 August 1977, San Francisco, CA. 

K.C. Park and CA. Felippa, A variational framework for solution method developments in structural mechanics, Center for Aerospace 

Structures, Report No. CU-CAS-96-22, University of Colorado, 1966; submitted to J. Appl. Mech. 

K.C. Park, Partitioned transient analysis procedures for coupled-field problems: stability analysis, J. Appl. Mech. 47 (1980) 370-376. 

CA. Felippa and K.C. Park, Staggered transient analysis procedures for coupled-field mechanical systems: formulation, Comput. 

Methods Appl. Mech. Engrg. 24 (1980) 61- 111. 

K.C. Park and C.A. Felippa, Partitioned analysis of coupled systems, in: T. Belytschko and T.J.R. Hughes, eds., Computational 

Methods for Transient Analysis (North-Holland Publishing Co., 1983) 157-219. 

S. Levy, Computation of influence coefficients for aircraft structures with discontinuities and sweepback, J. Aero. Sci. 14 (1947) 

547-560. 

T. Rand, An approximate method for computation of stresses in sweptback wings, J. Aero. Sci. 18 (1951) 61-63. 

B. Langefors, Analysis of elastic structures by matrix coefficients, with special regard to semimonocoque structures, J. Aero. Sci. 19 

( 1952) 45 l-458. 

L.B. Wehle and W, Lansing, A method for reducing the analysis of complex redundant structures to a routine procedure, J. Aero. Sci. 

I9 (1962) 677-684. 
J.H. Argyris and S. Kelsey, Energy Theorems and Structural Analysis (Butterworths, London, 1960); reprinted from Aircraft Engrg. 26 

Ott-Nov 1954 and 27 April-May, 1955. 

P.H. Denke, A general digital computer analysis of statically indeterminate structures, NASA Tech. Note D-1366, 1962. 

J. Robinson, Structural Matrix Analysis for the Engineer (Wiley, New York, 1966). 
J.S. Przemieniecki. Theory of Matrix Structural Analysis (McGraw-Hill, 1968) (Dover edition 1986). 

R.H. MacNeal, The MacNeal Schwendler Corporation: The First Twenty Years (Gardner Litograph, Buena Park, CA, 1988). 

I. Kaneko, M. Lawo and G. Thierauf, On computational procedures for the Force Method, Int. J. Numer. Methods Engrg. 18 (1982) 

1469-1495. 



C.A. F&pa, K.C. Park I Comput. Methods Appl. Mech. Engrg. 149 (1997) 319-337 331 

[20] M.W. Berry, M.T. Heath, I. Kaneko, M. Lawo, R.J. Plemmons and R.C. Ward, An algorithm to compute a sparse basis of the null 

space, Numer. Math. 47 (1985) 483-504. 

1211 I. Kaneko and R.J. Plemmons, Minimum norm solutions to linear elastic analysis problems, Int. J. Numer. Methods Engrg. 20 (1984) 

983-998. 

[22] R.J. Plemmons and R.E. White, Substructuring methods for computing the nullspace of equilibrium matrices, SIAM J. Matrix Anal. 

Appl. I (I 990) l-22. 

[23] S.N. Patnaik, An Integrated Force Method for discrete analysis, hit. J. Numer. Methods Engrg. 6 (1973) 237-25 I. 
[24] S.N. Patnaik, The variational energy formulation for the Integrated Force Method, AIAA J. 24 (1986) 129-136. 

[25] S.N. Patnaik and H. Satish, Analysis of continuum using the boundary compatibility conditions of integrated Force Method, Comput. 

Struct. 34 (1990) 287-295. 

[26] C.A. Felippa, Will the Force Method come back‘?, J. Appl. Mech. 54 (1987) 728-729. 

[27] CA. Felippa, Parametric unification of matrix structural analysis: classical formulation and d-Connected Mixed Elements. Finite Elem. 

Anal. Des. 21 (199s) 45-74. 

[28] C. Far-hat and F.X. Roux. Implicit parallel processing in structural mechanics, Comput. Mech. Adv. 2( I ) ( 1994) I - 124. 

[29] R.H. Gallagher, Private communication to K.C. Park, 1997. 

[30] E.C. Pestel and F.A. Leckie, Matrix Methods in Elastomechanics (McGraw-Hill, New York, 1963). 

[31] M.J. Turner, R.W. Clough, H.C. Martin and L.J. Topp, Stiffness and deflection analysis of complex structures, J. Aeron. Sci. 23 (1956) 

805-824. 

1321 M.J. Turner, The direct stiffness method of structural analysis. Structural and Materials Panel Paper, AGARD Meeting, Aachen. 

Germany, 1959. 

1331 M.J. Turner, H.C. Martin and R.C. Weikel, Further development and applications of the stiffness method, AGARD Structures and 

Materials Panel, Paris, France, July 1962, in: B.M. Fraeijs de Veubeke. eds., AGARDograph 72: Matrix Methods of Structural 

Analysis( 1964) 203-266. 

[34] C.A. Felippa, K.C. Park and M.R. Justin0 F., A free-free flexibility matrix for structural analysis, Center for Aerospace Structures 

Report, University of Colorado, Boulder, CO, in preparation. 

[35] C. Farhat and J. Mandel. The two-level FETI method for static and dynamic plate problems-Part I: An optimal iterative solver for 

biharmonic systems, Center for Aerospace Structures, University of Colorado, Report Number CU.CAS-9.5-23, Boulder, CO, October 

1995. 

[36] C. Militello and CA. Felippa, The first ANDES elements: 9-dof plate bending triangles, Comput. Methods Appl. Mech. Engrg. 93 

(1991) 217-246. 

[37] C. Farhat, Private communication, 1997. 

1381 K.C. Park, The Direct Flexibility Method makes spurious-mode stabilization unnecessary for one-point integrated elements, Center for 

Aerospace Structures, University of Colorado, Report Number CU.CAS-97-02, Boulder, CO, January 1997. 


