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ABSTRACT

Boussinesq-type equations (BTE) emerge in various fields of fluid and
solid mechanics, particularly where nonlinearities and dispersion are
considered. Boussinesq-type equations are used to model wave effects
in biomembranes, particularly longitudinal waves. They can account
for nonlinear and dispersive effects that are important for characteris-
tic wave behavior in biomembranes, composed of lipids, with distinct
nonlinear effects. This provides a realistic description of longitudinal
mechanical waves in nerve membranes. In this research, we investigate
the Boussinesq-type equation that describes the waves in biomembranes
with amplitude-dependent nonlinearities, using the Khater method (KM)
and the Jacobi elliptic function method (JEEM). In addition to producing
generic biological answers, the proposed methods allow the analysis of
single wave solutions. These methods make it easier to derive solutions
for solitary waves, which occur in a variety of forms, including bell, anti-
bell, periodic, anti-kink and kink solitons. Each of these waves has a wide
range of possible applications in biomathematics. Some of the findings
are displayed as contour, 2D, and 3D graphics with particular parameter
values applied under the specified conditions in order to highlight the
important propagation properties. To the best of our knowledge, the
biological solitons of the considered model have not been reported by
using the proposed techniques in the literature. These results provide
new theoretical insights into wave phenomena in biomembranes and may
contribute to biological physics and nonlinear science.

1 Introduction
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Nonlinear evolution equations (NLEEs) play a vital role in numerous real-world scenarios, cap-
turing the complexities of dynamic systems. These equations are fundamental for understanding fluid
dynamics, as they clarify wave generation and turbulence. In the field of optics, the behavior of light in
nonlinear media is represented, leading to phenomena such as solitons—stable, solitary wave packets.
Additionally, nonlinear evolution equations are present in biology, shedding light on population
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dynamics and the spread of diseases. In finance, they aid in modeling market dynamics and valuing
options. Their applications span various fields of mathematics and physics [1-3]. These equations are
crucial for understanding systems where linear approximations fail. They provide significant insights
into the intricate patterns and structures that arise in both nature and technology. Solitons in NLEEs
hold significant importance due to their distinctive characteristics and wide-ranging applications
across various scientific disciplines. These stable and concentrated wave packets emerge from the
intricate relationship between nonlinearity and dispersion in NLEEs. Unlike traditional waves, solitons
maintain their shape and velocity over long distances and remain unaffected by interactions with
other solitons. This inherent stability makes them essential for modeling and comprehending complex
physical phenomena. Their robustness and stability during interactions make solitons valuable tools
for tackling and investigating NLEEs, providing valuable insights into the dynamics of complex, real-
world systems. A range of methods is utilized to explore accurate soliton solutions in various domains,
such as the the Lie symmetry approach [4,5], unified approach [6,7], Hirota bilinear [8,9], modified
Sardar sub equation [10], generalized Riccati equation mapping [11,12], and many more [13,14].

Recent studies have explored modeling and simulation in applied sciences. Wang et al. [15]
examined friction in nanofibrous membranes, Yu et al. [16] simulated fluid structure interactions,
and Liu et al. [17] developed a noise tolerant neural network for chaotic system synchronization.
These studies highlight the importance of solving complex NLPDE:s in engineering and nonlinear
dynamical systems. Tang et al. [18], Su et al. [19], and Hassan et al. [20] reviewed biological systems
and immune responses, where dynamical models can describe processes such as bacterial detection,
and modulation of immune response. In physics and engineering, Zhang et al. [21] explored nonlinear
vectorial optics in nematic fluids, while Qiao et al. [22] analyzed celestial dynamics of the Earth—-Moon
system using Hamiltonian methods. Additionally, Guo et al. [23] proposed high-performance compu-
tational designs that benefit from accurate modeling of dynamic systems. These studies highlight the
importance of analytical and numerical methods for understanding complex dynamical phenomena.

The renowned wave equation, which is founded on the principle of momentum conservation,
describes motion at a finite speed. To incorporate related physical phenomena, modifications to
the wave equation are necessary. In conservative systems, BTE are commonly employed. The initial
Boussinesq equation was formulated for surface waves on a fluid layer [24]; however, these equations
are now also applicable in solid mechanics [25]. The primary characteristics of Boussinesq-type
equations include: (i) bi-directionality; (ii) nonlinearity of any order; (iii) dispersion of any order. In
addition to fluid mechanics, numerous studies have been conducted on such equations that are derived
from various physical assumptions [26—30]. In the field of solid mechanics, nonlinearity arises from
the nonlinear relationship between stress and strain, as well as the nonlinear strain tensor, indicating
the involvement of both physical and geometrical nonlinearities [31]. Consequently, the governing
equations incorporate terms of the g—; type (where i and j = 1,2, 3), meaning that the gradients of

displacement are included in the model. For instance, the simple 1D equation is given by
Vu — dg (1 + kvx) Vix = O: (1)

where k is the nonlinear parameter and d, is the velocity in unperturbed state. The velocity d is
calculated as

& =d (1+kv). (2)
In solids, the dispersive effects are caused by either the microstructure [32] or the geometry. Then

in the proposed equation, the terms v,,.. and v,,, occur. The interaction of nonlinear and dispersive
effects can lead to the formation of solitary waves. Over the past ten years, there has been a rapid
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increase in interest regarding mechanical waves in biomembranes [33]. Biomembranes possess a unique
structure composed of lipids, and in this context, the nonlinear effects differ from those observed in
solid materials. According to experimental findings, the nonlinearity present in biomembranes can be
described in terms of velocity.

& =d; + pv+q, (3)

where v is the density change along the biomembrane’s axis and p and ¢ are coefficients. Heimburg-
Jackson model, which accounts for these nonlinearities in addition to the dispersive term or terms.
Solitary waves may then form as a result of the governing equation, which is of the Boussinesq type.
In this study, the improved Heimburg-Jackson model is studied by using Khater method and JEFM.
These techniques make it possible to convert partial differential equations into ordinary differential
equations, which makes it easier to construct analytical solutions. These techniques allow for the
derivation of various soliton and periodic solutions and are easy to apply to higher-order NLPDEs.
Nevertheless, a drawback of these methods lies in the possible complexity encountered when applying
them to higher-dimensional systems or more complex nonlinear models. Nevertheless, the findings
provide a useful framework for more research on NLPDEs in a variety of contexts. To the best of
our knowledge, this is the first work to obtain the soliton solutions of the improved Heimburg—
Jackson Boussinesq-type equation using both the Khater method and the JEFM. Boussinesq-type
equations describe how waves propagate through lipid bilayers. These equations address both the
wave’s compressibility as a result of lipid bilayer properties and the wave’s dispersive nature through
the lipid bilayer’s micro-structural properties. However, only limited analytical solutions have been
produced for the proposed model. As a result, our understanding of the physical behavior of nonlinear
waves in biomembranes is not yet completely understood. As such, this paper presents the results of
a study that is conducted for deriving exact soliton using two analytical techniques. The remaining
work is adjusted as follows: In Section 2, the derivation of proposed model is given. In Section 3, we
will discuss the description of the proposed techniques. While the extraction of solutions is explained
in Section 4, the obtained solutions are graphically shown in Section 5. Finally, Section 6 provides the
concluding remarks.

2 Derivation of the Proposed Model

The propagation of signals within a nerve fiber is a complex process. The nerve fiber can
be represented as a tube filled with axoplasm and surrounded by extracellular fluid. The tube’s
wall consists of a biomembrane [34]. This biomembrane is a unique biological structure composed
of phospholipids with their hydrophobic tails oriented inward, away from both intracellular and
extracellular fluids [35]. In general terms, the lipid membrane serves as a specialized biological
microstructure with intricate properties. In general, the lipid membrane serves as a unique biological
microstructure characterized by complex properties. The ion concentration inside and outside a fiber
varies; however, ion exchange can take place through ion channels. These channels remain closed
at rest but can be activated by electrical or mechanical stimuli. The electrophysiological model that
describes the propagation of an electrical signal known as the action potential was developed by
Hodgkin and Huxley in [36]. This model is founded on telegraph equations and the dynamics of ion
channels opening and closing in response to electrical stimuli. Nevertheless, it fails to account for all
the intricate effects observed in nerve fibers. Research conducted by Iwasa et al. in [37] and Tasaki in
[38] has convincingly shown the swelling of the adjacent biomembrane along with the associated heat
exchange. This indicates that the action potential is also accompanied by a mechanical wave within the
fiber wall. A mathematical framework that governs such a wave has been proposed by Heimburg and
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Jackson. Their model is founded on the wave equation, specifically on the equilibrium of momentum,
and is expressed in relation to the change in density Ap, = v along the longitudinal axis:

ve = (du,) . 4)

Two fundamental assumptions are established. Firstly, it is presumed that the velocity d of a wave
within a circular biomembrane is associated with the compressibility of the lipid structure and can be
regarded as

& =d; +pv+ g, (5)

where p and ¢ are coefficients and d, is the velocity sound wave. The second assumption involves
incorporating the higher order term into the governing equation kv...., which is responsible for
dispersion. Consequently, the governing equation is then

v = [(d 49y + ) ]~ kv ©

where k is constant. Eq. (6) represents a Boussinesq-type equation. Heimburg and Jackson have
shown that Eq. (6) has a solitary pulse-type solution. Numerous additional studies have examined
such solutions [39—41]. The Eq. (6) is modified to address the issue of unbounded velocities at higher
frequencies. In accordance with the concepts derived from solid mechanics and reinforced by the
Lagrangian formalism, the inertial term is incorporated into the governing equation:

Vy = [(d(? +pv + qu) v,\‘] - kl Vixxx — kZVx,\‘lzz (7)

X

where kv, represents elastic dispersion associated with the curvature and bending resistance of
the lipid bilayer and k,v,,, reflects inertial dispersion due to the microstructure of the membrane
and prevents nonphysical high-frequency instabilities. From the perspective of solid mechanics, the
significance of the fourth order mixed derivative is not unexpected, as it is widely recognized that the
inclusion of solely spatial derivatives in the governing equation can result in instabilities. Furthermore,
the mixed fourth order derivative is associated with the inertia of the microstructure. Maurin and
Spadoni [42] have demonstrated that both dispersive terms emerge naturally when all factors related
to wave propagation in solids are taken into account, a finding that has also been validated through
experimental means [43].

The nerve fiber can be modeled as a cylindrical structure with axoplasm inside and a lipid bilayer
membrane on the surface, as shown in Fig. 1. This biological configuration motivates the nonlinear
dispersive model described in this work.

Biomembrane Signal propagation
/\/‘—’

Nerve fiber

Lipid bilayer
Lipid bilayer

Figure 1: Schematic representation of a nerve fiber surrounded by a biomembrane, highlighting the
lipid bilayer and signal propagation direction

https://www.scipedia.com/public/Abbas_et_al_2026 4


https://www.scipedia.com/public/Abbas_et_al_2026

F Abbas, A. Raza, F Zaman and S. A. Baloch,
Biological solitons in biomembranes: analytical solutions of a boussinesg-type

S I P E D I A equation with amplitude-dependent nonlinearity,
Rev. int. métodos numér. calc. diseno ing. (2026). Vol.42, (1), 38

3 Description of Analytical Techniques
3.1 Khater Method

Step 1:
Consider the NLPDE of the form
F 0, v,V Vigs o) = 0. (8)

By using the subsequent transformation

V(xal)=V(n)ﬂ7=x_C[a (9)
where ¢ # 0, we acquire ordinary differential equation (ODE) of the form
FOv,v, ... ) = (10)
Step 2:
Now, consider the solution of Eq. (8) takes the subsequent form [44,45]
N
V=) ad", (11)
i=0
where « and a; are constants to be found and f () satisfies the DE of the form
1
f/ (77) - (bla—f(n) + b2 + b3af(n)) . (12)
Ina
Step 3:

Now, by balancing the nonlinear terms and higher order derivatives in Eq. (10), we find positive
integer N.

Step 4:

Utilizing Eqgs. (11)and (12)into Eq. (10) and collecting same powers of /™, where (i = 0, 1, 2, ...)
and equating to zero, we obtain a system of algebraic equations. To find the values of ¢, 8 and o, this
system is then solved symbolically. The following are the answers to Eq. (12) related to the coupled
cases:

Family 1: If b — b,b; < 0 and b; # 0, then

_ — (b3 —bb — (b3 —bb
a/m:%—i- (2 1 3) tan (22 ] 3)77 , (13)
3 3
or
_ — (b3 — b,b; — (b3 —bb
W=%+ %lgm (;l%, (14)
3 3

Family 2: If b — b,b; > 0 and b; # 0, then

_ B —bib B — bib
WE%LJ%;imhi%;%, (15)
3 3
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or
—b, (b% - b1b3) (b% - b1b3)
AC) R _ h . 1
a b b cot — n (16)
Family 3: If b + b; > 0, b; # 0, and b; = —b,, then
b b3 + b} (b3 + b}
o =2 AR ; L — ) n). (17)
3 3
or
b b + b? b+ b?
=2 ( 2b ) coth ( 22 l)n . (18)
3 3
Family 4: If b + b < 0, b; # 0, and b; = —b,, then
b, —(bi+b) — (B2 +5})
Sy __ < .
a’ = b, + b tan 3 nl. (19)
or
by (240 — (B3 + 1)
Sy _ 72 z
a” = b b cot 7 nl. (20)
Family 5: If b — b? < 0, b; # 0, and b; = —b,, then
b (b3 + b}) — (B3 + 1))
foy — 72 t - 21
¢ A A > ) (21)
or
, b, (b§ + bf) b2 + b2
dmn =_22 t 22
Family 6: If b; — b; > 0, b; # 0, and b; = —b,, then
_ ,/ ‘/ b2 b2
a” = b, + (& - tanh ( ) (23)
bs b,
or
_b b2 bZ
dm=_—=4 i coth (24)
b b,
https://www.scipedia.com/public/Abbas_et_al_2026 6
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—b —bb
ad” = > 1tanh( 21 377), (25)
3
or
. N —b v —bb
am = L coth ( 5 1 3;7) . (26)
3
Family 8: If b, = 0, and b, = —b;, then
o _ T (14 &) £ 2+ 1)
= S — , (27)
or

. _ (1 4+ ezhln) + e + 6e2in + 1
a = 2@21’1'? . (28)
Family 9: If b, = b; = 0, then
o~ (14 &) £ /2 (e + 1)

= o — , (29)
or

. _ (1 4 ezhzn) + e 4+ 6e22n + 1
a = 262172'? . (30)
Family 10: If b = b,b;, then

—b, (b,n +2)

L) - L\72 . 31
a b (31
Family 11: If b, = k, b, = 2k, b; = 0, then
S0 1. (32)
Family 12: If b, = k, b; = 2k, b, = 0, then

e

foy _
a”—l_ekn. (33)
Family 13: If 2b, = b, + b, then

1 (b1=b3)n
adm = 1 —be (34)
1= et
or
1 (b1=b3)n
go= b *1 (35)
by
https://www.scipedia.com/public/Abbas_et_al_2026 7
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Family 14: If —2b, = b, + b, then

1 (b1=b3)n

b
g =E T~ + i (36)
er + b,
Family 15: If b, = 0, then
g - e (37)
Family 16: If b, = b, = b; # 0, then
, — (b 2
ad" = M (38)
bin
Family 17: If b, = b, = 0, then
, b,
dm =1y 39
2" (39)
Family 18: If », = b, = 0, then
, 2
dmn = _ = 40
b (40)
Family 19: If b, = 0, and b, = b;, then
. b C
a’“”:tan( 17724‘ ) 41)
Family 20: If , = 0, then
b
fon — pbon _ 71 42
a e %, (42)

3.2 The Jacobi Elliptic Function Expansion Method
Step 1: Consider the Egs. (8) to (10).

Step 2: Now, consider the analytical solution of Eq. (10) takes the following form
(F)* (n) = AF* () + BF* () + C, (43)

where F' = j’,—: n=mn(x, 1) and 4, B, C are constants. Table 1 contains the solution to Eq. (43), where
l'2 —
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Table 1: The solution of F(n) to Eq. (43) for selected values of A4, B, and C [40]

No. A B C F
1 B2 —(1+ 2% 1 sn(n) or cd(n)
2 _& 282 — 1 1 - & en(n)
3 —1 28 g2 — 1 dn(n)
4 1 -1+ &% B2 ns(n) or de(n)
5 1 -2 282~ 1 — B2 ne(n)
6 22— 1 2 - — nd(n)
7 1 - &2 282 1 sc(n)
8 —BX1 — 2-E8*—1 1 sd(n)
9 1 2 - &? 1 - E? cs(n)
10 1 g -1 -2 (1-28)  dstn)
1 22+ 1 1- 8
noo= = ! - ) ren () F dn ()
1 —282+1 1
12 - -
4 2 4 ns () F s (n)
1— 22 2241 1— g2
13 ) 7 1 ne (n) F sc(n)
1 B2-2 ON
14 3 5 T ns (n) Fds(n)
B2 B2-2 o dn (n)
15 — — 1 ,
4 2 4 S FRD s = s
1 1-2&2 1 sn(n)
16 - - idl _—
1 > 1 Vcn(n)qcln(n),l]Fm(n)
17 =2 E2-2 1 sn(n)
4 2 4 1 Fdn(n)
8 22 —1 B2 42 22— 1 dn (n)
4 2 1 Frsn(n)
19 1 — E? B24+1 —-B24+1 cn(n)
4 2 4 1 Fsn(n)
2 (1-2g) 22+ 1 1 sn (1)
4 2 4 dn(n) Fcn(n)
51 E_“ B2-2 1 cn (n)
4 2 4 V1I—=rFdn(n)

https://www.scipedia.com/public/Abbas_et_al_2026
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The Jacobian elliptic functions (JEFs) sn(n) = sn(n; E), ecn(n) = cn(n; ) and dn(n) =
dn (n; E), where E (0 < E < 1) is the modulus, satisfies the subsequent properties:
[ s (n) + cn® () = 1,
dn® (n) + Esn* () = 1,

d
25 (m) =cn(m)dn(n),
n

d
() = —sn(n)dn (),
1

d -
d—dn (n) =—E%cn(n)sn(n).
L dn

Since 2 — 0 and E — 1 JEFs, which are presented in Table 2, turns into trigonometric and
hyperbolic functions. Consequently, we get several solutions for the equation under consideration.

Table 2: The JEFs for E — 1 and E — 0 [40]

Function E—>1 E—0 Function E—1 E—>0
sn (v) tanh (v) sin (v) ns (v) coth (v) csc (v)
cd (v) 1 cos (v) de (v) 1 sec (v)
cn (v) sech (v) cos (V) nc (v) cosh (v) sec (v)
dn (v) sech (v) 1 nd (v) cosh (v) 1
sc(v) sinh (v) tan (v) cs (v) csch (v) cot (v)
sd (v) sinh (v) sin (v) ds (v) csch (v) csc (v)
A finite sequence of JEFs can be used to represent v(n) using the JEFM
N
v() =D aF (), (44)
i=0

where F (n) is the solution of the Eq. (43) and &k, a; (i =0, 1, 2, ..., k) are constants. By utilizing the
balancing principle technique in Eq. (10), k can be determined. A system of algebraic equations for is
produced by substituting Eqgs. (44) into (10) and setting all of the coefficients of power of F to zero.
Then, we can solve this system by utilizing all the values of Eq. (43) in Table 1.

4 Application of Analytical Techniques

Consider the transformation of the form

v(x,t) = V(n),n=x—ct. (45)
We derive the subsequent ODE by utilizing Egs. (45) into (7).

V' = [(ds+pV +qV) V] =V + VO =0. (46)

Now, we get the subsequent nonlinear ordinary differential equation by setting the integration
constant to zero for convenience. The subsequent ODE is obtained by integrating Fq. (45) twice with

https://www.scipedia.com/public/Abbas_et_al_2026 10
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respect to n and for convenience setting the integration constant equal to zero.

6 (s — k) V' 4+ 3pV? + 2qV° + 6 (c — &) = 0. (47)

4.1 Application of Khater Method
The general solution of Khater method is given as

N
V= ad", (48)
i=0

We acquire N = 1 by applying the homogeneous balancing method (HBM) between v’ and v" in
Eq. (47). For N = 1, we have

V(n)=a,+ ala/(n)a (49)

where a,, a, are constants and @, # 0. By substituting Egs. (49) into (48) and incorporating Eq. (12),
we equate the coefficients of the same power a’™ to zero, thereby establishing a system of algebraic
equations. Following symbolic computation, we resolve the system of equations, leading to the
subsequent cases along with their corresponding solutions.

V124 6= 2k’ P + 8kig'wo)

= A, = A ,C= , =
ay a; 1,C 2\/§q 2 (p3 _ lzdng) (IBZ —4“0‘)

where
A _ PAB —4paao — V3 /pq Bt — dpqapo
2(=¢’B* +4q°a0) ’
g PCBO  dpgac’ 4o PP (B~ dao)
A — P —¢*B* +4q’°a0c —q*B* + 4q°ao —q¢*B? + 4q*ao
=
qp

This results in the subsequent solution, based on the corresponding cases.
Family 1: If b — b,b; < 0, b5 # 0, then

—b, - (b% - b1b3) - (b% - b1b3)
=A+4+A - y -
vl(x, t) + 1 b3 + b3 tan 2 n s (50)
or
_ — (b5 — b,b — (b5 —bb
nx, 1) = A+ A b: + M cot Mn . (51)
bs b, 2

Family 2: If b — b,b; > 0, b; # 0, then

b, /(B aby) (b2 — b,by)

Y T [ ), (52)

H=A+A
vy(x, 1) + A b b, 3
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Family 3: If b; + b, > 0, b; # 0, and b; = —

vs(x, 1) = A+ A, (E

3

or

b
V()(xa Z) =A + A1 (_

()

w

PGk
b,

V(b3 + B})
+b—l

(B3 + b
tanh

coth (
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J (B3 = biby)

th
co ( 7

b,, then

J (B3 +0Y)

2

V(b3 + bY)

2

Family 4: If b, + b} < 0, b; # 0 and b; = —b,, then

b
V7(xa Z) =A + A1 (_

()

w

or

b,
VS(X:[)=A+A1 b_
3

_l’_

J— (B3 + DY)

+

J— (B3 + b7
(b

("

b

) tan
b,
)
cot
1

Family 5: If b — b? < 0, b; # 0, and b; = b,, then

—b
VQ(X, t) = A + Al (b_l +
3

<@+m>
3 n

\/w tan (
b,

)) s

(54)

(55)

n) ; (56)

(57)

n ) , (58)

2
or
_bh A — (B30 J— (B3 =1})
3 1
Family 6: If b — b; > 0, b; # 0, and b; = b,, then
b ,/ (b§ — bf) (b§ - b%)
3 1
or
b (b% — b%) (b% — b%)
1ML0=A+A<b2+ 7 coth | ~————n ] |- (61)
3 1
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N —b —bb
v, 1) = A + A]( 1 tanh( 21 3;7)), (62)
3
or
N —b —=bb
v, 1) = A + Al( 1 coth( 21 3;7)). (63)
3
Family 8: If b, = 0, b, = —b;, then
— (L +e7) £ 2 (e 4+ 1)
vis(x, 1) = A+ A, ( ( eZl’l” —1 (64)
or
_ 1 + eZbln + \/641)1;7 + 662b1)7 + 1
Vig(X, 1) = A+ A ( ( ) 2% (65)
e
Family 9: If b, = b; = 0, then
— (L +e?) £ 2 (e 4+ 1)
Vi (X, 1) = A+ A1( ( eZl’Z" 1 (66)
or
Family 10: If b} = b,b,, then
—b, (by,n +2
Vie(X, 1) = A + A, # . (67)
bin
Family 11: If b, = v, b, = 2v, b; = 0, then
vo(X, 1) = A+ A (e = 1). (68)
Family 12: If b, = v, b, = 2v, b, = 0, then
v
(X, 1) = A+ A ( ‘ ) . (69)
1 — e
Family 13: If 2b, = b, + b;, then
1 (b1=b3)n
1 — be
) = A+ A [ =2 (70
1— b3e1 R
or
(b1=b3)n
b,e? 1
i = A+ A, [ 2 (71)
1 (b1=b3)n
—b,ez 1
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Family 14: If —2b, = b, + b, then

by —b
%(l 3)

b
Vau(X, 1) = A+ A, R (72)
1 (br=b3)n
e2 + b,
Family 15: If 5, = 0, then
b byb3
() = A+ A, | ——— | (73)
1+ 536172173
Family 16: If b, = b, = b; # 0, then
—(bn+2
Vs, ) = A+ A, (M) . (74)
bin
Family 17: If b, = b; = 0, then
b
vy (X, 1) = A+ A, (EIU) . (75)
Family 18: If b, = b, = 0, then
2
v 1) = A+ A, (——) | (76)
on
Family 19: If bz == O, b] - b3, then
b C
V(X 1) = A+ A, (tan( "’2+ )) (77)
Family 20: If b, = 0, then
b
v(x, 1) = A+ A, (e”2” — 2—1)12) . (78)

4.2 Application of Jacobi Elliptic Function Expansion Method
By using the equilibrium rule, Fq. (47) will take the subsequent form

v(n) = a, + a, F(n), (79)

where «a,, a, are constants and a, # 0. When Eq. (79) and its necessary derivatives are inserted into
Eq. (47), we obtain a polynomial in the form of F'(n). We then equate the powers of F'(5) to zero,
producing algebraic equations. We can determine the following values after utilizing computer tools
to solve this system of equations.

p \/k2p3 + lzquz - 12d§k2q2
dy = —7—,a, = — 5
2q V2
e Yo+ R o 3p’q
o 2\/§q ’ o k2p3 + 12k1q2 - lzdgkzqz
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We derive the exact solution of Eq. (47) by combining the previously reported solution approach.
When 4 = B2, B= — (1 + Ez) , R =1, Table 1 provides F = sn, so the periodic solution can be
represented as

p \/k2p3 + 12k, — 12d3k,q>

v, = _Z] — NI Esn(n) . (80)
If 8 — 1, from Table 2, the solitary wave solutions (SWS) can de derived as

v, = —;iq _ Ykt lfgz;_ L2t o (81)
When A = —8%, B=2E?—1, R=1— E? Table | provides F = cn, so the periodic solution can

be represented as

p \/k2p3 + 12k1q2 — 12d§k2q2 —_

vy = —Z] — N Ecn(n). (82)
If £ — 1, from Table 2, the SWS can de derived as
kop® + 12k q> — 12d3k,q?
Y YR e V9 ech(n). (83)

2q V2g"

When A =—-1,B=2—-2> R=
represented as

p \/k2p3 + 12k,q*> — 12d§k2q2S

Vs = —— —

2q V2

It is evident from Table 2 that this solution for & — 1 is comparable to the single solution of
Eq. (83).

When 4 =1, B= —(1 + E*, R = E?, Table | provides F = ns, so the periodic solution can be
represented as

p \/k2p3 + 12k,q*> — 12d§k2q2n

(1]

2 —1, Table | provides F = dn, so the periodic solution can be

n(m). (84)

Ve = _Z] — \/iq»‘/z s (). (85)
If E — 1, from Table 2, the SWS can de derived as
k.p? + 12k, q> — 12d3k, q?
yy=—L _ k' + 12k 024 coth (). (86)

2q V2g2

When 4 =1, B= —(1 + E%, R = B2, Table | provides F = dc, so the periodic solution can be
represented as
p  Vkp + 12kq¢ —12d]

Vg = —— —

2 NPT

S e ony. 87)
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When 4 =1— 22, B=2E?>—1, R= —22 Table | provides F = nc, so the periodic solution can

be represented as

P \/k2p3 + 12k,q* — l2d§k2q2nc

v="5 Tog" (- (88)
If 8 — 0, from Table 2, the SWS can de derived as
k,p? + 12k g2 — 12d2k,q?
vy = L Y+ 12g = D (89)

2q ﬁq3/2

When 4 =1—- E% B=2-— E? R =1, Table | provides F = sc, so the periodic solution can be
represented as

p \/k2p3 + 12k,q* — 12d§k2qzs

Vn = _Z] - ﬁqm c(m). (90)
If E — 0, from Table 2, the periodic solution can de derived as
k,p? + 12k, q> — 12d5k,q*
Py = _pr \/ P+ 19 0/2q tan (1) . 1)

2q ﬁqz/z

When 4 =1, B=2— &8> R=1— &% Table | provides F = cs, so the periodic solution can be
represented as

P Viop + 12kq? — 12d§k2qzc

Viz = —+—

2% V2"
If 2 — 1, from Table 2, the SWS can de derived as
o Vhp' + 1223;‘ 12k’ b . 93)
If 8 — 0, from Table 2, the SWS can de derived as
p  Vkp + 2kq — 2dk,q

Vis = _Z — NI cot(n). (94)

When 4 =1, B=2E>—-1, R = E* — B2, Table | provides F = ds, so the periodic solution can
be represented as

P \/kzp3 + 12k, 4> — 12d5k,q?

s (n). 92)

Vie = _Z «/§q3/2 ds(n) . 95)
When 4 = -, B = #, R = %Ez), Table | provides F = Ecn F dn, so the periodic solution

can be represented as

o Viop + 12k — 12d2kq?
Vi = _2_q - ﬁq3/2 Ecn(n) F dn(n). (96)

If 2 — 0, the solution is same as Eq. (81).
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=2 . — .4 .
When 4 = ;, B= £, R = ;, Table | provides F = Ens F cs, so the periodic solution can be

represented as

p \/k2p3 + 12k\q*> — 12d3k, 2
2q V2

When 4 = #, B=2+ R= #, Table | provides F = Enc F sc, so the periodic solution can
be represented as

p \/k2p3 + 12k\q* — 12d3k, 2
2q V2¢2

If 8 — 0, the solution can be derived as

Top® + 12k — 1240 ko
vy = —%} _ ﬁlzm 2 secn) F tan(y). (99)

When 4 = 5—2, B = E, R = 572, Table 1 provides F = sn F icn, so the periodic solution can be

4
represented as
p \/k2p3 + 12k1q2 - 12d3k2q2

== _ j . 1
Vay 2 NI sn(n) F icn(n) (100)

If E — 1, the solution can be derived as

lop' + 12kq* — 12di kg
vy — P Ykt 12k "2 tanh(n) F isech(n). (101)

2q V2g

When 4 =
represented as
p  Jkp + 12k — 12d kg

m=—y NTT Esn(y) F idn(n). (102)

If E — 1, the solution is same as Eq. (101). When 4 =
F = 2250 the periodic solution can be represented as

ns(n) F cs(n). 97

Vis = —

Vig = —

Enc(n) F sc(n). (98)

o B= %, R =}, Table | provides F = Emsn F idn, so the periodic solution can be

B = %, R = ! Table | provides

1 1
47 T4

Ien(n)’
P N + 2k - 12dikg ( sn(n) .
T2 N IFen(m)
If E — 1, the solution can be derived as
p kp + 12k¢ — 12d2k,q? ( tanh(y)
Vs =750 T : (104)
2q Vagr I F sech(y)
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22 2 2 . .. .
When 4 = £, B = £2, R = £, Table | provides F = %, so the periodic solution can be

represented as

. _p \/kzp3 + 12kq* — 12d5k,q? sn(n) (105)
Y V2 LFdn(n))

If E — 1, the solution can be derived
Vor = _r \/kzp3 + 12k q* — 12d5k,q? sin(n) (106)
T2 V2" LFcos(m) )

_=2 =2 _=2 . . . .
When 4 = =%, B= 5%, R= =%, Table | provides F = ;22 so the periodic solution can be
represented as

p \/k2p3 + 12kq* — 12d5 kg cn(n) (107)
Vyg = —— — .
N 2" 1 cn(n)

B 2 =, . .
When 4 = (17:2) , B = #, R = 4, Table | provides F = ﬁ, so the solution can be

represented as

p \/kzp3 + 12kiq* — 12d5 kg sn(n) (108)
Vg = —— — .
» 2q V2g dn F cos(n)

If & — 1, the solution is same as Eq. (104).

5 Results and Discussion

The acquired results are visually represented through simulations to provide insights into both
their qualitative and quantitative characteristics, as well as to demonstrate the dynamic behavior of
the primary equations. To maintain precision and clarity, each solution is graphically illustrated in
accordance with the relevant parametric parameters. To produce clearly defined analytical expressions
and visually appealing graphs that accurately represent the dynamics of the solutions, the constants
within the equation are meticulously selected. The analytical solutions obtained through the Khater
method and the JEF method demonstrate a wide range of solitary wave structures. These results
highlight the strength and adaptability of the methods used in accurately representing intricate wave
dynamics within the BTE. The Khater method yields solutions that display stable soliton structures,
maintain their shape over time. This stability is essential for applications in optical communications,
where maintaining signal integrity over extended distances is critical. Solutions generated by the
Khater method exhibit unique propagation characteristics, underscoring the influence of various
analytical techniques on wave dynamics. These variations accentuate the method’s capability to
produce a variety of wave profiles that are appropriate for different physical contexts. The JEF method
provides thorough solutions that encompass the three-dimensional structure and phase dynamics of
the wave function. The flexibility of this method is apparent in its capacity to articulate complex
wave interactions and stability attributes. The implementation of these methods in the BTE presents
numerous important advancements in the discipline. The research confirms the effectiveness of
sophisticated techniques in addressing intricate nonlinear systems, delivering precise solutions that
deepen our comprehension of wave dynamics. This significantly contributes by providing innovative
analytical instruments for multi-component wave interactions.
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Fig. 2 depicts the analytical solution of Eq. (52), which is anti-kink soliton for b, = 5, b, = 2,b; =
3,p = 05,9 = 5,d, = 1. Fig. 3 shows the analytical solution of Eq. (54), which is kink soliton for
b, =5,b, =-2,b; =2,p=0.5,qg = 5,d, = 1. Fig. 4 represents the analytical solution of Eq. (60),
which is kink soliton for b, = 3,b, =2,b; =2,p = —0.5,qg = 0.5, d, = 2. Figs. 5 and 6 show periodic
soliton solution for Eq. (79) by consideringp = —3.5,g = -3,k =2,k, = 0.9,d, = 1.5, E = 0.5, and
p=-35q9g=-3k =-2k =09,d, =15 E = 0.5, respectively. Fig. 7 represents the analytical
solution of Eq. (80), which is dark soliton for p = —3.5,¢ = —-3,k; = -2,k, =0.9,d, = 1.5,E = 0.5.
Figs. 8 and 9 show periodic soliton solution for Eq. (81) by considering p = 0.9,q = 0.3,k =
-2k, = 09,d, = 15,8 = 05,and p = 09,9 = 0.3,k, = —2,k, = 09,d, = 1.5, = 0.5,
respectively. Fig. 10 represents the analytical solution of Eq. (82), which is dark soliton forp = 0.9, ¢ =
0.3,k;, = —2,k, = 09,d, = 1.5. Fig. 11 represents the analytical solution of Eq. (82), which is
bright soliton for p = 09,9 = 0.3k, = —2,k, = 0.9,d, = 1.5. Fig. 12 represents the analytical
solution of Eq. (83), which is periodic soliton for p = 0.9,¢g = 0.3,k, = 0.2,k, = 0.9,d, = 1.5.
Fig. 13 represents the analytical solution of Eq. (92), which is bright soliton with high amplitude for

p=29q =03k = -2k, = 6,d, = 1.5. Fig. 14 represents the analytical solution of Eq. (95),
which is periodic soliton for p = 2.9,¢q = 0.3,k, = -2,k, = 0.6,d, = 1.5, = 0.5. Figs. 15

and 16 represent analytical solution of Eqs. (100) and (103) which is dark soliton by considering
p=-09,4¢9g=03k =02k, =0.6,d, =15 andp = —0.9,9g = 0.3,k, = 0.2,k, = 0.6,d, = 1.5,
respectively. The soliton solutions represented in this paper provide unprecedented insight into the
wave characteristics of biomembranes. The kink, anti-kink, bright, dark, and periodic soliton solutions
are very closely related to the mechanical pulses of a continuing experimental to be demonstrated along
nerve membranes. For example, the bright soliton is purposely modeled on the localized compression
of the lipid bilayer, while the kink solutions are used to model the step like transitions of the density
of membrane. These solitons represent traveling mechanical signals that conform to the Heimburg -
Jackson model of nerve pulse propagation and provide an alternative to purely electrical models. As
such, the waveforms derived from this paper are both mathematically novel and biologically relevant
with possible applications in modeling nerve signal transmission neuromechanics, and soft-matter
biophysics.

Contour Plot of [va(x,t)|
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(a) 3D plot (b) contour plot (c) 2D plot

Figure 2: The wave profile representing anti-kink soliton solution for Eq. (52), (a) 3D plot (b) Contour
plot (c) 2D plot, when b, =5, b, =2, b;=3,p=0.5,9q=5, d, = 1
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Figure 3: The wave profile kink soliton solution for Eq. (54), (a) 3D plot (b) Contour plot (¢) 2D plot,
whenb,=5,b,=-2,b:=2,p=05,9g=5,d,=1

Contour Plot of [vy;(x.t)]

5
4
Iva1(x, t) 3
T X oo
| | AN | -
: ol :
rrrrrrrrrrrrrrrr 2.0 S e S ’
: - t=02
rrrrrrrrrrrrrrrr Fs) i t=05
‘ iF: ‘ !
: gog == (eul
rrrrrrrrrrrrrr R LA S
‘ ! ‘Vll/—/ — X ’ 4 -2 0 2 4
-10 -5 5
(a) 3D plot (b) contour plot (c) 2D plot

Figure 4: The wave profile representing anti-kink soliton solution for Eq. (60), (a) 3D plot (b) Contour
plot (c) 2D plot, when b, =3, b, =2, b; =2, p=—-0.5,¢g=0.5,d, =2
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Figure 5: The wave profile representing periodic solution for Eq. (79), (a) 3D plot (b) Contour plot
(c)2D plot, whenp =—-3.5,g=-3, k=2, k,=09,d,=1.5, E=0.5
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Figure 6: The wave profile representing periodic solution for Eq. (79), (a) 3D plot (b) contour plot
(c)2D plot, whenp = -3.5, g =-3, ki =-2,k, =09, d, =15, E=0.5
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Figure 7: The wave profile representing periodic solution for Eq. (80), (a) 3D plot (b) Contour plot
(c) 2D plot, whenp = 0.9, ¢ =03, k, = -2, k5, =09, d, = 1.5
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Figure 8: The wave profile of v, solution representing dark solution for Eq. (81), (a) 3D plot (b)
Contour plot (¢) 2D plot, when p =09, ¢ =03, k, = -2, k,=09,d, =15, E=0.5
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Figure 9: The wave profile of v; solution representing periodic soliton for Eq. (82), (a) 3D plot
(b) Contour plot (¢) 2D plot, when p = 0.9, ¢ = 0.3, kK, = -2, k, =09, d, = 1.5, E=0.5
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Figure 10: The wave profile of v; solution representing periodic soliton for Eq. (82), (a) 3D plot

(b) Contour plot (¢) 2D plot, when p = 0.9, ¢ = 0.3, k, = -2, k, =09, dy = 1.5
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Figure 11: The wave profile of v, solution representing dark soliton for Eq. (83), (a) 3D plot (b) Contour
plot (¢c) 2D plot, whenp =09, ¢ =03, k, = -2, k,=09,d,=1.5
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Figure 12: The wave profile of v, solution representing bright soliton for Eq. (83), (a) 3D plot
(b) Contour plot (c) 2D plot, when p = 0.9, ¢ = 0.3, k&, =0.2, k&, =09, dy = 1.5
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Figure 13: The wave profile of v; solution representing periodic soliton for Eq. (84), (a) 3D plot
(b) Contour plot (¢) 2D plot, when p =2.9, ¢ =03, k, = -2, k, =6, dy, = 1.5
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(b) Contour plot (¢) 2D plot, when p =2.9, ¢ =0.3, k, = -2, k&, = 0.6, d, = 1.5, E=0.5
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Figure 15: The wave profile of v;; solution representing dark soliton for Eq. (96), (a) 3D plot
(b) Contour plot (¢) 2D plot, when p = —09, ¢ =03, k, =0.2, k, = 0.6, d, = 1.5

Contour Plot of |vp(x,t)

5
4
v22(X, 1) 3
TTTTTTUNN | e T -
"\ "
N gl
o, IRy ’
o R L
[y t=05 :
1V22(x,8]50 Y
45 voeh
10 e
-5 [N
V.i; 0
Ja 4 -2 0 2 4
-10 -5 5 x

(a) 3D plot (b) contour plot (c) 2D plot

Figure 16: The wave profile of v, solution representing dark soliton for Eq. (101), (a) 3D plot
(b) Contour plot (¢) 2D plot, when p = —0.9, ¢ =0.3, k, = 0.2, k, = 0.6, d, = 1.5

Comparison Analysis

In this section, we will compare our results with existing literature with the help of Table 3.

Table 3: Comparison analysis of our solutions with [47]

Solutions in [47]

Our solutions

(1) Utilized the Exp (—¢ (&¢)) function method.
(i1) These solutions include trigonometric and
hyperbolic trigonometric solutions.

(ii1) Soliton solutions with kink and periodic
shapes are produced by considering the
suggested method.

(1) Utilized Khater method and JEFM.

(i1) These solutions included exponential,
rational, hyperbolic and trigonometric forms.
(ii1) The bell, anti-bell, periodic, anti-kink, and
kink soliton are produced.
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6 Conclusions

In summary, this research successfully evaluated the nonlinear characteristics of the Boussinesq-
type equation featuring amplitude-dependent nonlinearity through analytical methods, such as the
Khater approach and the JEFM. A variety of accurate soliton solutions have been obtained, illus-
trating different structural dynamics including kink, anti-kink, periodic, dark, and bright shaped
waveforms. The 2D, 3D, and contour plots provided direct visual representations of the behavior of the
solutions. The most important point regarding our work is that it provides a novel biological basis for
the mechanical wave behaviour of biomembranes, specifically for membrane systems of nerve fibres.
Our model differs from classical electrical theories of nerve impulse transmission, and is consistent
with the Heimburg—Jackson hypothesis, which allows biological solitons—self-sustained, localized
mechanical pulses to propagate along the lipid bilayer as a result of nonlinearity and dispersion.
Biological solitons do not have to be just a mathematical abstraction; they have a physical meaning
supported by experimental evidence. Generally, biological solitons are attractive as a model for
mechanical signalling within living systems since they are stable, robust, and shape-preserving. Our
solutions also provide a foundation for dimension-building to investigate pulse interactions, memory
effects, and signal modulation in soft biological media. In summary, this work not only add to the
mathematical theory of nonlinear wave equations, it allows a direct link between analytic soliton theory
and present day biophysics. Furthermore, the techniques employed in this work are very flexible and
could be applied to more complex fractional-order systems, as well as, multi-dimensional models or
systems with variable coefficients. To the best of our knowledge, the biological solitons of considered
mdodel have not been reported by using the proposed techniques in literature.
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