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Abstract. Total hip arthroplasty is a surgical procedure that replaces the hip joint by artificial materials.
Here, the morphological and mechanical properties of the scar tissues that form around implants com-
posed of either polymer and metal or ceramic are compared to native tissue removed during an initial
total hip arthroplasty. Immuno-histological analyses of the samples showed different hierarchical struc-
tures of the tissues over three scales: the fiber, the fascicle and the tissue scales. At the tissue scale,
micro-tensile tests were performed on millimetric samples and their non-linear elastic responses were
identified by either an exponential law or an Ogden third-order constitutive model. At the fiber scale, a
patient-specific micro-scale finite element model including the measured morphological parameters and
the identified Ogden constitutive models for the fiber and for the matrix composed of a mixture of fibers
in ground substance.

1 INTRODUCTION

Hip replacement is currently one of the most common orthopaedic surgeries. In a total hip arthroplasty
surgery, the hip capsule ligament, a fibrous tissue that surrounds and stabilizes the hip joint is partially
or completely removed, in order to have access to the hip joint [1]. Six to twelve weeks following a
total hip arthroplasty, a fibrous tissue that is not identical to the native hip capsule ligament reforms.
After a total hip arthroplasty, morphological and mechanical differences between native and neoformed
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capsule ligaments can be more or less pronounced depending on the material of the implant that has
replaced the defective joint [2, 3]. Nonetheless, the scar tissue that forms around the operated hip joint
plays a role for the joint stability in particular in delaying the need for revision surgery [4]. During an
total hip arthroplasty, the ligament can be either damaged or partially removed. It is therefore crucial to
understand the mechanical support that the new tissue that forms after a total hip arthroplasty provides
to the joint, in order to assess its stability. Previous studies on hip capsule specimen harvested in human
cadavers have investigated the material properties of the iliofemoral and the ischio- femoral ligaments
which are the most important capsule ligaments [5]. Native iliofemoral ligament restricts the extension
of the hip while the ischiofemoral ligament restricts internal rotation. In the present study, native hip
capsule ligament tissues were harvested in the iliofemoral ligament region during total hip arthroplasties.

To determine the constitutive behavior of hip capsule ligaments, animal studies have been performed
that made it possible to calculate Poisson’s ratios by direct measurements of the cross-sectional areas of
the specimens [6]. Such methods based on cross-sectional area measurements, showed methods that the
assumption of incompressibility lead to smaller errors in the calculation of true stress than in models that
would assume a constant cross-section. Other models allow compressibility of the tissue. Such models
were based on a strain energy density function that could describe the volume loss in ligaments. Large
Poisson ratios that were experimentally measured were predicted by these models, as well as a stress-
strain response of ligament tissues similar to the response of an incompressible model [7]. A model for
compressible tissues lead to a linear stress-strain relationship when a shear stress was applied along the
direction of the fibers. An exponential stress-strain relationship was suggested to be more appropriate.

Soft fibrous tissues have also been considered as transverse isotropic materials, in models based on strain
energy density functions that included the response of fibers of different nature and orientation [8].. In
other models, soft tissues can also be described by a strain energy density function for hyperelastic ma-
terials [9, 10] using strain tensor components, either strain invariants in polynomial, exponential, power
laws or 3rd order statistical modelling. A stress and strain relationship can be derived by differentiat-
ing the strain energy density function with respect to the strain components by considering the material
either as linear elastic in the case of small displacements [11] or nonlinear in the case of large defor-
mations [12], which is more realistic for soft tissues. The previously mentioned studies can have some
limitations pertaining either to the types of tissues, animal [5] or human cadavers versus fresh human
tissues, or to the assumptions in the continuum models, isotropic or anisotropic and isochoric [8, 13, 12]
or incompressible [7] versus anisotropic and compressible.

For fresh human hip capsule ligament tissues, we propose to first model our tissue as a uniform ho-
mogenized tissue described by an exponential strain energy density function and then identify the cor-
responding third order Ogden model [14]. To understand the behavior at the micro-scale, a fiber scale
model with explicit patient-specific morphology of the fibers inside the ground substance is created from
perturbation of the identified homogenized third order Ogden model. We first describe the experimental
setting and the construction of the theoretical models. The results are then presented and analyzed in a
following discussion.
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2 MATERIALS AND METHODS

2.1 Tissue harvesting and morphological characterization

Hip capsule ligament tissues were harvested during total hip arthroplasties and their orientation labelled.
The tissues were then preserved at 4oC in physiological serum and antibiotics 2x. Tissue having formed
around implants made of different materials were classified into 3 categories as follows: tissues formed
around ceramic on ceramic implants were denoted ”ceramic”, tissues formed around implants containing
polymer were denoted ”polymer” and native tissues present prior to any total hip arthroplasty were
denoted ”native”. For this study, the following implants were considered: a) Ceramic on ceramic (CoC):
The stem and the socket were uncemented, the head and the insert of the socket were made of pure
alumina (Al2O3). These implants are usually inserted in active and/or young patients [15]; b) Metal on
polyethylene (Met/PE): The stem and the socket were cemented (with PMMA). The head was made of
stainless steel (not Cr-Co) and the socket was made of full UHMWPE (ultrahigh molecular weight PE)
(conventional PE). These implants are of high durability and performance.

Two samples of neo-formed tissue grown around a Ceramic on Ceramic implant, three samples grown
around implants containing polymer and three samples of tissue grown prior to any total hip arthroplasty
were tested under tension. The samples originated from both male and female donors of the following
age groups: 35-39 for patients with CoC implants, 55-80 for patients with Met/PE implants and 67-85
from patients without any implant.

Immuno-histochemistry staining (IHC): The tissues were first embedded in paraffin and then sectioned
in slices of 5 µm thickness and mounted in glass-slides. For each sample of tissue, three staining methods
were used: a) Hematoxylin and eosin staining; b) collagen and c) Masson’s trichrome stain. Confocal
Fluorescent Microscopy observations: The micro-structures of the harvested hip capsule tissues were ob-
served using bright-field microscopy (Keyence microscope, University of Paris) and confocal fluorescent
microscopy (Leica TCS SP8 Confocal platform, ENS Paris-Saclay) in Fig. 1. Bright-field microscopic
observations of immuno-histological slides revealed different hierarchical structures over three scales:
the fiber, the fascicle and the tissue scale as shown in Fig. 1. Confocal fluorescent microscopic obser-
vations of the samples showed the orientation of the collagen fibers while this orientation could not be
clearly detected using transmission bright-field optical microscopy. The collagen fibers were found to be
oriented along the direction of the tissue fascicle.

2.2 Experimental setting of the micro-tensile tests

Micro-mechanical tensile tests were performed under increasing load with periodic load/unloading cy-
cles. Millimeter size samples of the three types of hip capsule tissues were tested. The experimental
set up is shown in Fig. 1. At each force increment, changes in the width and length of the tissue were
measured. Only the initial thickness of the tissue could be measured. In the mathematical model, the
tissue was assumed to be incompressible and its volume was assumed constant to calculate the thickness
value that corresponds to each change in force.

For the homogenized macroscopic model, the hip capsule tissue was considered as a continuum, ho-
mogeneous non-linear elastic. Hip capsule ligament is known to be a multi-scale fibrous tissue with a
preferential direction aligned with the fascicles, the tissue was represented by orthonormal bases, denoted
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Figure 1: 2D Confocal fluorescent Microscopic observations of hip capsule scar tissues a) in the transverse plane
and b) in the longitudinal plane of sample 2 (ceramic) excited by a wavelength of 433nm to collect the auto-
fluorescence of Type I collagen, the image width is 80µm; Schematic representation of the tissue: c) Macro-scale
(tissue scale), d) Meso-scale (fascicle scale), e) Micro-scale (fiber scale);

bo = (eo
1,e

o
2,e

o
3) in the reference configuration, denoted Ωo and b = (e1,e2,e3) in the current configura-

tion, denoted Ω, respectively. The tissue was considered to display a transverse isotropic behavior with
(e2,e3) being the transverse plane of isotropy. We calculated the stretch ratios, denoted λ1, λ2 and λ3 in
terms of the measured dimensions on the samples:

λ1 =
l
lo

(1)

λ2 =
w
wo

(2)

λ3 =
t
to

(3)

The deformation gradient denoted F calculated using a polar decomposition F = R ·U , with R is the
rotation matrix and U is the right stretch tensor.

2.3 Identification of the strain energy density function for an exponential description of the tissue
macroscopic response

The Strain Energy Density function was first assumed to follow an exponential description of which the
parameters were directly extracted from the smoothed experimental force displacement curve shown in
Fig. 3.

The second Piola-Kirchhoff was calculated as the conjugate of the Green-Langrange strain as follows

S(E) = α1e(−λ1E11)+α2e(−λ2E11)− (α1 +α2) (4)
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with E the Green-Lagrange strain. The Strain Energy Density function Wu(EA) was given by:

Wu(E) =−(α1 +α2)E − (
α1

λ1
(e−λ1E −1)+

α2

λ2
(e−λ2E −1) (5)

In a preliminary approximation, the experimental setting was assumed to prevent any rotation (R = I) as
the samples were securely clamped at each extremity and the clamps were guided by perfectly parallel
rails and the collagen fibers were assumed to be aligned with the tensile direction and this assumption
was verified by confocal fluorescent microscopic observations of the samples prior to the micro-tension
test. I leading to:

F =

λ1 0 0
0 λ2 0
0 0 λ2

 (6)

in the case of transverse isotropy and

t =
tow
wo

(7)

where c is the right Cauchy-Green deformation tensor and U is the right stretch tensor. In our case:

E =
1
2

λ2
1 −1 0 0
0 λ2

2 −1 0
0 0 λ2

2 −1

 (8)

For stress measures, because it is the energetic conjugate of the deformation gradient F or the right stretch
tensor U in our case, the first Piola-Kirchhoff stress, denoted by P, was also calculated and defined by:

d f = P ·no ·dAo (9)

where d f represents an infinitesimal force onto a surface dAo of unit normal vector no in Ωo. The first
Piola-Kirchhoff stress is also the transpose of the nominal stress denoted by N. The first Piola-Kirchhoff
stress can be related to the Cauchy stress σ that was also calculated as follows:

P = Jσ ·F−T (10)

where in our case of uni-axial tensile loading lead to:

σ =

F1
wt 0 0
0 0 0
0 0 0

 (11)

and

P = λ1λ
2
2

F1
wt 0 0
0 0 0
0 0 0




1
λ1

0 0
0 1

λ2
0

0 0 1
λ2

 (12)

Using the pull-back of the infinitesimal force in the current configuration to the original configuration,
the Second Piola-Kirchhoff stress, denoted S, was also calculated as the conjugated stress to the Green-
Lagrange deformation tensor E as follows:

S = JF−1 ·σ ·F−T (13)
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leading to:

S = λ1λ
2
2


1
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0 0 1
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Figure 2: Construction of single fiber unit-cell model: a) Characteristic parameters of the fiber wave motif, b)
Schematic representation of the collagen fiber, c) FEM patient-specific single fiber unit cell model.

From the calculation of the previously described stress and strain measures calculated at each point of
our experimental data sets, an exponential constitutive law was derived for each tensile test performed
on each type of tissue sample [16]. The curves are shown in Fig. 3 and follow the form:

y = c1e(−λ1x)+ c2e(−λ2x)− (c1 + c2) (15)

The parameters were calculated using the data (y-x). Since it is already known which value of y corre-
sponds to a specific value of x ( data measurements), it is easy to identify the parameters c1, c2 that are
characteristic to the equation describing the specific data. So if we consider the values t0, tx with their
corresponding f0, fx respectively, by solving the resulting system we get:

c2 =
fx − f0e−λ1tx+λ1t0

−e−λ2t0−λ1tx+λ1t0 + e−λ2tx
(16)

and

c1 =
f0 − c2e−λ2t0

e−λ1t0
(17)

Differences among the different tissue types appeared. The characteristic parameters for each tissue type
were examined separately and a representative curve of each tissue was later isolated.

Note that Lmin of the tissue during the mechanical tests was specified as the one corresponding to the
minimum force, Fmin. The corresponding minimum width, Wmin, was also identified and the tensile
displacement of the tissue was calculated as follows:

U1 = L−Lmin (18)

The minimum force was determined by its minimum absolute value, so that it would correspond to the
length measurement closest to the resting length value of the tissue corresponding to the value of F
closest to zero. Two adjustments could also be performed:

- For points corresponding to a length smaller than Lmin the displacements were shifted.
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- If the minimum displacement value was less than −0.2, points were eliminated.

The parameters of the exponential law were identified for each test.

2.4 Microscopic model based on the patient-specific fiber morphology

Patient-specific and implant-specific morphological differences were quantified by characteristic patient-
specific biological parameters such as the amplitude and the period of the fiber wave motif. The dimen-
sions were defined as shown in Fig. 2 a). The average of their values for the different implant materials
are given in Table 1. Differences between parameters provide insights in the way the fibers have formed
in each tissue. The biological parameters were imported into the numerical model of a single collagen

Table 1: Biological parameters for loose and dense tissue samples: l denoted the fiber wave period, w the fiber
wave amplitude, g is the distance between multiple fiber groups and tg denotes a fiber group thickness. Parameters
could be different for loose or dense tissues. Therefore s, g, tg did not exist for Met/PE.

Implant Material l(µm) w(µm) d(µm) s(µm) g(µm) tg(µm)
Native 45.68 17.35 0.87 4.41 12.19 15.58
CoC 24.97 7.53 0.69 6.32 18.80 9.09

Met/PE 23.87 12.38 0.56 - - -

fiber immersed in the mixture of other collagen fibers and ground substance as in [17] using Abaqus [18].
A representative patient-specific wavy collagen fiber, of which the length and diameter had been mea-
sured in the microscopic observations, was immersed in a unit cell model of width and thickness as
shown in the Fig. 2 b) and c). From the tensile test data, a third order Odgen constitutive law was iden-
tified for the homogenized behavior of the entire unit cell in Abaqus with the additional assumption that
the tissue was transverse isotropic and incompressible. The strain potential energy density function of a
third order Odgen material is as follows:

U =
3

∑
n=1

2µi

α2
i
(λ̄αi

1 + λ̄
αi
2 + λ̄

αi)−3
3 )+

3

∑
n=1

1
Di

(Jel −1)2i (19)

Di = 0 (20)

λ̄i = J−
1
3 λi (21)

λ2 = λ3 = λ
− 1

2
1 (22)

λ1 = 1+ ε (23)

N = PT =
3

∑
1

2µi

αi
(λαi−1

1 −λ
− αi

2 −1
1 ) (24)

where λi are the principal stretches, αi, µi and Di are material parameters. In equation 23, ε=λ−1 is the
nominal strain, and N is the nominal stress [14].

After identification of the parameters of the Ogden model for the homogenized equivalent material, the
constitutive laws of the two-phase material in the unit cell were identified. The constitutive Ogden models
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Table 2: Ogden coefficients of the single fiber model for one material.

Implant Material α1 α2 α3 µ1 µ2 µ3

Native 23.92 25.00 21.81 -3.75E-02 2.49E-02 1,26E-02
CoC 2.00 4.00 -2.00 -3.18E-02 2.16E-02 1.02E-02

Met/PE 23.75 25.00 21.30 -6.71E-02 4.47E-02 2,24E-02

of the fiber and the matrix composed of a mixture of collagen and ground substance were calibrated in
order to return the same mechanical response as the homogenized model. For each type of tissue (native,
ceramic, polyethylene), the fiber volume fraction f f and the matrix volume fraction fm were calculated
and used in a mixing rule to calculate the phase parameter µ as follows:

f f =
Vf

Vtot
(25)

fm =
Vm

Vtot
(26)

µ = f f 2µ+ fmxµ (27)

The effect of the microscopic morphology was included by perturbing the identified Ogden coefficients.
The material parameters αi were left unchanged for both the fiber and the matrix. The Ogden coefficients
are given in the Tables 3 and 2.

Table 3: Ogden coefficients of the single fiber model for two materials and identification of collagen and ground
substance volume fractions to describe the matrix of the unit-cell FEM model.

Material Native CoC Met/PE
Fiber 2µi 2µi 2µi

Matrix 0.9µi 0.9µi 0.93µi

Volume fraction Native CoC Met/PE
Collagen f f 44.9 55.8 39.9

Ground substance fm 55.1 44.2 60.1

The volume fractions of ground substance and collagen were also calculated in the histology bright-field
microscopic observations for each tissue type shown in Table 3.

The stresses of the unit cell single-fiber model were calculated from the separate stresses in the fiber and
in the matrix using a mixing rule as shown in 28:

N = PT = f f N f + fmNm (28)

Where Nm is the nominal stress for the fiber and Nm the nominal stress for the matrix.
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Figure 3: First Piola-Kirchhoff versus nominal strain tensile response for three different tissue types: a) Native
tissues, b) tissues around CoC implants, c) tissues around Met/PE implants.

3 RESULTS AND DISCUSSION

3.1 Macro scale exponential constitutive model identification for human hip capsule ligament
scar tissues

The morphological and mechanical properties of the hip capsule tissue, that forms near hip implants made
of different materials after a total hip arthroplasty were compared to native tissue. Surgeons had visually
observed differences between these tissue types and these morphological and mechanical disparities were
confirmed in the present study. Studies of the motion of cadaver hip joint measuring the external and
internal rotations [19] also confirmed the role of the hip capsule in joint stability. The displacement
responses of the tissues to non-linear forces were analysed in conjunction with immu- no-histological
staining of the samples and showed a hierarchical micro-structure of the ligament tissues over three
scales.

Hip capsule ligaments were first modeled using one-dimensional ligament representations where the lig-
aments were treated as tensile bands to evaluate their contribution to the human knee joint stiffness [20].
Hip capsule ligaments have also been modeled using 2D representations [21]. Later 3D epresentations
were developed to investigate the human ligament response to shear stress and was found to be highly
visco-elastic [22]. Due to the complexity of the material, a 3D representation of the complete hip capsule
had been suggested to be highly relevant to characterize and predict the role of the capsule on the joint
using a finite element model [23]. Therefore, we propose a multi-scale 3D model of the hip capsule
tissue including the patient-specific fiber morphology. The present study includes the tissue macroscopic
response and the unit cell fiber model as a preliminary study that will be further complemented by a
meso-scale model to study the interaction between fibers. The current preliminary model will make it
possible to gain insight on the effect of the fiber morphology on the overall mechanical behavior of the
hip capsule tissue.

3.2 Micro scale Odgen constitutive model of human hip capsule ligament scar tissues

A patient-specific finite element model was constructed for a single collagen fiber immersed in a matrix
composed of collagen and ground substance. The hip capsule tissue displayed a third-order Ogden non-
linear elastic constitutive law often characteristic of the mechanical behaviour of biological tissues [24,
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25]. Three typical types of loading regimes were determined as shown in Fig. 4 a), b) and c). This
unit cell model can show the effect of the progressive stretch of a wavy fiber on the overall unit cell
deformation. The three regimes are typical of fibrous soft tissue non-linear elastic behavior and are
decomposed into: 1- an initial loading regime in which the fibers are still relaxed, 2- a initial stretching
regime, c- a fully stretched regime shown in Fig. 4 a), b) and c). At the mid-point of each region, the
corresponding strain through a Dirichlet boundary condition was applied to the FEM unit cell model
and the conjugated stress was calculated by volume average of the stress field in the FEM model. The
mid-point of each region were determined by the intersection of the tangents at each extremity of the
region.

The Von Mises stress fields at the mid-point of the three loading regimes are shown in Fig. 4 a), b) and c).
The highest level of stress is exhibited in the native tissues. Medium stress level is displayed in the tissue
formed near Met/PE implants and the lowest stress level is shown in tissue grown near CoC implants.
The stiffness of each non-linear material is the slope in the stress-strain curve. The collagen fibers are
stiffer than the matrix phase but exhibit lower stresses than the matrix because in the proposed model only
half of the cross-section of the fiber is subjected to a prescribed displacement. These stress fields provide
an insight to the mechanical behavior of the constituents of the hip capsule ligament at the microscale
for which more studies are still needed, while the macroscale behavior has been more studied [26]. A
proof of concept has been presented in this preliminary study and will be further completed by studies
on groups of closer age of both genders.

4 CONCLUSIONS

The morphological and mechanical properties of the hip capsule scar tissues that form after a total hip
arthroplasty near hip implants made of either metal and polymer or ceramic were compared to native
tissues harvested after an initial total hip arthroplasty. Visual observations from surgeons lead to the
assumption that differences between these tissues existed and the mechanical and histological character-
izations confirmed these assumptions. In addition, since several studies have also indicated the important
role of the hip capsule in joint stability, the presented study appears relevant to predict the stability of
a particular type of implant depending on the material of the implants. Patient-specific morphological
parameters measured in histological slides were implemented into a FEM micro-scale model to deter-
mine their effect on the overall mechanical behavior of the tissue. A series of uni-axial tensile micro-
mechanical tests showed the non-linear elastic behavior of the fibrous tissues that were first identified
by an exponential and then a third-order Ogden homogenized continuum mechanics model at the tissue
scale level. Applying perturbations to the third-order Ogden macroscopic homogenized model lead to
the determination of two third-order Odgen models for the collagen fiber and the matrix in which the
fibers were embedded at the micro scale. The microscopic model exhibited the effect of the microscopic
morphology wavy fiber on the overall tissue behavior calculated at the mid-point of three characteristic
fiber loading regimes. These results could contribute to guide the choice by surgeons of patient-specific
materials for a hip implant according to biomarkers such as age, sex, weight or physical activity of the
patient. Because hip joint dislocation is one of the most common reasons for a revision surgery after
a first total hip arthroplasty, our study has shown that the mechanical properties of the hip capsule scar
tissue could play a decisive role in maintaining the joint stability.
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Figure 4: Exponential macroscopic model (solid lines) and homogenized Ogden model (darker solid lines) and
FEM microscopic model response at the mid-locations of the three different fiber loading regimes at the dot points
for a) the native tissue, b) the tissues formed around CoC implant and c) around Met/PE implants. The three
points represent the stress and strain of FEM two-phase materials described by two different third order Ogden
models. d)-l) Von Mises stress fields in the three types of tissues (Native, scar tissues formed near either ceramic
or Metal/Polymer implants) subjected to the displacements at the mid-points of the three types of loading regimes.
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