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Abstract Recently proposed capacity-based damage indices and parametric models for

capacity curves are applied to frame steel buildings located in soft soils of the Mexico City.

To do that, the seismic performance of 2D models of low-, mid- and high-rise buildings is

assessed. Deterministic and probabilistic nonlinear static and incremental dynamic anal-

yses are implemented. Monte Carlo simulations and the Latin Hypercube sampling tech-

nique are used. Seismic actions are selected among accelerograms recorded in the study

area. Spectral matching techniques are applied, so that the acceleration time histories have

a predefined mean response spectrum and controlled error. The design spectrum of the

Mexican seismic code for the zone is used as target spectrum. The well-known Park and

Ang damage index allows calibrating the capacity-based damage index. Both damage

indices take into account the contribution to damage of the stiffness degradation and of the

energy dissipation. Damage states and fragility curves are also obtained and discussed in

detail. The results reveal the versatility, robustness and reliability of the parametric model

for capacity curves, which allow modelling the nonlinear part of the capacity curves by the

cumulative integral of a cumulative lognormal function. However, these new capacity-

based damage index and capacity models have been tested for and applied to 2D frame

buildings only; they have not been applied to 3D building models yet. The Park and Ang

and the capacity-based damage indices show that for the analysed buildings, the contri-

bution to damage of the stiffness degradation is in the range 66–77% and that of energy

loss is in the range 29–34%. The lowest contribution of energy dissipation (29%) is found

for the low-rise, more rigid, building. The energy contribution would raise with the duc-

tility of the building and with the duration of the strong ground motion. High-rise frame
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buildings in soft soils of Mexico City show the worst performance so that the use of

adequate braced frames to control the displacements could be recommended.

Keywords Non-linear structural analysis � Parametric model � Monte

Carlo simulation � Steel buildings � Damage assessment

1 Introduction

The main purpose of this paper is to check the new damage index and the new capacity and

fragility models, proposed by Pujades et al. (2015), when they are applied to steel

buildings. In fact, this damage index and these parametric and fragility models have been

tested only in a single simple reinforced concrete building; thus, the results of this paper

will endorse the robustness, reliability and utility of these recent developments. Also, an

important goal is to carry out a full probabilistic assessment of the seismic performance of

low-, mid- and high-rise frame steel buildings in Mexico City. The method used by Vargas

et al. (2013) to assess the seismic performance of a Reinforced Concrete (RC) building has

been adopted; due to the regularity in plan and elevation, buildings are modelled as 2D

frame structures in these works; applications to 3D building models await further research.

Concerning the new capacity model, the parametric model assumes that capacity curves

are composed of a linear and a non-linear part. The linear part is defined by the initial

stiffness or, equivalently, by a straight line whose slope (m) is defined by the fundamental

period of vibration of the building. The non-linear part represents the degradation of the

building and can be parameterized by means of the cumulative integral of a cumulative

lognormal function and, therefore, it can be defined by two parameters, l and r; the
ultimate capacity point (the ultimate base shear, Vu, and the ultimate roof displacement, du,
in the capacity curve, or their corresponding, the ultimate spectral acceleration, Sau, and

the ultimate spectral displacement, Sdu, in the capacity spectrum) provides the two last

parameters of the five fully defining the capacity curve. Figure 1 shows an example of a

capacity curve defined by these five parameters. The first derivative of the non-linear part

of the capacity curve is also shown in this figure. This first derivative displays the

cumulative lognormal function.

Concerning the new damage index and fragility model, on the basis of damage obser-

vations, many damage indices have been published that can be used to assess expected

damage in buildings affected by earthquakes. These damage indices are related to degra-

dation of the overall capacity of the structure to withstand the foreseen seismic loads, and

they are usually defined on the basis of variation of specific parameters representing the

strength and/or weakness of the building. Thus, for instance, damage indices based on

Fig. 1 Capacity curve as defined by five independent parameters

1210 Bull Earthquake Eng (2018) 16:1209–1243

123



displacement ductility were used by Powell and Allahabadi (1988) and by Cosenza et al.

(1993). Bracci et al. (1989) and Bojorquez et al. (2010) focused on energy dissipation;

Krawinkler and Zohrei (1983) paid attention to cyclic fatigue. Changes (increases) in the

natural period of the structure have also been used as damage indicators (DiPasquale and

Cakmak 1990); Kamaris et al. (2013) focused on strength and stiffness degradation. Other

authors, such as Banon and Veneziano (1982), Park and Ang (1985), Roufaiel and Meyer

(1987) and Bozorgnia and Bertero (2001), connected the expected damage to combinations

of the above parameters. Park and Ang or similar damage indices have been widely used to

assess the seismic performance of steel buildings in recent studies; see, for instance, Bar-

bosa et al. (2017); Liu et al. (2017), Zhou et al. (2016), Brando et al. (2015); Rajeev and

Wijesundara (2014) and Levy and Lavan (2006). All these indices should be considered

damage pointers and properly fulfil the purpose for which they were developed. However, in

many cases, their calculation in practical applications involves Non Linear Dynamic

Analysis (NLDA), which has high computational costs. More recently, a new capacity-

based damage index was proposed by Pujades et al. (2015). This new damage index, which

is based on secant stiffness degradation and energy dissipation, was successfully calibrated

using a 2D model of a reinforced concrete frame buildings in such a way that it is equivalent

to the well-known Park and Ang damage index (Park et al. 1985; Park and Ang 1985)

obtained by means of NLDA. The main advantage of the new index is that, once calibrated,

it can be obtained in an easy and straightforward way, directly from capacity curves.

Concerning the probabilistic assessment of the seismic performance of frame steel

buildings in Mexico City, it is well known that variables involved in the seismic assess-

ment of structures have high uncertainties. These uncertainties can be organized into

aleatory (or random) and epistemic (or knowledge) uncertainties (Wen et al. 2003;

McGuire 2004; Barbat et al. 2011). Epistemic uncertainties are due to lack of knowledge

about models and/or parameters; aleatory uncertainty is inherent to random phenomena.

Uncertainties in the seismic actions and in the properties of the buildings are considered. In

relation to seismic actions, aleatory uncertainties are associated with the expected ground

motions, and, therefore, they cannot be controlled, but they can be estimated and addressed

through probabilistic approaches. In this research, uncertainties in seismic actions are

defined by means of a suite of accelerograms whose acceleration response spectra have

predefined mean and SD; the design spectra for soft soils in the city of Mexico (NTC-DF

2004) define the mean response spectrum. Regarding structures, aleatory uncertainties are

due to unawareness of the precise mechanical and geometrical properties. Certainly,

uncertainties in mechanical properties can be reduced by means of lab tests; in this

research, the uncertainty model used by Kazantzi et al. (2014) has been adopted; thus, the

mass, damping and other geometrical parameters are assumed to be deterministic, and the

strength and ductility of structural elements are considered in a probabilistic way.

Another important issue is how uncertainties propagate. Because of non-linearity,

uncertainties in the response strongly depend on the non-linear relations between inputs

and outputs. Thus, to take into account the effect of uncertainties in the response, in

deterministic approaches, seismic design standards recommend the use of reduced values

for strength of materials and increased actions, by means of safety factors. However, in

non-linear systems, it is well-known that the confidence levels associated with the response

may be different from those associated with the input variables (Vargas et al. 2013). Thus,

in the last two decades, the importance of performing probabilistic non-linear static

analysis (NLSA) (ATC-40 1996; Freeman 1998) and non-linear dynamic analysis (NLDA)

has been emphasized, (McGuire 2004) and, currently, there is a consensus that proba-

bilistic approaches are more suitable than deterministic ones, as they allow the
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incorporation of uncertainties, including confidence intervals, and thus provide more

reliable results. However, NLDA is assumed to be the most appropriate method for

assessing expected damage in structures subjected to dynamic actions (Vamvatsikos and

Cornell 2002). Thus, when the capacity spectrum method (CSM) is used, it should be

verified that the results are consistent with those obtained from Nonlinear Incremental

Dynamic Analysis (NLIDA) (Mwafy and Elnashai 2001; Kim and Kurama 2008). In recent

studies, probabilistic static and dynamic approaches have been implemented using the

Monte Carlo simulation method (Fragiadakis and Vamvatsikos 2008, 2010; Vargas et al.

2013; Kazantzi et al. 2014; Barbat et al. 2016). But, probabilistic analyses require a

significant number of NLIDAs and/or NLSAs, entailing a high computational cost.

Therefore, it would be useful to take advantage of simplified methods to compare the

results obtained by means of NLSA and NLIDA. An example of such a simplified

approach is that proposed by Pujades et al. (2015).

In this research, both static and dynamic analyses are performed by means of a proba-

bilistic approach that uses the Monte Carlo simulation method and the Latin Hypercube

Sampling (LHS) technique to optimize the number of samples. This fully probabilistic

approach can quantify the expected uncertainties in the response and in the expected damage,

produced by uncertainties in thematerial properties and the seismic actions. The results show

how uncertainties in the response and in the expected damage increase with the severity of

seismic actions.Moreover, it is shownhow, static and dynamic approaches provide consistent

results. However, for the buildings analysed in this work, the consistency is lower for high-

rise buildings. This fact is attributed to the likely influence of higher modes, which are not

considered in the static analyses, as adopted herein. Finally, it is also shown that the capacity

parametric model and capacity based damage index also hold for steel structures, so capacity

curves can be represented by means of a simple model. The expected damage and fragility

curves can be analysed directly from capacity curves, in a simple and straightforward way,

thus avoiding the large amounts of computation involved in dynamic simulations.

2 Buildings

2.1 Structural models

Three steel buildings are analysed in this paper; namely high- (13 stories), mid- (7 stories)

and low-rise (3 stories) buildings, with Special Moment Frames (SMF). Steel W type

sections (wide flange American section) are used for beams and columns, which are joined

by means of prequalified connections (ANSI/AISC 358-10 2010) of Fully Restrained (FR)

type. Buildings were designed as offices, on the basis of the provisions for the México City

area of NTC-DF (2004) and AISC-341-10 (2010) seismic codes. Buildings have rectan-

gular floors, 3 beams of 5 m, in the transverse direction, and 4 beams of 6 m in the

longitudinal direction. For each building, our focus will be on the central frame in the

longitudinal direction. Buckling of columns was controlled in the analysis. The design of

the SMFs satisfies the AISC criterion ‘‘strong- column-weak-beam’’ and the structural

sections of the columns meet the slenderness criterion of the AISC-341-10 (2010). Fig-

ure 2 shows a sketch of the three 2D-models (SMF 3, SMF 7 and SMF 13).

NLSAs and NLIDAs were performed with Ruaumoko 2D software (Carr 2002). The

weight of the structure, as well as that of the architectural finishes and facilities, were

considered dead loads (DL), while live loads (LL) were established according to NTC-DF

(2004) provisions for office use. Total gravity loads for non-linear analysis are established
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as 1.0 DL ? 0.2 LL (PEER/ATC 72-1 2010). Beams and columns were modelled as

FRAME type members, with plastic hinges at their ends. Plastic hinges follow the Bi-

Linear Hysteresis rule, with hardening and strength reduction based on the ductility factor

[see Appendix A—Ruaumoko 2D (Carr 2002)]. For columns, the plastic surface is defined

by means of the interaction diagram relating the bending moment and the axial force. For

beams, the yielding surface is defined by means of the curve relating the bending moment

to the rotation. Moreover, the values of strength and ductility for the hysteresis rule were

calculated according to the modified Ibarra–Medina–Krawinkler (IMK) model (Ibarra et al.

2005; Lignos and Krawinkler 2011, 2012, 2013). This model establishes strength bounds

on the basis of a monotonic backbone curve (Fig. 3a). The backbone curve is defined by

three strength parameters (My = effective yield moment, Mc = capping moment

strength—or post-yield strength ratio Mc/My—and Mr = j � My, j = 0.4, residual

moment) and by four deformation parameters (hy = yield rotation, hp = pre-capping

plastic rotation for monotonic loading—difference between yield rotation and rotation at

maximum moment, hpc = post-capping plastic rotation—difference between rotation at

maximum moment and rotation at complete loss of strength—and hu = ultimate rotation

capacity) (Lignos and Krawinkler 2011). The columns of the moment-resisting bays were

assumed to be fixed at their bases. P-Delta effects have been considered in all the simu-

lations to take into account the global stability of the structure. The panel zones were

Fig. 2 2D building models

Fig. 3 a Modified IMK model: monotonic curve; b M–h diagrams for the pure bending case 200 random
simulations for each one of the 10 columns type W16x89 are plotted
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modelled by the rotational stiffness in the connections, obtained according to the model

proposed by Krawinkler (1978) and presented in FEMA 355C (2000). In all cases, as

recommended for steel structures, for the first and last vibration mode under consideration

(SAC 1996), 2% Rayleigh damping was assumed. The fundamental periods of the models

are 0.632, 1.22 and 1.92 s for SMF3, SMF7 and SMF13 buildings respectively.

2.2 Probabilistic variables

There are many sources of uncertainties in structural analysis. Even geometric properties, such

as thickness, length and width of the structural elements or of the structure itself, can be

considered probabilistic variables. Concerning mechanical properties, several parameters can

be considered in a probabilistic way, such as Young’s modulus, ultimate strength, plastic

modulus and soon.However, tomake the probabilistic approachclearer and easier, in this study

only a few properties are considered in a probabilisticmanner. Thus, the probabilisticmodel for

mechanical properties usedbyKazantzi et al. (2014) has been adopted so that only uncertainties

in strength and ductility are considered. In order to see the influence of uncertainties in

mechanical properties on uncertainties in the response, an uncertainty analysis will also be

performed. This analysis will show how the most important source of uncertainty is that due to

seismic actions, although that due tomechanical propertiesmay also be significant. Thus, in this

study, the mass, damping and other geometrical parameters are assumed deterministic, and the

strength and ductility of structural elements are considered in a probabilistic way.

Concerning strength, all the parameters of the modified IMK model can be obtained

from three properties of the sections. That is, plastic modulus, Z, expected yield strength,

fy, and modulus of elasticity, E. Moreover, due to the fact that E and Z, for W sections,

have low coefficients of variation (COV), and taking into account that E is directly related

to fy by means of the strain ey, whose value for steel is accurately determined, it is

considered that uncertainty in fy can take up the low uncertainties of E and Z, thus avoiding

overestimations of uncertainties in the strength parameters. Notably, COV takes values

between 1 and 3% (Bartlett et al. 2003) for E, and between 1 and 2% (Jaquess and Frank

1999; Schmidt and Bartlett 2002) for Z; uncertainties in fy are higher. Thus, only fy, is

defined herein as a random variable for the strength. The mean (l) value, SD (r) or COV
and the assumed probability distributions for fy are shown in Table 1.

The ductility of the structural sections are defined by the deformation parameters hy, hp
and hpc of the modified IMK model; for W sections, these parameters can be determined by

means of the following multi-variable empirical equations that were developed by Lignos

and Krawinkler (2011, 2012, 2013):

hy ¼ ðMy=koÞ=L = (1:17 � Z � fy=6 � E � I)/L ð1Þ

hp ¼ 0:0865 � h

tw

� �� 0:365

� bf

2 � tf

� �� 0:140

� L

d

� �0:340

� c1unit � d
533

� �� 0:721

� c2unit � fy
355

� �� 0:721

rIn¼ 0:32

ð2Þ

hpc ¼ 5:63 � h

tw

� ��0:565

� bf

2 � tf

� ��0:800

� c1unit � d
533

� ��0:280

� c2unit � fy
355

� ��0:430

rIn¼ 0:25 ð3Þ

1214 Bull Earthquake Eng (2018) 16:1209–1243

123



T
a
b
le

1
P
ro
b
ab
il
is
ti
c
p
ro
p
er
ti
es

o
f
st
re
n
g
th

an
d
d
u
ct
il
it
y
v
ar
ia
b
le
s

T
y
p
e

V
ar
ia
b
le

M
ea
n
(l
)

S
D

(r
)

F
u
n
ct
io
n

U
p
p
er

li
m
it

L
o
w
er

li
m
it

S
tr
en
g
th

f y
3
7
5
.7
6
M
p
aa

2
6
.6
8
(C
O
V

=
0
.0
7
1
)a

N
o
rm

al
d
is
tr
ib
u
ti
o
n
b

4
2
9
.1
4
M
p
a

3
2
2
.4

M
p
a

D
u
ct
il
it
y

h p
h p

b
y
E
q
.
(2
)

r
ln
=

0
.3
2

L
o
g
n
o
rm

al
d
is
tr
ib
u
ti
o
n
c

h p
b
y
E
q
.
(2
)
?

2
r
ln

h p
b
y
E
q
.
(2
)
-

2
r
ln

D
u
ct
il
it
y

h p
c

h p
c
b
y
E
q
.
(3
)

r
ln
=

0
.2
5

L
o
g
n
o
rm

al
d
is
tr
ib
u
ti
o
n
c

h p
c
b
y
E
q
.
(3
)
?

2
r
ln

h p
c
b
y
E
q
.
(3
)
-

2
r
ln

a
B
as
ed

o
n
th
e
re
p
o
rt
b
y
L
ig
n
o
s
an
d
K
ra
w
in
k
le
r
(2
0
1
2
)
fo
r
st
at
is
ti
cs

o
f
m
at
er
ia
l
y
ie
ld
in
g
st
re
n
g
th
,
o
b
ta
in
ed

fr
o
m

fl
an
g
es
-w

eb
s
te
st
s
fo
r
A
5
7
2
g
ra
d
e
st
ee
l

b
F
o
r
f y

th
e
p
ro
p
o
se
d
fu
n
ct
io
n
is
b
as
ed

o
n
th
e
st
u
d
y
b
y
L
ig
n
o
s
an
d
K
ra
w
in
k
le
r
(2
0
1
2
)

c
F
o
r
h p

an
d
h p

c
th
e
p
ro
p
o
se
d
fu
n
ct
io
n
s
ar
e
b
as
ed

o
n
E
q
s.
(2
)
an
d
(3
)
p
re
se
n
te
d
in

L
ig
n
o
s
an
d
K
ra
w
in
k
le
r
(2
0
1
1
,
2
0
1
2
)
re
sp
ec
ti
v
el
y

Bull Earthquake Eng (2018) 16:1209–1243 1215

123



In these equations, ko is the initial elastic stiffness; I is the inertia moment; cunit
1 and

cunit
2 are coefficients for unit conversion. h/tw is the ratio between the web depth and the

thickness; L/d is the ratio between the span and the depth of the beam; bf/(2 � tf) is the

width/thickness ratio of the beam flange, and rIn is the SD, assuming a lognormal

fit of experimental data. Finally, the ultimate rotation capacity is estimated as

hu = 1.5 � (hy ? hp), based on the recommendations of PEER/ATC 72-1 (2010). In this

study, hy is considered a dependent variable of fy, and hp and hpc are considered random

variables with lognormal distributions. Mean (l) values, SDs (rIn) and function types used

for hp and hpc are shown in Table 1. Uncertainties of hp (Eq. 2) and hpc (Eq. 3) also take

into account the randomness of the dimensions of the W sections (Lignos and Krawinkler

2011, 2012, 2013), including uncertainties on I, h, d, tw, bf, tf, and so on, as well as

uncertainties on fy.

Moreover, in order to avoid unrealistic samples in LHS simulations, both normal dis-

tributions of fy and lognormal distributions of hp and hpc were truncated at both ends, the

lower and upper limits being determined by the mean value ± 2 times the SD (l ± 2r).
The purpose of this truncation is to avoid underestimates or overestimates of the capa-

bilities of the elements with samples without physical meaning.

In summary, a simplified probabilistic approach is proposed for this research. The

method uses the modified IMK model for beams and columns, and uncertainties are con-

centrated on the variables fy, hp and hpc. Thus, it is assumed that these three variables have a

major influence on the linear and non-linear structural response of buildings. Besides, the

use of these variables is recommended in the new codes for probabilistic seismic perfor-

mance assessment of steel buildings (PEER/ATC 72-1 2010; FEMA P-58-1 2012).

2.3 Correlation analysis

Another important issue concerning sampling is the correlation among variables. Two

types of correlation have been considered in this research: intra- and inter-element. The

intra-element correlation is given by the relation among the three parameters simulated for

the same hinge; these correlations can be derived from Eqs. (2) and (3) (Lignos and

Krawinkler 2012) and are defined in Table 2.

The inter-element correlation is attributed to the consistency in workmanship and the

material’s quality among different element sections. Idota et al. (2009) and Kazantzi et al.

(2014) proposed a value of 0.65 for the yield strength of beams and columns from the same

production batch. Based on these studies, an inter-element correlation of 0.65 has been used

herein for the same section type, and a null correlation is assumed for different sections.

2.4 Sampling

To better represent the physical randomness of the problem for each structural element

(column or beam), a random sample of the three parameters (fy, hp and hpc) is generated.

Table 2 Intra-element correla-
tion for random variables of
beams and columns

fy hp hpc

fy 1 0 0

hp 0 1 0.69

hpc 0 0.69 1
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Then, the properties of strength and ductility on the hinges of each element are estimated.

It is assumed that hinges at both ends of elements are the same. Thus, for instance, the

3-storey model, with 27 elements (15 columns and 12 beams) has 81 random variables; the

7-storey building with 63 elements (35 columns and 28 beams) has 189 random variables;

and the 13-storey model with 117 elements (65 columns and 52 beams) has 351 random

variables. In order to assess the seismic behaviour of these three buildings, with a prob-

abilistic approach, 200 NLSAs and 200 NLIDAs are performed for each structural model,

resulting in 600 NLSAs and 600 NLIDAs. The same structural models are used for both

structural analyses: static and dynamic. Figure 3b shows the modified IMK model for a

null axial force, that is, pure bending used in the structural section (W16x89) of the SMF3

probabilistic models. The modified IMK model for pure bending is used to estimate the

variable My (see Fig. 3a). Moreover, the critical buckling load and the nominal axial yield

strength are used to estimate the axial load limits for compression and tension, respec-

tively. In this way, the parameters for defining the interaction diagram relating the bending

moment to the axial force, for each of the simulated random samples for the columns

W16x89, are obtained.

3 Seismic actions

To perform probabilistic IDAs, a set of accelerograms representing the characteristics of

the study area are needed. The way these acceleration time histories are obtained, is

explained first, and the method is then applied to the Mexico City to obtain probabilistic

response spectra and compatible acceleration time histories.

3.1 Method

In a first step, a set of random response spectra are generated by means of LHS simulations.

The response spectra meet the following conditions: (1) the mean value is a target spec-

trum, (2) the SD in each period has a predefined value, and (3) the spectral ordinates are

correlated in such a way that spectra are realistic. As an example, Fig. 4 shows a set of five

simulated response spectra. The fundamental periods of the studied buildings are also

depicted in this figure. Then, a spectral matching technique (Hancock et al. 2006), is used

to match the response spectrum of a real accelerogram to each one of the simulated spectra.

This way, a set of accelerograms that meet the above conditions can be obtained. More-

over, if the seed accelerogram is chosen properly, the spectrum-matched accelerograms are

representative of the seismic actions expected in the area.

3.2 Probabilistic response spectra

In this study, the design spectrum for area IIIb of the NTC-DF (2004) in Mexico City has

been taken as the target spectrum. Moreover, the SD has been set to 5% for periods from 0

to 2 s, corresponding to the range in which the periods of the buildings are situated, and

10% for periods greater than 2 s, thus controlling uncertainties in seismic actions. The 5

and 10% intervals for SDs were chosen on the basis of FEMA P-1051 (2016) recom-

mendations, about the use of spectral matching of ground motions; These recommenda-

tions establish that the matched spectra should not be outside the range of ? or - 10% of

the target spectrum.
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3.3 Probabilistic acceleration time histories

A preliminary set of time histories was selected using the method proposed by Vargas et al.

(2013). A large database of 2554 accelerograms (three components) recorded in the

Mexico City area was used. Thus, four accelerograms with a relatively high compatibility

Fig. 4 Five simulated response spectra. Mean and SD conditions are also shown. The five simulated spectra
are used to match accelerogram acc1 (see Table 3)

Fig. 5 Target spectrum and response spectra of the seed and matched accelerograms (right). Seed and
matched accelerograms (left)
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with the target spectrum were selected. Then a spectral matching technique was used to

improve the fit between response spectra of seed accelerograms and the target spectrum.

Figure 5 shows the seed accelerograms that have been selected, the matched ones and the

corresponding response spectra. This large database of Mexican accelerograms was pre-

viously analysed by Diaz et al. (2015). Table 3 shows the characteristics of the four

selected accelerograms and corresponding earthquakes. The PGA values are low, with a

maximum PGA value of 49.6 cm/s2. This is due to the large epicentral distances of the

earthquakes affecting Mexico City.

No near-fault seismic actions are expected, as the seismic hazard of the city is domi-

nated by the combined effects of distant, large earthquakes and soil amplification, leading

to increased PGA values and long-duration acceleration records. These were the main

causes of the destructive 1985 Michoacán earthquake. However, as shown below, the

newly developed methods are valid for low and high PGA values, as both the capacity

spectrum method and the NLIDA, allow any PGA value to be set for seismic actions

affecting the buildings.

Spectral matching warranties the similarity between the shapes of the response spectra

of the matched accelerograms and the code-provided design spectra, but both signals and

spectra can be scaled to any PGA value, thus representing any level of seismic intensity

well. In fact, in this study, PGA values have been set in the range between 0.05 and 0.7 g.

Thus, for each seed accelerogram, the spectral matching technique was used to obtain 5

new accelerograms meeting the probabilistic requirements described above. As a result, a

set of 20 accelerograms were obtained. This number of accelerograms was considered

adequate, as the Mexican seismic code (NTC-DF 2004) suggests that at least four

accelerograms should be used. Twenty acceleration time histories was also considered a

suitable number to deal with uncertainties in seismic actions, as they represent the pre-

assumed probabilistic distributions well (see Figs. 4, 8). The whole set of response spectra

corresponding to the 20 compatible accelerograms is shown in Fig. 6.

4 Probabilistic IDA

In this section, the influence that the randomness of the mechanical properties and the

uncertainty of the seismic actions have on the uncertainties of the structural response is

analysed and discussed. The analysis is shown for the low-rise buildings; similar con-

clusions also hold for mid- and high-rise buildings.

Fig. 6 Response spectra of the 20 accelerograms; mean and SDs are also depicted
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4.1 Adequacy of the sampling

4.1.1 Mechanical properties

As pointed out above, 200 realizations of random structural parameters are used. This

number has been determined in the following way. A number of random samples are

generated according the truncated predefined probability density function (pdf). After

every 20 new samples, the mean value and the SD of the overall samples are obtained. For

more than 200 samples no significant variations are obtained in their mean value and SD so

that 200 has been considered an adequate number of samples representing the predefined

truncated pdf. In fact, the LHS technique avoids duplicating case combinations, so that

fewer samples adequately represent the target pdf (Iman 1999). Moreover, other authors

have also used 200 probabilistic models to assess the seismic performance of buildings

(Fragiadakis and Vamvatsikos 2008; Kazantzi et al. 2008). Figure 7 shows the target

normal and normal truncated pdfs together with the histogram of the 200 samples for the fy

random variable. A good agreement between histogram and the target pdfs can be seen.

Similar plots can be depicted for the other random variables.

4.1.2 Seismic actions

For each probabilistic IDA, only 20 accelerograms are used. In order to see that 20 time

histories adequately represent the foreseen uncertainties, so that actually 20 samples are

sufficient for the probabilistic approach, the following analysis is performed. In fact,

uncertainties in each acceleration time history affects all the periods of the response

spectrum, that is, the response is affected by the uncertainty at all the periods. For each

period, these uncertainties have been predefined by means of a normal pdf function that has

the target spectrum as a mean value and a predefined SD, which is 5%, in the period range

0–2 s, and 10%, in the period range 2–6 s.

To illustrate how these distributions are well fulfilled by the 20 accelerograms, Fig. 8a,

b have been obtained as follows. For each one of the twenty response spectra matched by

the seed accelerograms, the simulated random values, at each period, have been

Fig. 7 Histogram of the 200 samples of the fy and corresponding scaled pdf target functions
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normalized by the value of the mean spectrum, in such a way that the normalized samples

have a unit mean and the predefined SD. Figure 8a corresponds to the samples in the period

range (0–2) s and Fig. 8b corresponds to the period range [2–6] s. It can be seen how the

twenty selected accelerograms adequately represent the predefined uncertainties with a unit

mean (value of the mean target spectrum), and 0.05 and 0.1 SDs, respectively for the short

and long period ranges. This way it can be seen how the 20 accelerograms adequately

represent the predefined mean values and foreseen uncertainties. Moreover, several

probabilistic approaches in the literature (Kazantzi et al. 2008; Asgarian et al. 2010;

Celarec and Dolšek 2013; Vargas et al. 2013) use suites of 15–20 accelerograms. Besides,

Vamvatsikos (2014) proposes to limit the computational cost of probabilistic IDA evalu-

ations reducing the size of the ground motion records. Thus, if an incremental sampling

technique (Sallaberry et al. 2008; Vamvatsikos 2014) or some justified criterion is used, the

time histories can be reused. In this research it has been assumed that each accelerogram

can be reused, mainly because of the two following reasons: (1) as shown above, (see

Fig. 8a, b) the probabilistic spectral matching technique warranties the pre-assumed

probability distributions in the uncertainties of the 20 seismic actions (see also Fig. 6), and

(2) on the basis of the principle that, all the records in the suite have the same probability of

occurrence.

4.2 Uncertainty in the response

A total of 200 SMF3 structural models with the variables obtained from LHS Monte Carlo

simulations and the set of 20 compatible seismic actions are used. The analyses are

performed in such a way that the influence of the mechanical properties (fy, hp, hpc) and the
impact of the seismic actions can be analysed separately.

NLIDA has been performed for different PGAs covering the range between 0.05 and

0.7 g, with PGA increments of 0.05 g. The following cases are analysed. First, the building

is considered as deterministic while the seismic action is considered as probabilistic by

using the 20 matched accelerograms; then the seismic action is considered as deterministic

by using the acc1 (see Table 3 and Fig. 5), matched to the selected target spectrum as

explained above. Thus, the following five cases are considered: (1) the building is con-

sidered deterministic and seismic actions probabilistic; (2) seismic action deterministic and

building probabilistic by considering uncertainties in the three mechanical properties (fy,

hp and hpc). In the following cases, the seismic action is considered in a deterministic way

Fig. 8 Histogram of the samples used to define the seismic actions in a probabilistic way. Scaled target pdf
functions are also shown. a In the period range (0–2) s and b in the period range [2–6] s (see also
explanation in the text)
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and only uncertainties for one of the mechanical properties are considered according to the

following cases: (3) fy, (4) hp and (5) hpc. In all these five cases and for each PGA, the SD

(r) in the structural response is computed; the roof displacement d is considered a control

variable of the response. Figure 9 shows the results obtained. In addition to the uncer-

tainties in the roof displacement for the five cases described above, the overall uncertainty

is shown in this figure. This total uncertainty is obtained using the well-known quadratic

composition (Vargas et al. 2013). As expected, uncertainties due to uncertainties in hp and
hpc are small compared to those induced by uncertainties in fy; but uncertainties due to hp
and hpc have a significant influence when they are combined with those due to fy. The

influence of uncertainties in seismic actions is clearly dominant. Probably, with the

exception of hpc, uncertainties in the response tend to increase with increasing seismic

actions. Similar results, concerning the influence of uncertainties in seismic actions and the

increase of uncertainties with increasing seismic actions, were reported for reinforced

concrete buildings in Vargas et al. (2013). The increase of uncertainties with increasing

actions may be attributed to the fact that, for increasing PGA, the damage also increases,

and the structural system becomes unstable, in the sense that small input variations produce

considerable differences in the output.

5 Parametric model

In this section, the parametric model for capacity curves (Pujades et al. 2015) is applied.

Deterministic and probabilistic cases are analysed. Mean values of strength-ductility of the

sections are used for the deterministic approach and, as pointed out above, 600 models

generated by LHS Monte Carlo techniques are used for the probabilistic approach.

5.1 Capacity curves

Capacity curves have been obtained by means of adaptive pushover analysis (PA) (Sat-

yarno 2000) as implemented in the Ruaumoko software (Carr 2002). This method was

shown to be independent from the initial loading pattern, as it adapts this pattern at each

step of the PA, according to the deformation of the structure. The ultimate capacity is

Fig. 9 Uncertainties in the roof displacement for the SMF3 building (see the discussion in the text)
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established when one of the following criteria is fulfilled. (1) x2 is less than 10-6 x2 at the

first step, being x the tangent fundamental natural frequency in the Modified Rayleigh

Method; (2) the Newton–Raphson iteration is not achieved within a specified maximum

number of cycles; (3) the stiffness matrix becomes singular and (4) a specified maximum

structure displacement is reached. In the NLSAs of the studied buildings, a large number of

cycles for the Newton–Raphson method has been considered. Moreover, a large maximum

limit for the structure displacement has been considered. Thus, it is expected that failure

criteria be related to criteria (1) or (3) it is worth noting that the failure criterion is usually

fulfilled when plasticization occurs in all the pillars of a story.

Figure 10 shows the obtained capacity curves. For comparison purposes the 5th, 50th

and 95th percentiles are used. The following steps have been carried out to obtain a specific

nth percentile: (1) capacity curves are interpolated/extrapolated in such a way that they are

defined at the same points in the same interval; a fixed small displacement increment, Dd,
is used to this end and the interval between 0 and the maximum ultimate displacement is

used; (2) for each spectral displacement, ordinates are sorted from lowest to highest values,

(3) the nth percentile is computed at each spectral displacement, (4) the ultimate dis-

placement of the nth percentile is set to the nth percentile of the ultimate displacements.

The 5th, 50th and 95th percentiles, computed this way, are shown in Fig. 10. Deterministic

capacity curve and the 200 individual probabilistic capacity curves are also shown in this

figure.

The 50th percentile curves (median) match the deterministic curves well, although the

matching is better for SMF3 and SMF7 models. Differences between deterministic and

median capacity curves are in the non-linear zone and they can be attributed mainly to non-

Fig. 10 Deterministic, probabilistic and percentiles of the capacity curves. a SMF 3, b SMF 7 and c SMF
13
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linearity of the structural response. The fact that individual points of the median curve

correspond to different capacity curves can also contribute to these differences.

5.2 Capacity model

The parametric model for capacity curves/spectra is well-described in Pujades et al. (2015).

To test this model, capacity spectra have been preferred rather than capacity curves.

Table 4 displays the weights, wi and the normalized amplitudes Ui1, at level i, for the first

natural mode. Table 5 shows the total weight, W, of the building and the period, T1, modal

participation factor, PF1, and modal mass coefficient, a1, for the first natural mode. Note

that Uroof1, PF1 and, a1, are used to transform capacity curves into capacity spectra (ATC

40 1996).

The five parameters that fully define the capacity spectrum are the initial slope (m), the

mean value (l) and the SD (r) of the lognormal function and the ultimate capacity point

(Sdu, Sau). m is related to the initial stiffness and to the period of the fundamental mode of

vibration; the cumulative lognormal function, defined by l and r, fits the normalized first

derivative of the non-linear part of the capacity spectrum.

Figure 11 displays the model as applied to the median capacity spectra of the three

buildings. Capacity spectra, together with their linear and non-linear parts, are shown

(upper part); first derivatives are shown in the lower part of this figure. Figure 12 shows the

individual and the deterministic capacity spectra; the obtained fits are also displayed.

The five parameters of the deterministic case and 5th, 50th and 95th percentiles are

given in Table 6. The mean values of the error vectors (% Mean error) defined by the

difference, in percentage, between capacity spectra and the corresponding fit, are also

provided in this table. Mean errors are very small (always below the 3%). Note the likeness

between the parameters of the deterministic and 50th percentile capacity spectra.

6 Damage

An important issue related to seismic design of new buildings and, specially, related to

seismic risk assessment of existing structures and facilities is the expected damage. A

widely used damage index is the Park and Ang damage index (Park 1984; Park and Ang

1985; Park et al. 1985, 1987). We refer to this damage index as DIPA. According to the

Park and Ang studies, structures are damaged because of the combined effects of dis-

placements in the nonlinear range due to their response to large stresses and of cyclic drifts

in response to cyclic strains. Therefore, damage assessment must take into account also

repeated cyclic loads/unloads, in addition to maximum structural response. Displacements

in the nonlinear range are related to stiffness degradation and cyclic loadings are related to

energy losses. This idea is based on the damage index proposed by Pujades et al. (2015),

which is also based on two functions related to stiffness degradation and to energy loss; but

now, these functions are computed, in a straightforward way, from capacity curves or

capacity spectra. We refer to this new capacity-based-damage index as DICC. Many

computer programs for structural analysis, as Ruaumoko 2D (Carr 2002) in our case,

implement the Park and Ang damage index DIPA, so that it can be obtained by means of

Non-Linear-Incremental-Dynamic-Analysis (NLIDA). The following equation defines this

damage index:
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DIPA ¼ d
du

þ b
Qydu

Zd

0

dE ð4Þ

where d/du is the ductility, defined as the ratio between the maximum displacement of the

structural element subjected to a specific earthquake, d, and the ultimate displacement

under monotonic loading, du. Qy is the strength at the yielding point. If the strength, Qu,

corresponding to the ultimate displacement, du, is lower than Qy, then Qy is substituted by

Qu.
R d
0
dE represents the hysteretic energy absorbed by the element during the earthquake

and b is an empirical non-negative coefficient. Park et al. (1987), Ghosh et al. (2011) and

Kamaris et al. (2013) have shown that b = 0.025 is a good approximation for steel

buildings. Ruaumoko 2D program has been used to perform NLIDA and to compute DIPA.

Further details on how the DIPA is implemented can be found in the Ruaumoko 2D

technical manual (Carr 2002). In this section, DIPA and DICC are computed for the analysed

steel buildings. Notice that, according to Pujades et al. (2015) DIPA is needed to calibrate

the relative contribution to damage of the stiffness degradation and of the energy loss.

Table 5 Total weight, W, and period, T1, modal participation factor, PF1, and modal mass coefficient, a1,
for the first natural mode

Building W (kN) T1 (s) PF1 a1

SMF3 2372.9 0.63 1.286 0.891

SMF7 5941.8 1.22 1.350 0.805

SMF13 11,396.3 1.92 1.397 0.754

Fig. 11 Capacity spectrum, linear part and non-linear part (up) and corresponding first derivatives (down).
Fits for the 50th percentile of the probabilistic capacity spectra are also shown. a SMF 3, b SMF 7 and
c SMF 13
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6.1 Park and Ang damage index (DIPA)

Ruaumoko 2D is used to compute DIPA through NLIDA. Notably, the failure or ultimate

point in the NLIDA is defined by the first roof displacement that exceeds the ultimate

displacement of the corresponding capacity curve. Usually at this point, DIPA is about 1,

which confirms a failure condition. To obtain probabilistic DIPA with NLIDA, the suite of

20 accelerograms, whose response spectra have controlled mean and SD, are used as

follows. Accelerograms in the suite are organized and they are numbered between 1 and

20. Then, in each of the 200 IDA, an integer random number, uniformly distributed

between 1 and 20, is generated. The accelerogram having assigned this random number is

used for the corresponding IDA analysis. The adequacy of this procedure for the purpose of

this study has been also discussed above (see Sect. 4.1.2 and Fig. 8). To obtain DIPA in a

deterministic way, the mean of the four matched accelerograms, shown in Fig. 5, is used.

This way a deterministic and 200 probabilistic functions, linking the roof displacement, d,
and the Park and Ang damage index, DIPA are obtained. Again, the 5th, 50th and 95th

percentiles are used for discussion. The procedure to obtain these percentile curves has

been briefly explained above. Figure 13 shows the results obtained for the SMF 3, SMF7

and SMF 13 building models.

For the deterministic NLIDAs, the mean of the four matched accelerograms shown in

Fig. 5 is used. The d-DIPA functions for the studied buildings are shown in Fig. 13.

Observe how deterministic DIPAs are lower than the probabilistic 50th percentile. Because

of nonlinearity of the structural response, the use of mean, median or characteristic values

Fig. 12 Probabilistic capacity spectra and fits. The deterministic case is also shown. a SMF 3, b SMF 7 and
c SMF 13
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does not guarantee to get mean, median or characteristic responses. This fact highlights the

importance of probabilistic approaches in front of the more frequently used deterministic

approaches. Note that, in the case of Fig. 13, the use of mean values, both of the seismic

actions and strength parameters, leads to un-conservative results, which emphasizes, even

more, the importance of probabilistic approaches.

6.2 Capacity-based damage index (DICC)

DICC is based on the combination of a stiffness degradation function, K(d), and an energy

dissipation function, E(d). The computation of these functions is well-described in Pujades

et al. (2015). However, for clarity, a basic explanation of how these functions are defined is

also given herein. E(d) is defined by the cumulative integral of the non-linear part of the

capacity curve; the obtained function is then normalized, in abscissae and in ordinates, to

obtain the normalized ENðdNÞ, ranging between 0 and 1 and also taking values between 0

and 1. K(d) is defined by the ratio between the ordinates and abscissae of the non-linear

part of the capacity curve; again, normalizing in abscissae and in ordinates, the KNðdNÞ
function is obtained. DICC is defined by the following equation:

DICCðdNÞ ¼ aKNðdNÞ þ ð1� aÞENðdNÞ ffi DIPA ð5Þ

where EN(dN) and KN(dN) are the normalized energy and stiffness functions defined above,

and a is a parameter that defines the relative contributions to the damage index of the

stiffness degradation and that of the energy loss. The specific value of this parameter a, for
a given seismic action, is calibrated by means of a least squares procedure applied to

Fig. 13 d-DIPA functions obtained with NLIDAs for: a SMF 3, b SMF 7 and c SMF 13
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Eq. (5). This way this new damage index, DICC, is equivalent to DIPA. Specific examples

of EN(dN), KN(dN), DICC(dN) and DIPA(dN) are shown below, in the following section

(Fig. 14), where the results of the calibration of Eq. (5) are discussed.

6.3 Results and discussion

For the three analysed buildings, the calibration is illustrated for the median capacity

curves using median DIPAs. Thus, the KN (dN), EN (dN) and DIPA (dN) functions are used to

calibrate the parameter a, by means of a least squares fit of Eq. (5). a values are 0.71, 0.66

and 0.67 for SMF3, SMF7 and SMF13 buildings respectively. Figure 14 shows these three

cases. Undoing the normalization procedure these functions can be represented as func-

tions of the roof displacements d. Figure 15 shows DIPA (d) and DICC (d) for the deter-

ministic case and for the 5th, 50th and 95th percentiles capacity curves. The obtained

values of a are in the range between 0.66 and 0.71, which is also similar to the range

reported by Pujades et al. (2015) for reinforced concrete buildings. Thus, DIPA (median) is

well-represented by the new damage index DICC (median) obtained directly from the

capacity curves. As explained above, the value of a is directly related to the relative

contribution to damage of the secant stiffness degradation, while (1-a) corresponds to the

relative contribution of the energy loss. In the case of the median DICC of Fig. 15, con-

tributions to damage of the stiffness degradation are in the range 66–71%, while the

contribution of the energy loss is in the range 29–34%.

Fig. 14 Energy and stiffness degradation functions and calibration of the DICC (dN) for the median capacity
curve. a SMF 3, b SMF 7 and c SMF 13
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7 Fragility

Fragility curves and damage probability matrices are widely used in earthquake engi-

neering (FEMA 2016; Milutinovic and Trendafiloski 2003; Lagomarsino and Giovinazzi

2006). Porter (2017) is a nice tutorial for beginners (see also Porter et al. 2007). Details of

the construction of fragility curves, in the framework of our research, are explained well in

Lantada et al. (2009, 2010), Vargas et al. (2013) and Pujades et al. (2012). In this section,

the basics of fragility curves, damage probability matrices and mean damage state are

described first; then, the specific damage states thresholds used are introduced; finally, the

obtained results are given and discussed.

7.1 Basics

In the earthquake engineering context, for a given damage condition or damage state, i, and

for a level of seismic intensity measure, IM, the fragility curve, Fi(IM), is defined as the

probability that this damage state be exceeded, given the seismic intensity SI. Thus,

fragility curves are usually given as functions of a variable (SI) linked to the severity of the

seismic action such as, for instance, spectral displacement, PGA or macroseismic intensity,

among others. The spectral displacement, Sd, is used herein. Fragility curves are com-

monly modelled by means of cumulative lognormal functions defined by two parameters,

li and bi. li is the median of the lognormal function and is known as i-damage state

Fig. 15 DICC and DIPA for the deterministic case and for the 5th, 50th and 95th percentiles. a SMF 3,
b SMF 7 and c SMF 13
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threshold; bi is related to the dispersion of the lognormal cumulative function. In this

research four non-null damage states are considered: (1) Slight, (2) Moderate, (3) Severe

and (4) Complete.

The main hypothesis underlying the construction of fragility curves herein are the

following: (a) damage states thresholds, that is li, are determined from capacity curve or

from other criterion based, for instance, on observational data or expert opinion, and (b) the

assumption that expected damage follows a binomial distribution (Grünthal 1998; Lago-

marsino and Giovinazzi 2006) allows determining bi. Be aware that the probability of

exceedance in the damage state thresholds, li, is 0.5; To decide the spectral displacements

damage thresholds, two procedures are used here. The first one (Lagomarsino and Giov-

inazzi 2006) was proposed in the framework of the European Risk-UE project (see

Milutinovic and Trendafiloski 2003) and is based on the bilinear form of the capacity

curve, which is defined by the yielding point (Sdy, Say) and the ultimate capacity point

(Sdu, Sau). Thus, the Risk-UE based damage state thresholds are defined as follows:

l1 ¼ 0:7Sdy; l2 ¼ Sdy; l3 ¼ Sdyþ 0:25 Sdu� Sdyð Þ; l4 ¼ Sdu ð6Þ

The second one (Pujades et al. (2015) is based on DIPA, or in its equivalent DICC, damage

index. Spectral displacements corresponding to damage index (DIPA or DICC) values of

0.05, 0.2, 0.4, and 0.65, are allotted to the thresholds of the damage states Slight, Moderate,

Severe, and Complete, respectively. Recall that these values are based on damage obser-

vations (Park et al. 1985, 1987; Cosenza and Manfredi 2000). This way fragility curves for

the four damage states are set up.

Fragility curves easily allow us to obtain damage probability matrices (DPM), that is,

the probability of the damage states Pi (Sd). Then the mean damage state can be obtained,

D (Sd), also as a function of the same variable used to define fragility curves; often, the

normalized mean damage state, MDS (Sd) is used; how DMP, D (Sd) and MDS (Sd) are

obtained from fragility curves is shown below. Once the fragility curves, Fk (Sd), k = 1,…,

4, are known, for each spectral displacement, Sd, Pj (Sd), define the probability of the

damage state j as a function of the spectral displacement, Sd. Equation (7) shows how these

probabilities are obtained from fragility curves:

P0 Sdð Þ ¼ 1� F1 Sdð Þ; Pj Sdð Þ ¼ Fj Sdð Þ � Fj þ 1 Sdð Þ j ¼ 1. . .3 P4 Sdð Þ ¼ F4ðSdÞ
ð7Þ

P0 corresponds to the probability of the null damage state, while indices 1–4 correspond to

the four non-null damage states. Then the following equation defines the mean damage

state D(Sd) and the normalized mean damage state, MDS(Sd):

D Sdð Þ ¼
X4
j¼0

jPj Sdð Þ ¼ 4MDS Sdð Þ ð8Þ

As discussed in Pujades et al. (2015), MDS should not be compared directly with DIPA
because MDS has a statistical meaning and is based on the thresholds of the defined

damage states, while DIPA must be interpreted as a physical pointer, linked to the pro-

gressive degradation of the bearing capacity of the building.

Bull Earthquake Eng (2018) 16:1209–1243 1233

123



7.2 Results

Figure 16 shows the fragility curves, Fj, and the normalized mean damage state, MDS, as

functions of spectral displacement. In this figure, the first row shows the case based on the

Risk-UE project for the median capacity spectra shown in Fig. 11; the second row cor-

responds to damage state thresholds based on the median DIPA; row 3 shows the case of the

median DICC. Median DIPA and DICC damage indices are shown in Fig. 15. Table 7 shows

the parameters of these fragility curves (Sdi, li and bi) for the deterministic and proba-

bilistic 5th, 50th and 95th percentiles. The upper part of this table, corresponds to Risk-UE

based fragility curves, in the middle the parameters corresponding to fragility curves based

on DIPA are given and the lower part shows the parameters of the fragility curves based on

DICC. In fact, both indices are almost equivalent as DIPA, has been used to fit DICC. Thus,

the corresponding fragility and MDS functions are also similar. The li and bi values in the

shadowy area correspond to the fragility curves of Fig. 16. Moreover, Fig. 17 compares the

MDS functions, as defined by Eqs. (7) and (8), corresponding to these three cases. It can be

Fig. 16 Fragility curves and MDS functions obtained for median capacity spectra. Row 1 shows the case
based on the Risk-UE project, row 2 shows the case based on DIPA, and row 3 shows the case based on
DICC. a SMF 3, b SMF 7, c SMF 13, a SMF 3, b SMF 7, c SMF 13, a SMF 3, b SMF 7, c SMF 13
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seen that Risk-UE based MDSs overestimate the expected damage. However, in the case of

the low-rise building SMF3, the Risk-UE based MDS underestimates the damage above

the complete damage state. Disagreements between Risk-UE and DIPA based MDS were

also found for reinforced concrete buildings (Pujades et al. 2015). Notwithstanding, the

threshold values of displacement adopted for the four damage state limits by Pujades et al.

(2015) were based on observations in reinforced concrete buildings (Park et al. 1985, 1987;

Cosenza and Manfredi 2000). For easy, the same damage state thresholds to set up fragility

and MDS damage curves, based both on DIPA and DICC damage indices, have been

adopted herein for steel buildings; other criteria can be used to define these threshold

values, as for instance the damage states based on interstory drifts proposed in the FEMA

(2016) for steel buildings, but in our view, similar results would have been obtained.

8 Overview and discussion

8.1 Overview

In this paper, the parametric model for capacity curves and the new capacity-based damage

index and fragility models, recently proposed by Pujades et al. (2015), have been tested

and applied to steel buildings. High- (13 storeys), mid- (7 storey) and low-rise (3 storeys)

buildings with special moment frames have been evaluated. Also, the seismic response of

steel buildings, which are typical of the city of Mexico, has been investigated with

deterministic and probabilistic approaches. NLSA and NLIDA are used. The probabilistic

Fig. 17 Comparison of the median MDS functions. a SMF 3, b SMF 7 and c SMF 13
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approach uses Monte Carlo simulation and optimization sampling techniques, such as the

Latin hypercube technique. Uncertainties in the mechanical properties of buildings and in

the seismic actions are considered. Only the strength and ductility of the structural ele-

ments are considered as random variables and it is assumed that they follow truncated

normal or lognormal probability density distributions. For deterministic analyses, mean

values of these distributions are used. Seismic actions are chosen according to the design

spectrum foreseen for soft soils in the city of Mexico. Thus, four accelerograms recorded in

the study area have been selected, and a spectral matching technique has been applied, so

that the response spectra match the design spectrum well. For deterministic analyses, the

mean of these four matched accelerograms has been used. For probabilistic analysis, five

probabilistic response spectra, with the design spectrum as mean and a predefined SD have

been generated. Then, for each generated spectrum, the spectral matching technique is

applied to each of the four selected accelerograms, resulting in a suite of 20 accelerograms,

whose response spectra have the design spectrum as a mean and the predefined SD.

8.2 Discussion

One of the main purposes of this research has been to check the parametric capacity model

and the capacity-based damage index for steel buildings. Actually, Pujades et al. (2015)

found a very simple analytical model with five independent parameters, fitting capacity

curves well. It was shown how the degradation processes (damaging), which can be iso-

lated in the nonlinear part of the capacity curve, are well represented by a cumulative

integral of a cumulative lognormal function. That is by means of only two parameters. The

appropriateness of the model may be clearly seen in the first derivatives of the capacity

curves. Certainly, the use of a reinforced concrete building to illustrate the model was ad

hoc because, at that moment, studies were being carried out on RC buildings. However, the

parametric model wants to be valid for any capacity curve. Thus, this research highlights

the validity of this fine model, also for steel buildings. Moreover, focusing on the nonlinear

part of the capacity curve, in the same paper, Pujades et al. (2015) proposed a new and

simple damage index, which, like the Park and Ang damage index, is based on the stiffness

degradation and on the energy loss. The parameter a is crucial as it separates the contri-

bution of the stiffness degradation from that of the energy loss. Values around 0.7 are

found for this parameter in the very few studies performed up to date. In fact, this value can

be taken as a first quick estimate. Finer estimations require NLIDA. Results show that

Fig. 18 PGA-d and PGA-DIPA functions for the three buildings (see explanation in the text)
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relatively low variations, around this value of 0.7, are expected, and they are related mainly

with the characteristics of the seismic actions. This way, near-fault impulsive strong

motions would lead to higher a values. Far-field seismic actions and soft soils would

provide long duration seismic actions increasing the contributions to damage of repeated

cyclic loads, thus decreasing the a values. Really, future research on more building types,

using different seismic actions, can lead to tabulated values of this parameter, facilitating

expedite and massive applications of this new damage index. Noticeably, also the fragility

curves based on the damage thresholds defined according specific values of this damage

index are dependent on the features of the seismic actions, which, on the other hand, would

be reasonable.

Additional values of this research are the probabilistic approach adopted, as well as the

study of the frame steel buildings located in soft soils of the Mexico City. Concerning the

probabilistic approach, our results confirm that the probabilistic approach must be pre-

ferred because, due to the nonlinearity of the response of the buildings, the use of deter-

ministic, even conservative, inputs, can lead to biased outputs; besides, probabilistic

approach is richer as it allows obtaining and analyse the uncertainties in the response.

Uncertainties in the response increase with the severity of the seismic actions. Concerning

to the studied buildings, Fig. 18 shows PGA-d and PGA-DIPA curves obtained with

NLIDA.

It can be seen how the high-rise frame steel buildings, located in soft soils in Mexico

City, would exhibit no good performance, when subjected to likely seismic actions.

Ongoing research (Dı́az 2017) shows the adequacy of the use of protecting devices in those

buildings. For instance, the use of Buckling Restrained Braced Frames, highly improves

their seismic performance. Finally, the use of seismic actions recorded in the study zone,

but that, at the same time, are compatible with the design response spectrum also gives

reliability to the obtained results.

9 Conclusions

Several relevant conclusions of this research are as follows:

• Because of nonlinearity both of static and dynamic responses, the use of mean, median

or characteristic values does not warranty to get mean, median or characteristic

responses. This fact highlights the importance of probabilistic approaches in front of

the more frequently used deterministic ones. Note that, in our case (see Fig. 13), the use

of mean values, both of the seismic actions and strength parameters, leads to un–

conservative results, which emphasizes, even more, the importance of probabilistic

approaches, which should be preferred, as they provide more complete, more valuable

and richer information.

• Uncertainties in the response increase with an increase in the severity of the

earthquake. The main source of uncertainty in the response is uncertainty in the seismic

action, but the influence of uncertainties in the mechanical parameters was also

significant, even though it was lower.

• The parametric model for capacity curves, the new damage index based on the secant

stiffness degradation and energy loss, and the corresponding fragility model as

proposed by Pujades et al. (2015) for reinforced concrete buildings, also provide

excellent results for the steel buildings studied herein. This confirms the robustness of

the parametric model, the compatibility of the new damage index with the Park and
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Ang damage index, and the consistency of the fragility model with previous proposals

based on expert judgment.

• Concerning the damage index for the buildings and seismic actions studied in this

research, relative contributions to damage due to secant stiffness degradation and those

due to energy loss are respectively about 70 and 30%. The contribution to damage of

the energy loss is about 10% greater than that obtained by Pujades et al. (2015) for

reinforced concrete buildings. This increase is attributed to longer duration of the

accelerograms in Mexico City because of the combined effects of large epicentral

distances and soft soils. Longer durations entail greater numbers of hysteretic cycles for

the same spectral displacements, thus increasing the contribution to damage of energy

dissipation.

• For the steel buildings analysed here, static and dynamic analyses provide consistent

results. However, differences increase with the height of the buildings; this fact is

attributed to the influence of higher modes in the response, which in not captured in the

static analysis, as executed here.

The results of this research show that the parametric and damage models proposed by

Pujades et al. (2015) for reinforced 2D frame reinforced concrete buildings are also valid

for 2D frame steel buildings. Thus, this is a promising new tool that can be useful in rapid

damage assessments and, in particular, in probabilistic approaches, as it may allow sig-

nificant computation time reductions.
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Hancock J, Watson-Lamprey J, Abrahamson N, Bommer J, Markatis A, McCoy E, Mendis R (2006) An
improved method of matching response spectra of recorded earthquake ground motion using wavelets.
J Earthq Eng 10(Special Issue 1):67–89

Ibarra LF, Medina RA, Krawinkler H (2005) Hysteretic models that incorporate strength and stiffness
deterioration. Earthq Eng Struct Dyn 34(12):1489–1511

Idota H, Guan L, Yamazaki K (2009) Statistical correlation of steel members for system reliability analysis.
In: Proceedings of the 9th international conference on structural safety and reliability (ICOSSAR).
Osaka, Japan

Iman RL (1999) Appendix A: latin hypercube sampling. Encyclopedia of statistical sciences, vol 3. Wiley,
New York, pp 408–411

Jaquess TK, Frank KH (1999) Characterization of the material properties of rolled sections. Technical report
for SAC Joint Venture, University of Texas. Austin, Texas

Kamaris GS, Hatzigeorgiou GD, Beskos DE (2013) A new damage index for plane steel frames exhibiting
strength and stiffness degradation under seismic motion. Eng Struct 46:727–736

Kazantzi AK, Righiniotis TD, Chryssanthopoulos MK (2008) Fragility and hazard analysis of a welded steel
moment resisting frame. J Earthq Eng 12:596–615

Kazantzi AK, Vamvatsikos D, Lignos DG (2014) Seismic performance of a steel moment-resisting frame
subject to strength and ductility uncertainty. Eng Struct 78:69–77

Bull Earthquake Eng (2018) 16:1209–1243 1241

123

https://www.fema.gov/hazus-mh-user-technical-manuals
https://www.fema.gov/hazus-mh-user-technical-manuals


Kim S-P, Kurama YC (2008) An alternative pushover analysis procedure to estimate seismic displacement
demands. Eng Struct 30(12):3793–3807

Krawinkler H (1978) Shear in beam-column joints in seismic design of steel frames. Eng J 15(3):82–91
Krawinkler H, Zohrei M (1983) Cumulative damage in steel structure subjected to earthquake ground

motions. Comput Struct 16(1–4):531–541
Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage

assessment of current buildings. Bull Earthq Eng 4(4):415–443
Lantada N, Pujades LG, Barbat AH (2009) Vulnerability index and capacity spectrum based methods for

urban seismic risk evaluation. A comparison. Nat Hazards 51:501–524
Lantada N, Irrizari J, Barbat AH, Goula X, Roca A, Susagna T, Pujades LG (2010) Seismic hazard and risk

scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bull Earthq Eng
8:201–229

Levy R, Lavan O (2006) Fully stressed design of passive controllers in framed structures for seismic
loadings. Struct Multidiscip Optim 32(6):485–498

Lignos DG, Krawinkler H (2011) Deterioration modeling of steel components in support of collapse pre-
diction of steel moment frames under earthquake loading. J Struct Eng 137(11):1291–1302

Lignos DG, Krawinkler H (2012) Sidesway collapse of deteriorating structural systems under seismic
excitations. Technical report no. TB 177, The John A. Blume Earthquake Engineering Center, Stanford
University, Stanford, CA

Lignos DG, Krawinkler H (2013) Development and utilization of structural component databases for per-
formance-based earthquake engineering. J Struct Eng 139(8):1382–1394

Liu XY, Wang YQ, Xiong J, Shi YJ (2017) Investigation on the weld damage behavior of steel beam-to-
column connection. Int J Steel Struct 17(1):273–289

McGuire RK (2004) Seismic hazard and risk analysis. Institute Earthquake Engineering Research (EERI),
Oakland

Milutinovic Z, Trendafiloski G (2003) WP04 vulnerability of current buildings RISK-UE project of the EC:
an advanced approach to earthquake risk scenarios with applications to different European towns

Mwafy A, Elnashai A (2001) Static pushover versus dynamic collapse analysis of RC buildings. Eng Struct
23(5):407–424
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