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Abstract. We consider the Kirsch problem, taking into account the surface stresses at the
boundary of the circular hole and on the front surfaces of the plate, in the framework of
the original Gurtin–Murdoch model. The boundary conditions on the cylindrical surface of
a circular hole in a nanoplate are derived in terms of a complex variable in the case of the
plane stress state. The solution of the two-dimensional problem for an infinite plane with a
circular hole under remote loading is explicitly obtained. Based on the analytical solution,
we investigated the dependence of the elastic stress field on the nanosised plate thickness and
dimension of the hole. Numerical examples are given in the paper to illustrate quantitatively
the effect of the plate thickness at the nanoscale on the stress field at and near the cylindrical
surface. The results are presented graphically as the dependence of the components of the
stress tensor on the polar angle.

1 INTRODUCTION

Typical representatives of inhomogeneous materials are classes of fibrous composites with
metal, polymer, and ceramic matrices. In these materials, fibers of different scale levels, ranging
in diameter from hundreds of microns to several nanometers, are distributed in different ways.
Strength and physicochemical properties of materials depend on the features of the stress-strain
state of near-surface and near-boundary layers in inhomogeneous systems. The development of
plastic deformation and fracture processes in these areas determines the mechanical behavior
of the material as a whole and is therefore of great interest [1]. The traditional consideration of
micro- and nanoscale heterogeneities in the framework of the classical theory of elasticity may
lead to inaccuracies in determining the levels of real deformations and stresses [2]–[4].

Due to the rapid development of nanotechnology, it becomes necessary to study the me-
chanical behavior of nanoscale structures used in the manufacture of electromechanical devices,
such as vibration shock sensors, biosensors, accelerometers, resonators, and others [5]–[7]. Con-
tinuum mechanics offers tools to model their behavior. One of such tools is two-dimensional
bending models of thin-walled nanostructures that combine volumetric and surface elasticity
and, thus, can simulate a dimensional effect that is not found in micromechanics. This effect
is manifested in the fact that the mechanical properties of an elastic object, expressed in di-
mensionless quantities, depend on the absolute dimensions of the nanostructure (for example,
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on its thickness). Thus, classical methods of mechanics in combination with models of surface
elasticity [8] make it possible to model the behavior of nanostructures of a very diverse nature.

In this work, we present the modified Kirsch problem of a plane stress [9] allowing for
the surface elasticity and residual surface stress by the Gurtin–Murdoch model [10]. The
problem of a plane stress of a plate in the presence of surface stresses differs essentially from
the corresponding problem of a plane strain of a body, as the elastic parameters of the plate
depend on the elastic parameters of the surface and plate thickness. The boundary conditions
are derived according to the corresponding generalized Laplace–Young law. With the help of
Goursat–Kolosov complex potentials and Muskhelishvili representations, the solution of the
problem is reduced to the singular integro-differential equation. The algorithm for solving the
integral equation is constructed in the form of a power series, as in [11, 12]. Based on the
explicit forms of the analytical solution, we present numerical results for the stress field near
the boundary of the nanohole. The effect of plate thickness on the stress field at the surface of
the hole and the role of surface tension at this surface are shown.

2 FORMULATION OF THE PROBLEM

The problem of a plane stress on a plate in the presence of surface stresses differs essentially
from the problem of a plane strain on a body because of the existence of the second unknown
function in the boundary equation. The elastic parameters of the plate depend on the sur-
face elastic parameters and plate thickness, which is another characteristic of the plane stress
problem incorporating the surface effect. As a result, the formulation and resolution of the
associated Kirsch problem for a circular hole in a thin plate should be expressed in terms of
averaged stresses σij and strains εij that fulfill constitutive equations based on the thickness of
the plate and the surface elasticity parameters.

Using the Gurtin–Murdoch model, we derive the boundary conditions in complex variables
for the 2-D problems assuming that the surface of a bulk material is cylindrical with a generatrix
parallel to the x3-axis of the Cartesian coordinates xj, j = 1, 2, 3. We assume that the bulk
material occupies a three-dimensional cylindrical region |x3| ≤ h/2 for the plane stress state.
The cross section of this region is an infinite domain of the complex variable z = x1 + ix2 with
the boundary Γ = {z : z = ζ, |ζ| = R}.

The constitutive equations for the generalized plane stress [13] with surface tension τ s0 at the
face surfaces of the plate in terms of stress-strain components in the local coordinate system
n, t, x3 as follows:

σnn = σs0 + (λ∗ + 2µ∗)εnn + λεtt, σtt = σs0 + (λ∗ + 2µ∗)εtt + λ∗εnn, σnt = 2µ∗εnt, (1)

where σs∗0 and effective elastic modules λ∗, µ∗ equal

σs∗0 =
2τ s0
h
, λ∗ =

2λµ

λ+ 2µ
+

2λs

h
, µ∗ = µ+

2µs

h
. (2)

In equations (1), (2) σs0 is the average surface tension on the surface of the hole, λs, µs are
the surface elastic constants similar to the Lamé constants λ, µ of the bulk material.

3 BOUNDARY INTEGRAL EQUATION AND SOLUTION

Consider the infinite elastic plate {D = (x1, x2, x3) : (x1, x2) ∈ R2, |x3| ≤ h/2 with the cir-
cular hole of the radius R under the plane stress conditions, subjected to the remote loading
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uniformly distributed along the thickness of the plate and directed parallel to the plate faces:

lim
|z|→∞

σ11 = s∗11 = s11 +
2τ s0
h
, lim

|z|→∞
σ22 = s∗22 = s22 +

2τ s0
h
, lim

|z|→∞
σ12 = s∗12 = s12, (3)

where sij is the average stress in the bulk material of the plate at infinity. Moreover, the
rotation angle at infinity satisfies the condition lim

|z|→∞
ω = 0. Taking into account the surface

stresses on the cylindrical surface, the boundary condition is introduced according to [9]

σnn + iσnt =

[
σs0
R

+
K1

R
Re
∂u

∂ζ
− K2

R
εnn + σs0Im

(
∂2u

∂ζ2

)]
− (4)

−i
[
K1Re

(
∂2u

∂ζ2

)
−K2

∂εnn
∂ζ

eiα0 − σs0
R

Im
∂u

∂ζ

]
+ q(ζ) = qs(ζ) + q(ζ),

K1 = Ms −
λLs
λ+ 2µ

, K2 =
λLs
λ+ 2µ

, Ms = λs + 2µs, Ls = λs + σs0,

where ζ = reiθ, θ is the angle of the polar coordinates r, θ with the origin in the center of
the circular hole; α0 is the angle between the tangent to Γ and the x1-axis at the point ζ;
εnn = ∂un/∂n, u is unknown complex displacement; q is the known complex traction at Γ.

We will use (4) to obtain the analytical solution to the problem of a circular hole in an
infinite elastic matrix under any arbitrary remote load. The problem is reduced to the result of
Riemann – Hilbert’s boundary problem [9, 14]. The solution can be conditionally divided into
two parts since the function qs depends on the unidentified complex displacement u. First, the
complex potentials are evaluated in terms of the function u, and then the integral equation is
constructed in form

2µ∗v′(τ) + κI−(τ) + I+(τ) = (κ + 1)T (τ)− σ̃ − κJ−(τ)− J+(τ), |τ | = 1, (5)

where v = u/R, τ = ζ/R, κ = (λ∗ + 3µ∗)/(λ∗ + µ∗), σ̃ = µ∗σs∗0 /(λ
∗ + µ∗), function T depends

on stresses at infinity (3), functions I, J are known and understood in the sense of the principal
value of Cauchy type integrals dependent on tractions at Γ.

The solution of the system of the integral equation (5) can be found in the form of the power
series for function v′(τ), coupled with the series

v′(τ) =
∞∑

k=−∞

bkτ
k.

According to [9], the following are the final formulations for the stress tensor components in
the polar coordinates r, θ:

σrr = −(2µ∗a0 + σ̃)r−2 +
s∗11 + s∗22

4

(
2 + (κ − 1)r−2

)
− (6)

−
[
1− 2(2−K1d

+
2 + σs0d

−
2 + 2K2d3)r−2 + 3(1−K1d

+
2 + 2K2d3)r−4

]
Ξcs,

σθθ = (2µ∗a0 + σ̃)r−2 +
s∗11 + s∗22

4

(
2− (κ − 1)r−2

)
+
[
1 + 3(1−K1d

+
2 + 2K2d3)r−4

]
Ξcs, (7)
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σrθ =
[
1 + (2−K1d

+
2 + σs0d

−
2 + 2K2d3)r−2 − 3(1−K1d

+
2 + 2K2d3)r−4

]
Ξsc, (8)

where

Ξcs =
s∗22 − s∗11

2
cos 2θ − s∗12 sin 2θ, Ξsc =

s∗22 − s∗11

2
sin 2θ + s∗12 cos 2θ.

Coefficients a0, d
−
2 , d

+
2 , d3 in the equations (6)–(8) aren’t given here because of bulky expressions.

4 NUMERICAL RESULTS

To obtain the graphical dependencies, it is assumed that the surface properties are deter-
mined by the parameters λs = 6.851 N/m, µs = −0.376 N/m and σs0 = τ s0 = 0.9108 N/m for
aluminum [15]. Elastic volume constants are equal to λ = 58.17 GPa, µ = 26.13 GPa [16].
Based on the relations (6)–(8), some numerical results for the stress field at the boundary of the
cylindrical surface are shown in Fig. 1 and 2 by red curves for the radius of the hole R = 2 nm
of the plate thickness h = 0.3 nm under the uniaxial load s22 = 1 GPa. Additionally, the green
and blue curves represent the stress field at a distance from the hole’s boundary at r = 1.1
and 1.2, respectively, in units of the hole’s radius R. Dashed curves provide the solution to the
traditional Kirsch problem for comparison.

It is important to think about the stress distribution along the lines that are the symmetry
axes of the holes in the case of biaxial tension because of the potential future use of the
aforementioned analytical solution to theoretical modeling of crack development at the hole or
dislocation emission from it. Fig. 3 shows the distribution of the stress components σθθ and
σrr along the lines θ = 0 (red curves) and θ = π/2 (green curves). In Fig. 4 we consider
the dependence of the maximum hoop and normal stresses on the radius R for two values of
thickness h = 0.3, 1 nm which are represented by green and blue curves, respectively; red curves
correspond to the classical Kirsch solution and presented for comparison.

a b
Figure 1: Distribution of normal (a) and tangential (b) stresses at the boundary of the circular hole of the
radius R = 2 nm and plate thickness h = 0.3.
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Figure 2: Distribution of hoop stresses at the boundary of the circular hole of the radius R = 2 nm and plate
thickness h = 0.3.

a b
Figure 3: Distribution of the stress components σθθ (a) and σrr (b) along the lines θ = 0 and θ = π/2 when
R = 2 nm and plate thickness h = 0.3.

5 CONCLUSIONS

From Figs. 1–4, it is clear that incorporating the surface tension in accordance with the full
Gurtin–Murdoch model has a considerable impact on the value of the stress field at the hole
boundary as well as farther away from the boundary deep within the plate.

- The highest difference in the values of the maximum hoop stresses at the hole boundary
between the modified and the traditional Kirsch problems is 20%.

- The highest divergence of the stress field at the hole boundary is less than 3%, according
to numerical analysis of the stress field calculated for various values of plate thickness
h = 0.3, 1 nm. The qualitative behavior of the curves is maintained as we go away from
the hole boundary, although the difference between the modified and classical problems
gets smaller but is still noticeable.
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a b
Figure 4: Dependence of the maximum hoop (a) and normal (b) stresses on the radius R at the boundary.

- It should be emphasized that, in contrast to the classical problem, normal and tangential
stresses appear when the surface tension at the hole boundary is taken into account.

- It is important to keep in mind that, as a result of numerical research, the stress field
tends toward the Kirsch solution as the hole’s radius rises (size effect), that means the
surface energy tends to minimum.
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