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Abstract. This study addresses the growing concerns around wind turbine safety and
reliability, particularly focusing on the early detection of ice accumulation on blade surfaces,
a critical factor affecting structural integrity and aerodynamic performance. It introduces an
innovative methodology, combining vibration analysis with the advanced Extended Isolation
Forest technique for effective detection of ice accumulation. This methodology uniquely utilizes
normal operational data, which makes it widely applicable. It encompasses three stages: data
collection and feature extraction from accelerometers, training the extended isolation forest
algorithm on healthy turbine data, and subsequent evaluation through experiments with added
masses. The results demonstrate its efficacy in early detection of ice accumulation, offering a
proactive approach that reduces downtime, cuts repair costs, and mitigates ice-related risks.
This methodology contributes to the advancement of structural health monitoring in wind
turbines, improving operational safety and reliability, while providing operators with essential
tools for risk mitigation, optimized maintenance, and long-term system performance.
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1 INTRODUCTION

The rapid growth in wind turbine (WT) installations reflects a global shift toward renewable
energy sources, driven by the need to reduce dependence on environmentally harmful fossil
fuels. In 2018, the wind energy sector expanded significantly, with 51.3 GW of new capacity
added, contributing to a total global capacity of 591 GW. Moreover, new onshore and offshore
installations of over 55 GW each year are projected until 2023, according to GWEC [1]. Amidst
this growth, attention is now focused on ensuring the long-term reliability and safety of WTs
while simultaneously reducing operational costs. Maintenance expenses, especially for offshore
installations subjected to extreme environmental conditions such as strong winds and waves,
have emerged as a significant concern, accounting for up to 20% of total energy costs [2].

Structural health monitoring (SHM) emerges as a crucial tool in advancing wind energy.
It enables real-time monitoring and predictive maintenance of WT critical components such
as the tower, substructure (for offshore WTs), foundations, rotor, and blades. This study
focuses on the detection of ice accumulation on WT blades, which is of paramount importance
due to its significant impact on the structural integrity and aerodynamic performance of these
devices. Ice build-up can trigger rotor imbalances, unwanted vibrations, and a reduction in
power generation efficiency. Even when the ice accumulation is minimal, it has significant
consequences on WT power production due to the degradation of aerodynamic performance
associated with the deformation of the icy airfoil profile[3]. Moreover, it can pose safety risks and
increase maintenance operational costs[4]. Hence, developing effective early detection methods
for ice accumulation is essential to ensure the safe and efficient operation of WTs. For these
reasons, the primary objective of this study is to develop an early detection method of ice
accumulation on WT blades.

In the existing scientific literature, the issue of ice accumulation on WT blades has received
attention, and various methods for detection have been explored. However, achieving early
and precise detection of this phenomenon remains a challenge. Researchers have investigated
approaches to address ice detection in WTs, yet there remains significant room for improvement
in terms of the accuracy and effectiveness of these methodologies. In this study, vibration
response accelerometer measurements are leveraged, and the extended isolation forest (EIF)
is applied to develop an early detection approach for ice accumulation on WT blades. The
primary advantage of this methodology lies in the exclusive use of healthy data for algorithm
training and validation, enabling its applicability in various environments, as healthy data is
prevalent in the industry. To validate the methodology, experimental testing on a laboratory
WT blade is conducted to assess its effectiveness in detecting and diagnosing ice accumulation.

The results of the experiments demonstrate the methodology’s effectiveness in detecting
blade ice accumulation for a small amount of simulated ice mass. This finding holds significant
implications for the wind energy sector, as it has the potential to greatly enhance turbine safety,
operational performance, and reduce the economic impact of corrective maintenance.

The article follows a structured format as indicated in the following. Section 2 presents
the experimental setup and the damage scenario. Section 3 indicates the methodology to be
followed, covering topics such as data acquisition, feature extraction, and the EIF algorithm.
Section 4 a summary of the experimental results obtained. Finally, Section 5 presents the
conclusions.
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2 Experimental setup

In the present study, a blade from a small WT (model E30PRO), with a length of 163 cm, is
used. A vertical fixation is used, where the weight of the blade rests on its base, offering various
options for securing it. Therefore, it is decided to place the blade vertically on a plate welded
to a table measuring 850 × 850 × 150 mm. Eight triaxial acceleration sensors are installed
at different positions on the blade. Each of these sensors records three signals (accelerations
in the x, y, and z axes), resulting in a total of 24 acceleration measurements. To excite the
structure (blade), an impact hammer is used to deliver 9 strokes in a period of 1 minute,
simulating disturbances on the blade generated by the wind. Sensor placement is based on the
Nielsen and Esu papers, respectively[5] [6], in which it is demonstrated that one of the best
configurations for accelerometers involves placing 8 sensors distributed with 4 along the leading
edge and 4 along the trailing edge, equidistantly. Additionally, it is considered that the sensors
should be positioned in a way that maximizes the excitation of the measured property at that
position, or at least obtains a sensitive sensor signal. Therefore, its placement is based on the
hot spots present on the WT blade. In most cases, these spots are located between 30% and
70% of the length of the turbine [7] [8]. This sensor arrangement can be observed in Figure 1.

Figure 1: Experiment setup with sensors located on the leading and trailing edges along the blade.

Given that this work aims to detect the accumulation of ice masses on the WT blade (as it
is a common type of damage), a configuration of bolts and nuts is used to mimic the masses
resulting from ice formation. These are placed at the leading edge of the blade tip, as this is
typically where ice mass formation begins [4]. For a better visualization of the location of these
ice masses and the sensors, refer to the blade sketch shown in Figure 2.

In addition, Figure 3 shows the damage configuration (added mass) that is considered. This
damage represents an ice mass formation of 35 g (3 bolts and 3 nuts per side). On the other
hand, the healthy state of our structure is when no added mass is present.

3 Methodology

Next, the stages of the proposed methodology are listed. First, raw data from the sensors
is collected. Second, data preprocessing is performed to ensure that each new sample contains
sufficient and relevant data. Third, feature extraction is conducted for each experiment. Fi-
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Figure 2: Contour of the blade where the squares indicate the location of the accelerometers vertically separated
29 cm with respect to the tip, the circles the position of the added masses (spaced 2 cm apart) and the cross the
excitation zone with the hammer, the distances of the masses to the tip are referenced to the tip in centimeters.

Figure 3: Representation of the damage case with added mass (simulated by bolts) of 35g.

nally, the architecture of an EIF algorithm designed to detect blade damage is described. The
following subsections provide a comprehensive description of the various mentioned stages.

3.1 Data acquisition

The duration of each experimental trial for data acquisition is 60 seconds, with an approx-
imate sampling frequency of 1706.67 Hz. Consequently, each of the 24 sensors (eight triaxial
sensors) produces 102400 measurements. In these readings, a medium-force impact strike from
an impact hammer is consistently applied at 6-second intervals, resulting in 9 significant strokes
within 60 seconds. Below, is provided a description of the conducted trials:

• Two hundred and twenty healthy experimental trials without added mass (representing
the healthy state).

• Twenty experimental trials with an added mass of 35 grams (representing the damage
state).

Equation (1) shows the representation of the data obtained in each experimental trial in a
general format (the same representation applies to all experiments, whether they are healthy
or damaged cases). Where k represents each experimental trial, i.e. k ∈ [1, K], where K is
240. The subscripts, in the matrix coefficients, represent readings over time (row) and sensor
(column), respectively. More specifically.

• n = 1, . . . , N identifies the time instant, while N is the total number of time instants per
experiment, equal to 102400;
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• m = 1, . . . ,M represents each sensor, while M is the total number of sensors, equal to
24.

X(k) =


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As a result, each experimental trial matrix X
(k)
N,M ∈ M(k)

102400×24(R).

3.2 Data Reshape

In this section, a feature engineering technique, data reshaping, is applied to ensure that
each of the samples processed by the algorithm contains useful and sufficient information from
each sensor to determine the state of the structure.

In this study, samples that contain information from approximately two seconds of data are
acquired, after each excitation from the stroke. Given that the sampling frequency is 1706.67
Hz, each sample contains 3414 values from each column. Therefore, the process to obtain these
experiments is achieved through the following steps (the reshaping process is carried out for
each experimental case):

1. Each column in the experimental test matrix is divided into 6-second time windows (10240
data points) because each impact occurs within that duration, and the initial 6 seconds
are removed as they do not provide useful information;

2. From each sample, the first two seconds following the impact are selected (3414 data
points), i.e., from the 6th to the 8th second, 12th to 14th second, and so forth, as illus-
trated in Figure 4. This is done to capture only the relevant information (impact), while
the remaining values correspond to the time during which the disturbance caused by the
impact stabilizes;

3. The data sequences are arranged as rows, with each new row added beneath the last one.
In other words, there are 9 rows for each experimental trial;

4. These steps are repeated for all columns (sensors), generating new submatrices and ap-
pending them to the right of the last column corresponding to each sensor in the data
matrix. The total number of horizontal submatrices is 24, one for each sensor.

As a result of this data reshaping process, a new matrix Z(k) is constructed as shown in Eq.
(2).

Z(k) =
[
Z(k),1 Z(k),2 Z(k),3 Z(k),4 · · · Z(k),M

]
, (2)

where each submatrix Z(k),m is represented by
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Figure 4: Data reshaping process.

where O represents the length of a time sequence, which is determined by taking the two
seconds following the signal peak of the first sensor, i.e. O is equal to 3414, and j = 1, . . . , J
identifies the sequence number, while J is the number of sequences per experiment, equal to 9.
As a result, each Z(k),m ∈ M9×3414(R). This reshaping is performed for each experimental trial,
whether it is a healthy or a damage case, as observed in the previous section.

3.3 Data Split

To ensure the proper training of the model, the experiments are divided into three sets:
training, validation, and test, using the following percentages:

• Training Set: comprising 75% of the healthy data, this set contains 165 exclusively healthy
experimental trials in total.

• Validation Set: consisting of 10 % of the healthy data, this set contains 22 exclusively
healthy experimental trials in total.

• Test Set: This set includes 15 % of the remaining healthy data (33 experimental trials),
and 100 % of the data with damage, i.e. 20 experimental trials with the damage case
(added mass of 35 g).

These three data sets serve different purposes in evaluating model performance. The training
set is used for the primary purpose of training the model, allowing it to become familiar with
the data. In contrast, the validation set plays a crucial role in the unbiased evaluation of the
model’s training progress. It also allows to adjust the hyperparameters to avoid overfitting
and to ensure the generalization of the model to unknown data. Finally, the test suite comes
into play once the model has undergone full training. It serves as a final benchmark, as it
evaluates the model’s accuracy and performance on previously unseen data and provides a
robust assessment of its predictive capabilities by focusing on the detection of damage cases.
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3.4 Feature extraction

Feature engineering is a critical preprocessing step in data analysis, involving the creation
of novel features derived from existing ones [9]. In the context of this study, new features are
extracted.

To streamline and enhance the model training process in this study, three distinct features
have been selected for each sensor: fractal dimension (FD), permutation entropy (PE), and
kurtosis (Kurt). In the following subsection, two of these features are explained in detail,
which are calculated on each of the matrices of Eq. (3). After the feature processing phase,
considering that each sensor has these three features computed, it results in a modification of
the data matrix dimensions, as exemplified in Table 1.

Table 1: New dimensionality of the matrix, after feature extraction.

Structural State Set Matriz Dimensionality
Healthy Training 1485 x 72
Healthy Validation 198 x 72
Healthy Test 297 x 72
Damage Test 180 x 72

3.4.1 Fractal Dimension

Fractal Dimension (FD) is a metric used to evaluate the complexity and irregularity of
geometric structures or datasets[10]. In this research, FD is applied to analyze acceleration
signals from WT blade sensors, with the aim of identifying irregular patterns as potential
indicators of blade issues and providing additional insights beyond mean and standard deviation
statistics. The Katz method is used for the FD calculation, which involves comparing the curve
length with the straight-line distance. The formula for FD in this study is as follows:

FD(z
(k),m
j,· ) =

log(L(z
(k),m
j,· ))

log(d(z
(k),m
j,· ))

(4)

where

• FD(z
(k),m
j,· ) denotes the Katz’s FD for the jth row of Z(k),m matrix.

• L(z
(k),m
j,· ) represents the length of the curve for the jth row, calculated as the cumulative

sum of the Euclidean distances between successive points in the signal.

• d(z
(k),m
j,· ) is the maximum distance from any point in the signal to the initial point, es-

sentially indicating the largest difference between the signal values in the jth row of the
Z(k),m matrix and the initial signal value.
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Katz introduced a normalization technique for ’d’ and ’L’ using the average step length,
denoted as ’a,’ which is calculated as

a =
L

N
, (5)

where ’N ’ is the total number of steps of the curve, which in our context is represented by the
variable ’O’. This leads to the modified formula:

FD(z
(k),m
j,· ) =

log(
L(z

(k),m
j,· )

a
)

log(
d(z

(k),m
j,· )

a
)
=

log(O)

log(
d(z

(k),m
j,· )

L(z
(k),m
j,· )

) + log(O)
(6)

3.4.2 Permutation Entropy

PE is a widely used metric in time series and signal analysis to assess data complexity and
regularity, known for its conceptual simplicity and computational efficiency[11]. In this section,
we provide an in-depth exploration of PE and its application within the scope of this study.
PE is based on permutations, where data sequences are rearranged to assess regularity by
quantifying the transformations needed to change from an ordered to a disordered sequence,
shedding light on data regularity and randomness[12]. The underlying formula for PE involves
permutation calculations applied to specific data sequences and can be expressed as follows.

PE(z
(k),m
j,· ) = −

n!∑
l=1

p(πl) log(p(πl)), (7)

where:

• PE(z
(k),m
j,· ) represents the PE of the jth row of Z(k),m matrix.

• n! is the factorial of n, indicating the total number of possible ordinal patterns or permu-
tations of length n.

• p(πl) is the probability of occurrence of the lth permutation πl in the time series.

In the context of this study, the PE is applied to the acceleration signals recorded by sensors
on the WT blades, for which use is made of an entropy dimension of n = 6 and an embedding
delay τ = 14 guided by the study of Audun Myers, et al. [12]. This metric is used to characterize
the structure and patterns of vibrations in the blades, playing a crucial role in the early detection
of anomalies or damage.

3.5 Normalization

Data normalization, a crucial aspect of data analysis and machine learning, aims to stan-
dardize feature scales for equal contributions in analysis and modeling, preventing dominance
by features with larger scales[13]. In our study on early ice accumulation detection on WT
blades, data normalization is particularly vital due to feature magnitude variations. We se-
lected the Z-Score method to normalize data obtained from feature extraction, transforming
all 72 columns in the training dataset to have a mean of zero and a standard deviation of one.
Using these statistics, we normalized columns in validation and test datasets (both healthy and
damaged) to ensure uniform scaling, making the data EIF algorithm-ready.
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3.6 Extended Isolation Forest

Unlike many anomaly detection methods that focus on modeling normal behavior, EIF, an
extension of the Isolation Forest (IF), is designed to explicitly identify anomalies. It leverages
two key characteristics of anomalies: their rarity and significantly different attribute values[14].
IF constructs binary trees using random subsamples from the dataset, with parameters for
subsampling and the number of trees controlling model complexity[15]. Each tree splits the
data based on randomly selected attributes until reaching nodes containing one instance or
those with identical values. The anomaly score is determined by the path length through
the tree and takes values in the (0, 1) range, with scores close to 1 indicating anomalies. To
address biases in branching approaches, EIF introduces hyperplane selection to generate more
consistent anomaly scores. The extension level can be adjusted based on the number of feature
axes, which in this study ranges from 0 to 71, allowing for precise adaptation to the 72 available
features. This range was chosen considering that a ”fully extended” level would encompass all
features but without redundancy, ensuring a tailored model fitting the data’s feature count.

4 Results

In this section, the results of the failure prediction methodology based on the EIF model
described in the previous section are presented and discussed.

First, the hyperparameters for the EIF algorithm’s architecture are determined using the
training and validation datasets. To streamline this process, the Python framework Optuna is
utilized for automated hyperparameter tuning. The hyperparameters outlined in Table 2 are
obtained.

Table 2: Hyperparameters of the EIF algorithm.

Number of Trees Size of subsample Extension Level
434 41 3

The data are organized into groups of 27 consecutive time segments (three experiments of 60
seconds each). This approach provided a concise and visual summary of the data distribution,
facilitating the identification of damages. As can be seen in 5 (left) the maximum median of the
anomaly score boxplots from all training experiments is equal to 0.493. This value is defined as
the fault detection threshold for the validation and testing data set. Since the model is trained
exclusively on data considered as ”healthy”, this threshold becomes a key reference. Any
data falling below this threshold is classified as ”healthy”, while those above it are considered
”anomalous” or indicative of damage. On the other hand, as can be seen in Figure 5 (right),
none of the boxplots of the validation experiments exceed the predefined threshold, showing
that the model generalizes well with the selected EIF hyperparameters.

To evaluate the performance test data corresponding to damage conditions are analyzed. In
Figure 6 (left), it can be seen that the damage state group of sequences is classified as anomaly,
showing the efficiency of the model in detecting damage. On the other hand, Figure 6 (right)
depicts the analysis of test data related to the healthy state. In this case, it is observed that
no group of segments is classified as an anomaly, which is correct.
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Figure 5: Boxplot of the anomaly scores corresponding to the grouping of 27 test data time segments. Training
data on the left, and validation data on the right.

Figure 6: Boxplot of the anomaly scores corresponding to the grouping of 27 test data time segments. Damage
data on the left, and healthy data on the right.

Consequently, it is concluded that to improve the results, the option is made to use the
median of grouping 27 consecutive time segments as the metric for anomaly detection, resulting
in a precision rate 100% when detecting structural damage with the EIF algorithm.

5 Conclusions

This study developed a methodology for the early detection of ice accumulation on WT
blades, a critical issue affecting their structural integrity and performance. The methodol-
ogy, based on the vibration response and the EIF, is proven to be effective in detecting and
diagnosing ice accumulation, even in small quantities like 35 grams. This ability allows for
prompt decision making, reducing inspection downtime, maintenance costs, and unexpected
breakdowns. In particular, the methodology relies solely on healthy data for training and val-
idation, making it applicable in various industrial settings. In conclusion, this research offers
a valuable tool for improving safety and efficiency in the wind energy industry, potentially
reducing operational costs.
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