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Abstract

Robustness and stability of the Continuum Strong Discontinuity Approach (CSDA) to material failure are addressed. After identi-
fication of lack of symmetry of the finite element formulation and material softening in the constitutive model as possible causes of loss of
robustness, two remedies are proposed: (1) the use of an specific symmetric version of the elementary enriched (E-FEM) finite element
with embedded discontinuities and (2) a new implicit–explicit integration of the internal variable, in the constitutive model, which renders
the tangent constitutive algorithmic operator positive definite and constant. The combination of both developments leads to finite ele-
ment formulations with constant, in the time step, and non-singular tangent structural stiffness, allowing dramatic improvements in terms
of robustness and computational costs. After assessing the convergence and stability properties of the new strategies, three-dimensional
numerical simulations of failure problems illustrate the performance of the proposed procedures.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

During the last years, the Strong Discontinuity Approach (SDA) has appeared as a promising tool to model material
failure in quasi brittle materials [1,4,8–10,23,24,35]. As an specific branch, the Continuum Strong Discontinuity Approach
(CSDA) offers some additional features already presented in a number of works [22,27–31]. In essence, they allow captur-
ing both the volume and surface dissipative effects, taking place during the fracturing process, using a standard continuum

(i.e. stress vs. strain) format for the constitutive model. Some applications of the CSDA to modelling fracture of concrete
have been recently reported [33]. Although those previous works state the ability of the CSDA to deal with local material
failure and fracture propagation, in two-dimensional and simple three-dimensional cases, its applicability to model the
structural collapse and the ultimate loading capacity of actual three-dimensional structures at acceptable computational
costs was still limited. The main reason for this is the appearance of instabilities, inherent to the numerical procedure,
which translate into some lack of robustness of the computational tool. This demands the use of skilful solution procedures
to trace the equilibrium response (for instance, specific arc-length methods and automatic time stepping [29]), which trans-
late into large computational costs.

Therefore, some new developments devoted to increase the robustness of computational procedures in the context of
computational material failure and, in particular, of the CSDA seem to be lacking. This is the topic of this paper; recent
developments of the authors in the context of the CSDA, addressed to increase the stability and robustness of the
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numerical simulations and to decrease the computational cost of material failure analyzes, are presented. First, in Section
1.1 an overview of the foundations of the CSDA is presented. Then, in subsequent sections, two new developments con-
cerning numerical aspects of that methodology are presented: (i) a specific implementation of a symmetric finite element
with embedded discontinuities (E-FEM), and (ii) a new implicit/explicit integration algorithm for the constitutive model.
The inclusion of both of them, translate into very large improvements in terms of the robustness as well as of the compu-
tational costs, which, actually, open the way to the use of the CSDA in the material failure analysis and structural collapse
modelling of three-dimensional structures. Finally, in the last sections of the paper, applications to representative examples
are presented.

1.1. Basic aspects of the continuum-strong discontinuity approach

The CSDA grounds on the classical continuum mechanics by generalizing the admissible displacement space and intro-
ducing a discontinuous field into the problem. The resulting kinematics, termed strong discontinuity kinematics, requires a
reinterpretation of the constitutive model to make it capable of dealing with the unbounded strains emerging from those
discontinuous displacement fields. In fact, from physical requirements the constitutive model should furnish bounded stres-
ses even for unbounded strains. This can be achieved through the redefinition of only one parameter: the softening mod-
ulus, which has to be regularized in points where unbounded strains take place. The rest of ingredients and features of the
continuum constitutive model remain unmodified.

Therefore, we can synthesize the computational CSDA methodology by the following four points.

1.1.1. Strong discontinuity kinematics

An admissible displacement field, u(x), exhibiting displacement discontinuities can be described by (see Fig. 1):

uðxÞ ¼ uðxÞ þHSsutðxÞ; HS ¼
1 8x 2 Xþ;

0 8x 2 X�;

�
ð1Þ

where uðxÞ is a smooth field and HSsutðxÞ (HS being the Heaviside/step function shifted to S) captures the displacement
jump field, sut(x), at the discontinuity interface S of normal n, which divides the body X into two disjoints parts, X+ and
X�. The strain field that is kinematically compatible with the discontinuous displacement field is then:

eðxÞ ¼ $SuðxÞ ¼ eðxÞ|{z}
regular

ðboundedÞ

þ dSðsut� nÞsym|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
singular

ðunboundedÞ

.
ð2Þ

For computational purposes the surface Dirac�s delta function dS in Eq. (2) is regularized in terms of a, very small, reg-
ularization parameter k and a collocation function lS(x) on the discontinuity interface S. Then, the regularized version of
the strain field reads:

eðxÞ ¼ $SuðxÞ ¼ eðxÞ|{z}
regular

ðboundedÞ

þ lS

k
sut� nð Þsym|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

singular

ðunbounded as k!0Þ

; lSðxÞ ¼
1 for x 2 S;

0 for x 2 X=S.

�
ð3Þ
Fig. 1. Strong discontinuity kinematics.
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1.1.2. Continuum constitutive model with regularized strain softening

The choice of the continuum (i.e. stress vs. strain) constitutive model must be done in accordance with the phenome-
nological behaviour of the material whose failure is being reproduced. However, there is no intrinsic limitation on the type
or family of that constitutive model in the context of the CSDA: any non-linear (dissipative) constitutive model equipped
with strain softening can be considered. For the sake of covering a wide range of quasi-brittle materials, in the remaining of
this paper two families of those continuum models will be considered: (1) isotropic continuum damage models and (2)
elasto-plastic models with strain softening. The main ingredients of both models can be described as follows [26,42]:
Isotropic continuum damage model Elasto-plastic model with
isotropic softening

Free energy uðe; rÞ ¼ ð1� dÞu0; u0 ¼
1

2
e : Ce : e

dðrÞ ¼ 1� qðrÞ=r

uðee; rÞ ¼ 1

2
ee : Ce : ee þ upðrÞ

e ¼ ee þ ep
ð4Þ

Internal variables _r ¼ _k; rjt¼0 ¼ r0 ¼ ru=
ffiffiffiffi
E
p

_r ¼ _k; rjt¼0 ¼ 0

_ep ¼ _kn; n ¼ orgðr; qÞ
ð5Þ

Constitutive equation r ¼ ð1� dÞCe : e ¼ q
r

Ce : e|fflffl{zfflffl}
r

¼ q
r
r r ¼ Ce : ee ¼ Ce : ðe� epÞ ð6Þ

Damage/yield function gðe; rÞ � seðeÞ � r

seðeÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ � Ce�1 � r

p /ðr; qÞ ¼ /ðrÞ � ðru � qÞ ð7Þ

Loading–unloading condition _k P 0; g 6 0; _kg ¼ 0 _k P 0; / 6 0; _k/ ¼ 0 ð8Þ

Stress-like internal
variable evolution

_q ¼ H _r; q P 0

qjt¼0 ¼ r0 ¼ ru=
ffiffiffiffi
E
p

; qjt¼1 ¼ 0

_q ¼ �H _r; q P 0

qjt¼0 ¼ 0; qjt¼1 ¼ ru

ð9Þ

Constitutive
tangent operator

_r ¼ Ctan : _e;

Ctan ¼
Cu � ð1� dÞCe ¼ q

r
Ce

Cl � q
r

Ce � q� Hr
r3

rþ � r

8><>:
_r ¼ Ctan : _e;

Ctan ¼

Cu � Ce

Cl � Ce � Ce : n� Ce : n
n : Ce : nþ H

n ¼ or/ðr; qÞ

8>><>>:
ð10Þ
where u(e, r) is the free energy, depending on the strain tensor e (or the elastic part ee in the plastic model) and the internal
variable r. The term u0 in the damage model is the elastic strain energy for the elastic (undamaged) material.
Ce ¼ kð1� 1Þ þ 2lI is the elastic constitutive tensor, where k and l are the Lame�s parameters and 1 and I are the identity
tensors of second and fourth order, respectively. In Eq. (6), r ¼ Ce : e is the effective stress. Its positive counterpart is then
defined as

rþ ¼
Xi¼3

i¼1

hriipi � pi; ð11Þ

where hrii stands for the positive part (Mac Auley bracket) of the ith principal effective stress
ri ðhrii ¼ ri for ri > 0 and hrii ¼ 0 for ri < 0Þ and pi stands for the ith stress eigenvector. The initial elastic domain in

the damage model is defined as E0
r :¼ r;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ � Ce�1 � r

p
< r0

n o
and, therefore, it is unbounded for compressive stress states

(r+ = 0) so that damage becomes only associated to tensile stress states as it is usual for modelling tensile failure in quasi
brittle materials like concrete.

The actual stresses, r, and the stress-like variable, q, are determined via the state Eqs. (6) and (9). The last equation
defines the softening law in terms of the continuum softening parameter H(r) 6 0 which may be either constant or an
increasing function of r, ru and E are, respectively, the tensile strength (yield stress) and the Young�s modulus. Finally,
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Eq. (10) is the rate constitutive law in terms of the tangent constitutive operator Ctan, which changes for loading (Cl) and
unloading (Cu) processes.

The constitutive model should be adapted to return bounded stresses when the singular (unbounded) strain field (2) is
introduced into the standard continuum context. This regularization is reached by a reinterpretation of the continuum soft-
ening modulus, H, in Eq. (9), which is expressed, in the distributional sense [41], in terms of a discrete softening modulus H ,
considered a material property available in terms of the mechanical and fracturing properties of the material (peak stress
ru, Young�s modulus E, and fracture energy Gf, see [25,30] for additional details).

1

H
¼ dS

1

H
; H ¼ kH ;

H ¼ 1

2

r2
u

EGf

ðcontinuum damageÞ;

H ¼ 1

2

r2
u

Gf

ðelasto-plasticityÞ.

8>><>>: ð12Þ
1.1.3. Boundary value problem in a strong discontinuity setting

The rate form of the BVP of a solid X with boundary oX = Cu [ Cr (where Cu and Cr stand, respectively, for the bound-
aries with prescribed displacements and tractions) and outward normal m, experiencing a strong discontinuity of the dis-
placement field u(x, t) in a failure surface S with normal n (see Fig. 1), in the time interval of interest [0, T], can be written as
follows:

$ � _rþ q0
_b ¼ 0 8ðx; tÞ 2 X� ½0; T � ðmomentum balanceÞ; ðaÞ

_r � m ¼ t� 8ðx; tÞ 2 Cr � ½0; T � ðprescribed tractionsÞ; ðbÞ
_u ¼ _u� 8ðx; tÞ 2 Cu � 0; T½ � ðprescribed displacementsÞ; ðcÞ
_rþX=S � n ¼ _r�X=S � n 8ðx; tÞ 2 S � ½0; T � ðouter traction continuityÞ; ðdÞ
_rþX=S � n ¼ _rS � n 8ðx; tÞ 2 S � ½0; T � ðinner traction continuityÞ; ðeÞ

ð13Þ

where Eqs. (13(a)–(d)) are the classical field conditions of a medium with a continuous displacement field, but (possibly)
exhibiting a discontinuous stress field in X/S, and Eq. (13(e)) is an additional equation, specific for the strong discontinuity
problem, stating the continuity of the traction field across the failure interface S.

1.1.4. Finite elements with embedded discontinuities

Finite elements with embedded discontinuities have become a natural numerical ingredient in modeling material failure
[2,3,24,40] and are a fundamental tool within the CSDA. They consist of the addition, to the standard deformation modes
of the basic element, of enriching deformation modes incorporating discontinuous displacement fields. The different fam-
ilies of those elements developed so far could be classified into the following categories:

• Nodal enrichment (X-FEM): The enriching modes have a nodal support i.e.: the set of elements sharing a specific node.
The ones developed up to date are based on the X-FEM method [6,19], which, in turn, lies on the use of the partition of
unity concept [6]. The additional degrees of freedom are attached to those regular nodes belonging to any element
crossed by the discontinuity. Therefore, they cannot be condensed at the elemental level.

• Elemental enrichment (E-FEM): The enriching modes have an elemental support. The additional degrees of freedom
representing the elemental displacement jump are attached to those elements crossed by the discontinuity [16]. They
can be condensed at the elemental level and, thus, they do not substantially contribute to enlarge the computational cost
of the analysis.

Although advantages and disadvantages in both families have been reported [16,29], the condensability properties of the
second one are very appealing when focusing material failure in large three-dimensional problems [34]. Therefore, in the
remaining of this work, only finite elements with elemental enrichment (E-FEM) will be considered.

2. Stability issues

It is a very well known fact that finite element formulations for modeling material failure suffer, very often, from lack of
robustness [11,16]. Even if powerful continuation methods to pass structural unstable points are used (i.e., arc length meth-
ods to traverse limit and turning points), it is noticed that, as the material failure progresses across the solid, the condition
number of the structural tangent stiffness matrix deteriorates, the iterative Newton–Raphson procedure fails and, eventu-
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ally, the numerical simulation cannot be continued. In not few occasions, this type of difficulties has been attributed to ill-
posedness of the BVP or lack of uniqueness of the corresponding finite element solution. However, even if the problem is
mathematically well posed and the solution is unique, one eventually finds those types of difficulties; although some times
they can be circumvented for very small (academic, two-dimensional) problems by using skilful procedures, they show up
again as large problems, essentially in three dimensions, are tackled.

A first consideration should be made on the source of the problem: lack of uniqueness and global structural instability
are not the only reasons for the classical lack of robustness of material failure simulations. Even if those problems are cir-
cumvented, an additional reason for lack of robustness in finite element simulations of material failure is the appearance of
null eigenvalues in the algorithmic elemental stiffness matrices that propagate through the mesh deteriorating, after the
assembling procedure, the condition number of the global algorithmic stiffness matrix.

A second consideration refers to the identification of two possible reasons for the appearance of those null elemental
eigenvalues: the lack of symmetry of the finite element formulations, and the use of strain softening in the constitutive mod-
els. Although those reasons (and the possible remedies) can be extended to a wider variety of formulations for material
failure, in Section 2.1 they will be examined in the context of the CSDA.

2.1. A non-symmetric E-FEM formulation

E-FEM formulations for solving the weak form of the problem (13) have been presented in detail elsewhere [29]. Here,
let us focus our attention on the non-symmetric formulation whose finite dimensional space of the discretized displace-
ments is described by

Vh � _uðx; tÞ; _u ¼
Xnnode

i¼1

NiðxÞ _diðtÞ þ
Xnelem

e¼1

M ðeÞðxÞ _beðtÞ
( )

;

M ðeÞðxÞ ¼H
ðeÞ
S ðxÞ � uðeÞðxÞ; uðeÞðxÞ ¼

Xnþe
i¼1

N ðeÞiþ ðxÞ;

ð14Þ

where Ni are the standard interpolation function, M ðeÞ is the unit jump function [32] (see Fig. 2), di(t) stands for displace-
ment at the regular nodes, i, and be are the elemental additional degrees of freedom representing the displacement jumps at
those elements, e, crossed by S. In Eq. (14) N ðeÞiþ are the shape functions related to the elemental nodes belonging to X+.

The elemental strain rate field that is kinematically compatible with (13), can be written as

_eðeÞ ¼
XnðeÞnode

i¼1

$N ðeÞi � _diðtÞ
� �Sþ lSðeÞ

k
n� $uðeÞ

� �
� _beðtÞ

� �S
; ð15Þ

where lSðeÞ ðxÞ stands for a collocation function (lSðeÞ ¼ 1 if x 2 SðeÞ; lSðeÞ ¼ 0 otherwise), k is the regularization parameter
considered in Eq. (3), and n is the normal vector to the elemental failure surface S(e), pointing to X+.

In the non-symmetric E-FEM approach, the field Eq. (13) are written in weak form via a Petrov–Galerkin formulation,
which enforces the first Eqs. (13(a)–(d)) via a standard Galerkin procedure, whereas Eq. (13(e)) is locally enforced in strong
form, at the center of every element. The resulting formulation can be then written as [29]:Z

X=S
$N i � _rdX ¼ _f

ext

i i 2 f1; . . . ; nnodeg; ðaÞ

SðeÞ n � _rSðeÞ � n � 1

XðeÞ

Z
XðeÞ=SðeÞ

_rXe=SðeÞ dX

 !
¼ 0 e 2 f1; . . . ; nelemg; ðbÞ

ð16Þ
Fig. 2. Finite elements with elemental enrichment.
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where S(e) stands for a measure of the elemental counterpart of the failure interface. After the assembling process the prob-
lem in Eq. (16) can be written as (see [29,32] for more details):

K � _a ¼ _F; _a ¼
_u
_b

	 

; _F ¼

_f

0

" #
; _u ¼ f _u1; . . . ; _unnode

gT
; _b ¼ f _b1; . . . ; _bnelem

gT
;

K ¼AðKðeÞÞ; KðeÞ ¼
KðeÞuu K

ðeÞ
ub

K
ðeÞ
bu K

ðeÞ
bb

" #
¼
Z

XðeÞ
BðeÞ

�T

� Calg � BðeÞ dX;

BðeÞ ¼ $N ðeÞ1 ;$N ðeÞ2 ; . . . ;$N ðeÞ
nðeÞ

node

;
lSðeÞ

k
n� $uðeÞ

� �	 

;

BðeÞ
�
¼ $N ðeÞ1 ;$N ðeÞ2 ; . . . ;$N ðeÞ

nðeÞ
node

;
lSðeÞ

k
� SðeÞ

Xe

� �
n

	 

;

ð17Þ

where Að	Þ stands for the assembling operator. The specific sub-matrices of the elemental tangent stiffness matrix K(e) are

Ke
uu


 �
ij
¼
Z

XðeÞ=SðeÞ
$N ðeÞi � Calg

X=S � $N ðeÞj dX; ðaÞ

Ke
ub

h i
i
¼ �

Z
XðeÞ=SðeÞ

$N ðeÞi � Calg
X=S � $uðeÞ dX; ðbÞ

Ke
bu

h i
j
¼ � SðeÞ

Xe

Z
XðeÞ=SðeÞ

n � Calg
X=S � $N ðeÞj dX; ðcÞ

Ke
bb

h i
¼ SðeÞ

Xe

Z
XðeÞ=SðeÞ

n � Calg
X=S � $uðeÞ dXþ SðeÞn � C

alg
S

k
� n; ðdÞ

ð18Þ

where C
alg
X=S and C

alg
S stand for the algorithmic counterparts, at the bulk X/S, and at the failure interface S, respectively,

emerging from the considered time integration scheme of the constitutive model. As the time step length tends to zero, they
must converge to the tangent constitutive operators in Eq. (10). It can be noticed that, due to the different matrices B(e) and
B�
ðeÞ

in Eqs. (17), the elemental stiffness K(e) is unsymmetrical K
ðeÞ
ub 6¼ ðK

ðeÞ
bu Þ

T, K
ðeÞ
bb 6¼ ðK

ðeÞ
bb Þ

T even if those constitutive oper-
ators are symmetric, excepting for the very particular case:

$uðeÞ ¼ n
SðeÞ

Xe . ð19Þ

For linear elements, this corresponds to the case of the elemental failure line/surface being parallel to one side/surface of
the element (a = 0 in Fig. 3).

2.2. Considerations about stability

On the light of the expressions of the elemental stiffness matrices in Eq. (18), one can identify two different sources of
null/negative eigenvalues in the elemental tangent stiffness K(e):

(1) The unsymmetrical character of the elemental stiffness matrix K(e) and, therefore, of the global stiffness matrix K.
Even if the constitutive operators Calg

X=S and Calg
S are symmetric and positive definite (as it happens in Eq. (10) for

the elastic or unloading cases), a reason for the eventual production of null/negative eigenvalues still remains: the
non-symmetric character of the term n � Calg

X=S � $uðeÞ in Eq. (18(d)). Unless the vectors n and $uðeÞ are parallel (as
Fig. 3. Orientation of the failure interface in an enriched element.
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it occurs in the very particular symmetric case presented in Eq. (19)), that term may contribute to produce null or
negative eigenvalues as the angle between those vectors is large enough (see Fig. 3). This problem has been mentioned
some times in the literature as responsible for lack of uniqueness of the finite element solution [16] or for a bad tracing
of the failure interface [35], but here it is analyzed from the stability and robustness point of view. At any case, it is
clearly typical of unsymmetrical finite element formulations, as the one presented in Section 2.1, and symmetric finite
element formulations would preclude this source of numerical instability.

(2) The strain softening in the constitutive model. Even if the finite element formulation is symmetric, the strain soft-
ening in the constitutive model may be responsible for the appearance of negative eigenvalues at any of the con-
stitutive operators Calg

X=S or Calg
S in Eq. (18) and becomes a possible source of null eigenvalues in the elemental

stiffness matrix. Neither imposition of an elastic behavior in the bulk, as it is done in many discrete formulations
of the SDA based on discrete traction-separation laws (equipped with displacement softening) at the failure inter-
face, solves the problem. This would be equivalent to equate C

alg
X=S in Eq. (18) to the, positive definite, elastic con-

stitutive operator Ce in Eq. (10), but the term n � C
alg
S
k � n, in Eq. (18(d)), exhibiting negative eigenvalues for loading

processes due to the negative value of the softening modulus H (Calg
S ¼ Cl, in Eq. (10)), still remains. On the light of

the previous reasoning we conclude that this source of numerical instability would be removed if the positive def-
inite character of the algorithmic constitutive operators Calg

X=S and Calg
S was ensured at any point of either the bulk,

X/S, or the failure interface S.

In summary, from the previous analysis it can be concluded that a symmetric E-FEM formulation, combined with an
integration procedure that renders the algorithmic tangent constitutive operator positive definite, would remove the iden-
tified sources of lack of robustness of the CSDA. Actions to achieve these goals are described in Section 2.3.

2.3. Symmetric (kinematically consistent) formulation

In order to render symmetric the finite element formulation presented in Section 2.1, a complete Galerkin procedure has
to be used, even to impose, in weak form, the inner traction continuity Eq. (13(e)). Let us consider the displacement field
belonging to the finite dimensional space given in Eq. (14), and the following space for the test functions (virtual
displacements):

Vh
0 � ghðx; tÞ; gh ¼

Xnnode

i¼1

N iðxÞgiðtÞ þ
Xnelem

e¼1

M ðeÞðxÞ _beðtÞ; gijCu
¼ 0

( )
. ð20Þ

The variational principle (virtual work principle):

dPð _u; ghÞ �
Z

X
$Sgh : _rdX�

Z
X

gh � q0
_bdV þ

Z
Cr

gh � _t� dC

	 

¼ 0 8gh 2Vh

0 ð21Þ

defines a formulation of a finite element with an embedded discontinuity that: (a) belongs to the symmetric kinematically
consistent class [16,32], and (b) is the weak form of the problem (13). The matrix form of the BVP resulting from this type
of formulation is similar, but different, to the one in Eq. (16):Z

X=S
$N i � _rdX ¼ _f

ext

i i 2 f1; . . . ; nnodeg; ðaÞZ
X=SðeÞ

$uðeÞ � _rXe=SðeÞ dX�
Z

SðeÞ
n � _rS dS ¼ 0 e 2 f1; . . . ; nelemg; ðbÞ

ð22Þ

where S(e) is the elemental crack length, which can be either geometrically computed or approximated as SðeÞ ¼ XðeÞn � $uðeÞ

(see [21]). Now, the matrix form of the problem reads:

K � _a ¼ _F; _a ¼
_u

_b

" #
; _F ¼

_f

0

" #
; _u ¼ f _u1; . . . ; _unnode

gT
; _b ¼ f _b1; . . . ; _bnelem

gT
;

K ¼AðKðeÞÞ; KðeÞ ¼
KðeÞuu K

ðeÞ
ub

K
ðeÞ
bu K

ðeÞ
bb

24 35 ¼ Z
XðeÞ

BðeÞ
T

� Calg � BðeÞ dX;

BðeÞ ¼ $N ðeÞ1 ;$N ðeÞ2 ; . . . ;$N ðeÞ
nðeÞ

node

;
lSðeÞ

k
n� $uðeÞ

� �	 

ð23Þ
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and the specific sub-matrices expressions are

½Ke
uu�ij ¼

Z
XðeÞ=SðeÞ

$N ðeÞi � Calg
X=S � $NjðeÞi dX; ðaÞ

½Ke
ub�i ¼ �

Z
XðeÞ=SðeÞ

$N ðeÞi � Calg
X=S � $uðeÞ dX; ðbÞ

½Ke
bu�j ¼ �

Z
XðeÞ=SðeÞ

$uðeÞ � Calg
X=S � $N ðeÞi dX; ðcÞ

½Ke
bb� ¼

Z
XðeÞ=SðeÞ

$uðeÞ � Calg
X=S � $uðeÞ dXþ

Z
SðeÞ

n � C
alg
S

k
� n dS; ðdÞ

ð24Þ

Notice that, due to the variational procedure for the derivation, the elemental stiffness matrix, K(e), and, therefore, the
global stiffness matrix, K, is symmetric and positive definite if so are the algorithmic constitutive operators Calg

X=S and Calg
S .

This is a crucial point to be exploited in Section 2.4.3.
In a subsequent manipulation, the rate equations (22) can be written in an alternative total form asZ

X
$Ni � rdXZ

XðeÞ
$uðeÞ � rXe=SðeÞ dX�

Z
SðeÞ

n � rS dS

8>>><>>>:
9>>>=>>>;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fintðui;beÞ

¼

Z
X

N i q0bdXþ
Z

Cr

N it
� dC

	 

0

8><>:
9>=>;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fext

8i 2 f1; . . . ; nnodeg
8e 2 f1; . . . ; nelemg;

8tn P tðeÞB .

(
ð25Þ

where tðeÞB stands for the time of the onset of the material failure at element e.
The finite element formulation, presented in Eqs. (20)–(25) fits into the seminal versions of the symmetric E-FEM for-

mulations [12,17,18] except for its specific insertion into a continuum format consistent with the Continuum Strong Dis-
continuity Approach (CSDA) adopted here. Therefore, it can be inserted into the class of Symmetric Kinematically
Consistent finite elements with embedded discontinuities [16].

2.3.1. Convergence test

Unlike the non-symmetrical formulation in Section 2.1 the symmetrical weak formulation does not enforce the inner
traction continuity Eq. (13(e)) in strong form. However, the equivalence of the weak form (21) with the totality of the field
equations in the BVP (13) can be rigorously proven (see, for instance, [40]). Therefore, it is expected that, in the present
symmetric formulation, mesh refinement will determine a correct trend (convergence) to the fulfillment of those equations.
The test in Fig. 4 constitutes a simple corroboration of this fact, taking the linear triangle as the underlying element, and
provides an assessment of the order of convergence of that symmetric finite element with embedded discontinuities.

The test consists of a homogeneous rectangular strip pulled from the right end with a force P, imposing a displacement
D, up to the formation of an inclined failure line and, then, continued to the total failure and release of the stresses. Due to
the induced constant stress field, the considered bilinear stress–strain law for the constitutive model should translate into a
bilinear force–displacement (P–D) curve. To check the convergence to the right slope of the descending branch and, there-
fore, to the right energy dissipation Gf, a homogeneous mesh refinement, parameterized in terms of the element size h, is
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Fig. 4. Symmetric finite element formulation: convergence test.
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performed. Fig. 4(left) shows the results, for increasingly fine meshes, converging to the exact solution (the curve limiting
the gray zone). The errors in the dissipated energy (fracture energy) for the different levels of discretization are displayed in
Fig. 4(right), where the linear convergence of the element is observed.

It is worth mentioning that this symmetric element, although convergent, exhibits an accuracy smaller than its unsym-
metrical counterpart, according to the formulation in Section 2.1, for this type of homogeneous/constant stress problem.
Indeed, it can be proven that, for this particular case, the unsymmetrical element provides the exact solution with only one
element.

2.4. Implicit–explicit integration scheme for the constitutive model

2.4.1. Consistent algorithmic operator of the implicit integration procedure

Let us first focus on the damage constitutive model in the left Eqs. (4)–(10). Implicit integration of the rate Eqs. (5) and
(9) leads to the following solutions, at time tn+1, for the internal variables rn+1, qn+1 and the stress rn+1 in terms of the
current strains en+1 (see [25]):

enþ1 7!
_r ¼ _k P 0; rjt¼0 ¼ r0

gðenþ1; rnþ1Þ � seðenþ1Þ � rnþ1 6 0

(
! rnþ1ðenþ1Þ ¼ max

s2½0;tn�
ðrs; seðenþ1ÞÞ

Dknþ1ðenþ1Þ ¼ Drnþ1 ¼ rnþ1ðenþ1Þ � rn

qnþ1ðenþ1Þ ¼ qn þ HDrnþ1

ð26Þ

rnþ1ðenþ1Þ ¼
qnþ1ðenþ1Þ
rnþ1ðenþ1Þ

Ce : enþ1|fflfflfflfflffl{zfflfflfflfflffl}
rnþ1

. ð27Þ

In addition, from Eq. (27) it can be obtained the so-called algorithmic consistent tangent operator Calg
nþ1 defined through:

drnþ1 ¼ Calg
nþ1 : denþ1

Calg
nþ1 ¼

C
algðuÞ
nþ1 ¼

qnþ1

rnþ1

Ce ðelastic=unloadingÞ;

C
algðlÞ
nþ1 ¼

qnþ1

rnþ1

Ce � qnþ1 � Hrnþ1

r3
nþ1

rþnþ1 � rnþ1 ðloadingÞ

8>><>>:
ð28Þ

which assures quadratic convergence of the iterative Newton–Raphson procedure when solving the resulting non-linear
problem. A similar, slightly more complex, procedure can be performed for the implicit integration of the plasticity model
in the right Eqs. (4)–(10). After some algebraic operations one gets [42]:

enþ1 7!
_r ¼ _k P 0; rjt¼0 ¼ 0

Dknþ1 ¼ Drnþ1 ¼ rnþ1 � rn

(
! qnþ1ðDknþ1Þ ¼ qn � HðDrnþ1Þ ¼ qn þ HDknþ1. ð29Þ

The algorithmic plastic multiplier, Dkn+1, can be solved by imposing, for loading cases, the yield criterion (7) (consis-
tency) at time tn+1:

enþ1 7!
rnþ1ðDknþ1Þ ¼ rn þ Ce : ðenþ1 � enÞ � Dknþ1Ce : nnþ1ðrnþ1ðDknþ1ÞÞ

nnþ1 ¼
ogðrnþ1; qnþ1Þ

ornþ1

; Anþ1 ¼
o2gðrnþ1; qnþ1Þ
ornþ1 � ornþ1

������� !

! gðrnþ1; qnþ1Þ � gðrnþ1ðeðDknþ1Þ; qnþ1ðDknþ1ÞÞÞ ¼ 0! Dknþ1ðenþ1Þ !

! rnþ1ðDknþ1ðenþ1ÞÞ.

ð30Þ

Some additional manipulations lead to the algorithmic tangent operator Calg
nþ1:

drnþ1 ¼ C
alg
nþ1 : denþ1;

Calg
nþ1 ¼

C
algðuÞ
nþ1 ¼ Ce ðelastic=unloadingÞ;

C
algðlÞ
nþ1 ¼ bC � bC : nnþ1 � bC : nnþ1

H þ nnþ1 : bC : nnþ1

ðloadingÞ;

bC ¼ ðIþ Dknþ1Ce : Anþ1Þ�1
: Ce.

8>>>>><>>>>>:
ð31Þ
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Inspection of the algorithmic constitutive operators Calg
nþ1 in (28) and (31) reveals that C

algðuÞ
nþ1 is always positive definite,

but C
algðlÞ
nþ1 may lose the positive character as strain softening (H < 0) is considered. Indeed, this is the case that one faces in

computational material failure: as it will be shown in Section 2.5, loss of strong ellipticity of the algorithm tangent operator
Calg at increasing parts of the analyzed domain X, deteriorates the positive character of the structural tangent stiffness K of
the discrete problem (21), even using the symmetric formulation, which, eventually, becomes singular. This translates into
enormous problems of convergence and robustness in the resulting solving process.

The situation can be summarized as follows: the use of classical implicit integration algorithms, for constitutive models
equipped with strain softening, leads to accurate results even for large time steps. However, it also results into ill condi-
tioning of the stiffness matrix of the resulting problem which, in turn, enforces small time steps and computationally costly
procedures to get convergence (very often, even no convergence is obtained). In view of this observation, the question of
the worthiness to renounce to some of the accuracy of the purely implicit integration procedures to benefit the robustness
of the solving procedure arises. This motivates the implicit–explicit integration procedure presented in next section.

2.4.2. Implicit–explicit integration: effective algorithmic operator
The procedure consists of using two integration schemes per time step: one is the standard implicit (Backward-Euler)

sketched in Eqs. (26)–(31) furnishing ‘‘implicit’’ values for the variables of the problem, r(en+1), q(en+1), rn+1(en+1), in terms
of the current strains en+1. A second explicit integration is performed at the same time step, furnishing other ‘‘explicit’’
values ~rðenþ1Þ, ~qðenþ1Þ, ~rnþ1ðenþ1Þ for the variables of the model. The variational problem (21) is then solved using the expli-
cit stresses ~rnþ1, and the algorithmic constitutive operator, consistent with the integration scheme in the variational prob-
lem, is termed the effective algorithmic operator, Ceff

nþ1 ¼ oenþ1
~rnþ1ðenþ1Þ (to be distinguished from the one in the implicit

integration procedure C
alg
nþ1 ¼ oenþ1

rnþ1ðenþ1Þ). Some interesting properties of the effective operator are displayed next for
the continuum damage and the elasto-plastic models.

2.4.2.1. Isotropic continuum damage model. According to the evolution Eqs. (5) and (8) (_r ¼ _k P 0) the strain like variable r

is a non-decreasing function of the pseudo-time t (see Fig. 5). This makes it suitable for extrapolations at relatively low
error. Let us, then, consider the following linear explicit extrapolation of that variable at time step tn+1 in terms of the
implicitly computed values of that variables at times tn and tn�1.

~rnþ1 ¼ rn þ
Dtnþ1

Dtn
Drn; Drn ¼ rn � rn�1 ð32Þ

which can be considered a first order approximation of the Taylor�s expansion of rn+1 around rn:
rnþ1 ¼ rn þ _rn|{z}
Drn
Dtn

Dtnþ1 þ OðDt2
nþ1Þ ¼ ~rnþ1 þ OðDt2

nþ1Þ. ð33Þ

Two considerations emerge from Eqs. (32) and (33):

• ~rnþ1 constitutes a prediction for the value of the internal value at time step n + 1 that can be computed at the end of the
time step n and, thus, is independent of the value of the current strains en+1.

• Indeed, there is an additional error introduced by computing the stresses at time step n + 1 in terms of the value ~rnþ1

instead of the implicit value rn+1. However, this error can be reduced (or controlled) either by decreasing the time step
length or by increasing the order of the extrapolation procedure.
implicit

explicit

Fig. 5. Implicit/explicit integration algorithm. (Left) Extrapolation of the strain-like internal variable. (Right) Prediction/correction phases of the
implicit–explicit integration procedure.
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Once ~rnþ1 is known, from Eq. (32), the stresses at the current time tn+1 can be computed using Eqs. (6) and (9) as

~qnþ1 ¼ qn þ H nð~rnþ1 � rnÞ ¼ qn þ H nDrn ¼ qn þ H nðrn � rn�1Þ;
~qnþ1 P 0;

(
ð34Þ

enþ1 7! ~rnþ1 ¼
~qnþ1

~rnþ1

Ce : enþ1; ð35Þ

where it should be noticed that neither ~qnþ1 nor ~rnþ1 depend on the current strains en+1 and, therefore, the algorithmic stres-
ses ~rnþ1 only depend, linearly, on the strains en+1. Thus, the algorithmic tangent operator emerging from the above impli-
cit–explicit integration procedure (from now on termed the effective algorithmic operator) reads:

Ceff
nþ1 ¼

o~rnþ1

oenþ1

¼ ~qnþ1

~rnþ1

Ce; d~rnþ1 ¼ Ceff
nþ1 : oenþ1 ð36Þ

which is constant during the time step n + 1. In addition, due to the positive character of ~qnþ1, ~rnþ1 and Ce, one can con-
clude that Ceff

nþ1 is always positive definite.

2.4.2.2. Elasto-plastic material model. Similarly, for the elasto-plastic rate independent model in Eqs. (4)–(10), extrapolation
of the strain-like internal variable rn+1 reads:

~rnþ1 ¼ rn þ _rn|{z}
Drn
Dtn

Dtnþ1 ¼ rn þ
Dtnþ1

Dtn
ðrn � rn�1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

DknP0

¼ rn þ
Dtnþ1

Dtn
Dkn;

D~knþ1 �
def

~rnþ1 � rn ¼
Dtnþ1

Dtn
Dkn P 0;

8>>>>><>>>>>:
ð37Þ

where Dkn is the implicitly integrated value of the plastic multiplier at time step n. Then, from Eq. (9):

~qnþ1 ¼ qn þ H nð~rnþ1 � rnÞ ¼ qn þ HnDrn ¼ qn þ H nðrn � rn�1Þ;

ru P ~qnþ1 P 0.

(
ð38Þ

Once the predictions D~knþ1 and ~qnþ1 are available, the stress field can be computed from Eq. (30) as

enþ1 7!
~rnþ1 ¼ rn þ Ce : ðenþ1 � enÞ � D~knþ1Ce : ~nð~rnþ1Þ;

~nnþ1 ¼
ogð~rnþ1; ~qnþ1Þ

o~rnþ1

; eAnþ1 ¼
o~nnþ1

o~rnþ1

¼ o2gð~rnþ1; ~qnþ1Þ
o~rnþ1 � o~rnþ1

;

������� ð39Þ

where rn is the implicit stress at time step n. The corresponding effective algorithmic tensor reads:

Ceff
nþ1 ¼

o~rnþ1

oenþ1

¼ Iþ D~knþ1
~Anþ1

� ��1

: Ce; d~rnþ1 ¼ Ceff
nþ1 : oenþ1. ð40Þ

It should be noticed that, for the usual plasticity models, the tensor eAnþ1 in Eqs. (30) and (39) is positive definite as part
of the requirements for convexity of the yield (or the potential) surface g(r, q) in Eq. (7), in the generalized stress
(R � {r, q}T) space [42]. In addition, as a requirement for the dimensional consistency of g(R), the yield function must
be an homogeneous, of a certain order, function of R which, with a simple algebraic treatment, can be appropriately
reduced to one of second order. In summary: eAnþ1 in Eq. (40) can be always made constant and positive definite and, there-
fore, so is the effective algorithmic tensor Ceff

nþ1.

2.4.3. Remarks on the implicit/explicit integration scheme

The following aspects should be noticed about the proposed implicit/explicit integration scheme in Eqs. (32)–(40):

1. Since the extrapolated values, ~rnþ1, are obtained in terms of the implicitly integrated values, rn and rn�1, one can expect
that the well-known stability properties of the implicit integration procedures are being inherited by their explicit extrap-
olations (32) and (37). In other words, the integration errors will not amplify even for relative large time steps, unlike it
typically happens for purely explicit schemes.

2. The ability of the constitutive model to reproduce material instability and failure, via the loss of the positive character of
the tangent constitutive operator, still holds. The implicit/explicit integration procedure is, in fact, an algorithmically
stable (robust) integration procedure to approach the unstable response of the material and of the constitutive model.
This fact is emphasized in Fig. 5(right) where the implicit/explicit integration of the constitutive model can be under-
stood as composed of a prediction stage, at the end of time step n, followed by a linear correction, characterized by
the constant and positive definite operator Ceff

nþ1, during time step n + 1.
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3. The algorithmic tangent constitutive operator, Calg
nþ1 in Eqs. (28) and (31), consistent with the implicit integration

scheme, can be still calculated at every time step and its spectral properties used to determine the onset of local material
failure and the directions of propagation of material failure.

4. The constant and positive definite character of the effective algorithmic operator Ceff
nþ1 in Eqs. (36) and (40), will now

have the following effects on the iterative procedure for solving the non-linear problem using the symmetric E-FEM for-
mulation in Eqs. (20)–(25):
• The algorithmic (effective) stiffness matrix of the problem will always be positive definite (see Appendix A). No

numerical instabilities should be expected at any time and the robustness of the analysis should be dramatically
increased.

• Since the structural tangent stiffness matrix is now constant and well conditioned, the Newton–Raphson procedure
should converge in just one iteration per time step.
5. In compensation, smaller accuracies for relatively large time steps, in comparison with the ones obtained with the purely
implicit integration procedure, should be expected. Consequently, the time advancing procedure should be combined
with a procedure for controlling the integration errors in Eqs. (33) and (37).

2.5. Benchmark problem: double cantilever beam (DCB) test

The following example clearly illustrates the lack of stability and robustness problems that motivate this work and the
benefits of the proposed remedies. It consists of the classical DCB test: a concrete specimen with an idealized (very low)
fracture energy Gf (displayed in Fig. 6) in which the propagation of a horizontal crack is modeled.

When using a relatively coarse finite element mesh, the force–displacement curve displayed in Fig. 7(a), presents the saw-
teeth aspect already reported in Refs. [38,39] for smeared approaches.

When the problem is solved with a finer mesh, the response is smoother as can be checked in Fig. 7(b).Therefore, the
observed ratcheting in the force–displacement curve is a numerical, and not a physical, effect. However this effect can
become unavoidable, as brittle materials are modeled and coarse meshes, limited by the affordable computational cost,
are used: typically in three-dimensional problems.

Every teeth of the curve corresponds to the activation (failure) of one or several elements in the crack path, and exhibits
limit or turning points. The presence of so many and so close instability points makes the advance of the numerical sim-
ulation extremely cumbersome, and time consuming, when standard implicit integration schemes are used.

In Fig. 8 the robustness and the obtained results, for the coarse mesh in terms of the force–displacement curve, are com-
pared when using the standard implicit and the proposed implicit/explicit integration schemes. Also the evolution of the
condition number for the extended algorithmic stiffness matrix (considering the additional equation provided by the
arc-length restriction) evaluated as the ratio of the minimum and the maximum eigenvalues (inverse of the condition num-
ber), is plotted.

When a displacement arc-length control of the increasing vertical displacement at point A, in Fig. 6(a), is used, the anal-
ysis with the implicit integration scheme diverges very soon, as it is shown in the upper Fig. 8(a). The divergence time step
coincides with the appearance of the first null/negative eigenvalue of the (tangent stiffness) matrix as it is shown in the lower
Fig. 6. DCB test in a concrete specimen: (a) geometrical and material description, (b) finite element mesh (half of the specimen), (c) deformed mesh.
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Fig. 8(a). Then, one could think of a smarter continuation algorithm, and perform an arc-length control of the vertical
displacement of point B (at the notch tip). In this case, the simulation can be driven a little further, with a constant time
step length, but it also diverges very soon after, as it is shown in Fig. 8(b). Again, divergence coincides with the appearance
of null/negative eigenvalues of the extended stiffness matrix as it is displayed in the lower Fig. 8(b). More sophisticated time
advancing procedures, as an automatic time stepping, could be used but, then, the length of the time step reduces several
orders of magnitude, leading to unaffordable computational costs.

However, when the simulation is performed using the proposed implicit/explicit integration scheme of Section 2.4, the
analysis can be completed at no difficulty with a constant time step length (with only one iteration per time step) and the
complete force–displacement curve of Fig. 8(c) is obtained. In this case, the effective stiffness matrix is always positive def-
inite, as it is shown in the lower Fig. 8(c). All the eigenvalues are positive and the stiffness matrix is far away from being ill
conditioned as predicted by the considerations in Section 2.4.3.
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3. Representative numerical simulations

The benefits of the proposed combination of a symmetric E-FEM method and the implicit/explicit integration scheme,
for purposes of material failure modeling, are essentially of two types:

• Providing robustness to the analysis, and obtaining responses in cases that implicit integration schemes fail.
• Decreasing the computational cost, even in those problems that can be solved with standard implicit integration

schemes.

The following examples display these benefits.

3.1. Tests on the convergence of the implicit/explicit integration

The goal of these tests is to evaluate and compare the accuracy, and the required computational cost, when using either
the implicit or the implicit/explicit integration schemes. Comparisons are done using a number of structural failure tests,
considering both plasticity and continuum damage material models, either in 2D or 3D problems. The accuracy of the
implicit/explicit scheme is evaluated by comparing the solutions, obtained using constant step lengths, without any specific
control of the integration error, with those obtained with the purely implicit integration procedure.

3.1.1. Continuum damage model: four-point bending test on a concrete specimen

The four-point bending test is a well-known problem that has widely been used in the literature as a numerical bench-
mark. Here, the experiment reported in [5] is simulated as a 2D problem assuming plane stress conditions. The structure is a
notched concrete beam subjected to the load system described in Fig. 9. The geometry and material data are also displayed
there. The finite element mesh has approximately 1900 triangular elements.

The material has been modeled using the constitutive damage model in Eqs. (4)–(10) and its parameters are defined in
Fig. 9. The experimental solution shows a curved crack, propagating from the notch tip toward the load point D.

In Fig. 9(right) the load versus crack mouth sliding displacement (CMSD) curves, obtained with the implicit integration
procedure and three different time step lengths for the implicit/explicit scheme, are displayed. The last three cases were
obtained by imposing an incremental CMSD of values 4Duy, 2Duy and Duy, respectively, whereas the implicit solution
was obtained with an automatic time step procedure (shortening the time step as the convergence is not achieved in a given
number of iterations) imposing the initial value Duy.

Table 1 compares the computational times in all cases. Notice that, as expected, the implicit/explicit scheme only
requires one iteration per step. From Fig. 9, we also observe a clear convergence, by reducing the time step length, of
the implicit/explicit solutions to the purely implicit one. In particular, for the case that the incremental step is fixed to
Duy, the implicit/explicit integration provides a solution indistinguishable from the implicit one, whereas the required com-
putational cost is five times smaller.

3.1.2. Elasto-plastic model: slope instability problem
The slope instability problem taken from [36] is analyzed in this test, by using the elasto-plastic material model in Eqs.

(4)–(10). A vertical load is applied to a rigid foot placed on the top of an embankment, as shown in Fig. 10. The geotech-
nical structure is assumed to respond as a J2 plasticity material model whose parameters are Young�s modulus, E = 10
Fig. 9. Four-point bending test.



Table 1
Four point bending test

Steps (total number of iterations) CPU time [s] CPU/CPU (implicit)

Implicit/explicit
4Duy 78 (78) 20 1/16
2Duy 141 (141) 34 1/10
Duy 260 (260) 62 1/5

Implicit 370 (
1200) tolerance = 1E�4 325 1/1

FE mesh: 
1900 triangles

Comparative computational costs using the implicit/explicit and the standard implicit integration schemes.

Fig. 10. Slope instability problem.

Table 2
Slope instability problem

Steps CPU time [s] (implicit) CPU time [s] (implicit/explicit integration) CPU(i)/CPU(i/e)

8Duy 75 23.9 7.8 3.06
4Duy 150 46.4 15.3 3.03
2Duy 300 86.5 30.8 2.80
Duy 600 165.2 61.0 2.71

FE mesh: 400 quadrilaterals (BBAR)

Comparative computational cost.
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MPa, Poisson�s ratio, m = 0.4, uniaxial peak stress, ru = 0.1 MPa, and intrinsic softening modulus: H ¼ �0:33 MPa m�1.
The geometrical data and boundary conditions of the problem are shown in Fig. 10. Plane strain conditions are assumed.

The standard underlying elements are quadrilaterals, enriched with a B-bar technology to account for the locking effects
in J2 plasticity models [42]. The finite element mesh is made of approximately 400 of those finite elements.

Results in all cases have been obtained by controlling the downward displacement component in the rigid foot middle
point. Fig. 10 plots the loads vs. vertical displacement curves obtained with the implicit/explicit integration procedure and
four different incrementally imposed displacements of values 8Duy, 4Duy, 2Duy and Duy. These solutions are compared with
the ones obtained with the purely implicit integration procedure (which are indistinguishable in the plots for the different
considered time step lengths). Again, we can observe the clear convergence of the results from the implicit/explicit integra-
tion procedure to the ones obtained with the implicit integration.

The accuracy and robustness exhibited by the implicit integration method in this example (no step shortening was nec-
essary in any case) would not make crucial the use of the implicit/explicit integration method. However, as it is shown in
Table 2, the implicit/explicit methods leads, for the same time step length, to substantial reductions in the required CPU
time (at the cost of a reduction in the accuracy for large time steps).
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3.1.3. Continuum damage model: 3D double-notched beam test

The double-notched concrete beam experiment reported in [7] is also a well-known problem in concrete fracture
mechanics simulation. The test, which consists of a concrete beam with two symmetric notches loaded as shown in
Fig. 11, has been widely simulated as a 2D problem (in plane-stress conditions). However, in the present simulation the
3D modeling, a much more challenging problem, in terms of robustness, is considered. Two cracks propagate across
the beam, from the notch roots toward the loading points, but only one of them remains in a loading state (active) after
the structural peak load.

The solutions in Fig. 11, in terms of the load F versus CMOD curves, have been obtained using the implicit/explicit
integration algorithm, and the symmetrical finite element formulation, in a mesh of 2967 tetrahedra. The load control
method consists of imposing a given updated normal plane arc-length procedure of sizes Ds, 2Ds, 4Ds and 8Ds in each case.
With this type of control, convergence of the standard implicit integration scheme fails in all the cases, even using auto-
matic reductions of the time step, before reaching the end of the analysis. This is an example, also observed by the authors
in many other cases, of the loss of robustness of the 3D simulations, based on implicit integrations, as compared with the
corresponding 2D simulations. On the contrary, for the implicit/explicit procedure, stable analysis, showing a clear con-
vergence with shortening of the incremental displacement control, can be done at no difficulty.

Fig. 12 shows the crack pattern provided by the simulation, exhibiting the two experimentally observed cracks, and the
evolution of the cracking across the detected failure surfaces. There, it can also be observed as the crack generated at the
upper notch arrests, whereas the other crack progresses determining the final failure mode.
Fig. 12. 3D double-notched beam: (a) numerically obtained failure surfaces (cracks), (b) amplified deformation mode and crack patterns, (c–e) evolution,
along time, of damage at the cracking surfaces.

Fig. 11. 3D double-notched concrete beam test.
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3.2. Additional representative 3D simulations

In order to illustrate the potential of the CSDA in modelling realistic structural failure mechanisms, applications of the
preceding methodology to several three dimensional failure problems are presented next. Both continuum constitutive
models of Section 1.1 (continuum damage and elasto-plasticity) are considered to represent failure. In all the cases, the
symmetric finite element with elemental enrichment of Section 2.3 and the implicit/explicit integration method of Section
2.4 have been used.

3.2.1. Brazilian test

The splitting test in a cylindrical specimen (Brazilian test, see [15]), compressed along two diametrically opposed lines, as
shown in Fig. 13, is modelled using the continuum damage model. The expected failure surface is a diametric vertical crack
plane containing the two load lines. Fig. 13(right) shows the load vs. transversal deformation curve, scaled in terms of the
peak load (Pmax). The load decreases after the peak (up to approximately 80% of Pmax), due to the complete propagation of
the primary crack system, which compares well with the experimental results in [15]. The analysis was stopped at the sub-
sequent raising branch as the two split halves start resisting in compression.

Also in the curve in Fig. 13(right) the propagation of the cracking during the load process is displayed. This exemplifies
the potential of three-dimensional simulations, as the one presented here, as providers of unusual and useful information
about the failure propagation mechanisms (from the exterior to the interior and from the centre to the loading lines as it is
shown in the figure).

Fig. 14 shows the considered finite element mesh of tetrahedra, and the (amplified) deformed shape of the specimen at
the end of the analysis.

3.2.2. Pull out of a bar anchored to a concrete specimen

The extraction of a steel rod (assumed elastic) anchored to a cylindrical mass of concrete, is modeled. The reference
experimental test is that presented in [13,14]. Numerical results of a similar test have previously been presented using a
2D model with the axial-symmetric assumption [37]. Here a complete 3D analysis is performed.
Fig. 13. Splitting test in a cylindrical specimen: material data and load vs. transversal deformation curve.

Fig. 14. Splitting test: Finite element mesh, deformed mesh and displacement contours.
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The material properties of the damage model relative to the concrete bulk, are E = 29,000 MPa, ru = 3.1 MPa, v = 0.2
and Gf = 150 N/m. The dimensions of the specimen are shown in Fig. 15 together with the obtained load versus displace-
ment curves (Table 3). The tetrahedral finite element mesh and the typical conical failure surface obtained from the numer-
ical simulations are presented in Fig. 16.
Fig. 15. Pull out of a bar anchored to a concrete specimen: (Left) problem description, (Right) load vs. displacement curve.

Table 3
3D double-notched beam test

Implicit/explicit Steps CPU time [s] [15]

8Ds 450 764
4Ds 900 1577
2Ds 1800 2943
Ds 3600 5302
Implicit Not converged

Computational cost using the implicit/explicit integration algorithm (2967 tetrahedra, 2580 d.o.f.).

Fig. 16. Pull out of a bar anchored to a concrete specimen: (a) finite element mesh, (b, c) numerically obtained failure (cracking) surface, (d) external view
of the (amplified) deformation pattern showing the localized elements, (e) internal view (cross-section) of the deformation pattern together with the
contours of the displacement field.
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3.2.3. Collapse analysis of a concrete dam

The structural collapse of a gravity-arch concrete dam is modelled. The geometry of the concrete dam has been taken
from [20]. The analysis is done on the solid-foundation domain shown in Fig. 17, where a reduced part of the foundation
(rock) is considered. The material properties for the concrete correspond to an artificially made brittle material, in order to
induce a clear failure mode that tests the ability of the CSDA to reproduce it. Both, the concrete dam and the rock foun-
dation, have been modeled by the damage model in Eqs. (4)–(10) but now considering a limited strength in both tension
and compression regimes. The material properties are displayed in Table 4.

The final goal of the analysis is to reproduce the structural collapse mode and to determine the theoretical safety factor
in front of the classical load action on the dam: the hydrostatic loading acting on the up-stream face. Therefore, the typical
triangular pressure distribution has been affected by a load factor evolving along the pseudo-time (here the central lateral
displacement at the crest). Lateral surfaces, marked as E1 and E2 in Fig. 17(b), and the bottom of the foundation, are
assumed clamped. A global tracking procedure, allowing for multiples failure surfaces has been considered [28].

Fig. 17(c) shows the load factor vs. the horizontal displacement at the crest (point P in Fig. 17(a)). The peak load deter-
mines the safety factor (here around 3.0) and the final failure mode displays the formation of three large vertical cracks at
points A, B and C of the loading process.

3.2.4. Landslide simulation

The problem of a landslide modeling through the CSDA is considered here. A soft layer of soil is assumed to rest on the
hard bedrock and its collapse, under increasing values of the soil density, through formation of a slip surface, is simulated
by considering a J2 plasticity model. The geometry and material data are shown in Fig. 18. In order to overcome the stress-
locking problems associated to J2 plasticity models, the basic element is the hexahedron modified according to the B-bar
formulation [42].

The obtained, three-dimensional, collapse mode is presented in Fig. 19. There can be checked that the typical slip sur-
face, observed in landslides (pure slip mode), is appropriately reproduced by the CSDA.

In Fig. 18(right), additional details of the simulation are presented. The load factor vs. displacement curve is plotted
together with the corresponding evolution, at different points of the loading process, of the material failure at the slip
surface.
Fig. 17. Collapse analysis of a concrete dam: (a) finite element mesh, (b) final deformed (amplified) mesh showing the collapse mode, (c) load factor vs.
horizontal displacement at point P.

Table 4
Dam analysis: mechanical parameters of concrete and rock

Concrete Rock foundation

Elastic modulus 20,000 MPa 15,000 MPa
Mass density 2300 kg/m3 –
Poisson coefficient 0.2 0.2
Compressive strength 11.6 MPa 10.0 MPa
Tensile strength 1.0 MPa 1.0 MPa
Fracture energy 100 N/m 100 N/m



Fig. 19. Landslide: (a) finite element mesh, (b) deformed (amplified) finite element mesh showing the obtained collapse mode, (c) external view of the
detected (slip) failure surface, (d) internal view (cross-section) of the deformation pattern and contours of the displacement field.

Fig. 18. Landslide: load factor versus vertical displacement and discontinuity surface propagation.
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3.3. Computational costs of 3D simulations using the CSDA

For the simulations presented in the preceding sections Table 5 displays the computational costs based on a single Pen-
tium� 4 processor, at 3.2 GHz, and 1 Gb. of RAM memory. As it can be observed there, the computational costs, for the
different simulations, are very affordable and range from less then one hour to a maximum of about 3 h of CPU.
Table 5
Computational cost of the 3D simulations

Section (problem) Number of DOF Number of elements Number of time steps CPU time [s]

3.2.1 9771 16,751 (tetrahedra) 236 11,012

3.2.2 11,505 18,872 (tetrahedra) 89 7154

3.2.3 15,639 24,481 (tetrahedra) 118 11,082

3.2.4 12,264 3354 (hexahedra) 90 2016
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4. Concluding remarks

Throughout the preceding sections, some fundamental issues about the robustness and stability of the Continuum
Strong Discontinuity Approach (CSDA) to material failure have been addressed. After identification of lack of symmetry
of the finite element formulation, and the material softening in the constitutive model, as possible causes of lack of robust-
ness, a remedy has been proposed as the combination of two specific ingredients in the numerical modeling. The first one is
the use of a symmetric version of the (variationally consistent and elementary enriched) finite element with embedded dis-
continuities E-FEM. From the authors� experience this provides larger robustness when compared with unsymmetrical
formulations.

However this seems not to be enough when brittle materials, as concrete, and relatively coarse meshes are used. The
problem becomes crucial in large scale (three-dimensional) computations when the number of elements is very limited
by the affordable computational cost. The second proposed ingredient is an implicit–explicit integration procedure of
the continuum constitutive model that leads to the so-called effective algorithmic operator, as the corresponding tangent
constitutive operator, which is constant and positive definite.

The use of these procedures guaranties the positive definite character and the constancy of the algorithmic stiffness of the
problem during every time step, and provides a substantial increase of the robustness of the simulation, as well as a dra-
matic reduction of the required computational time. In compensation, some reduction on the accuracy can be expected
although convergence to the exact solution with the reduction of the length of the time step has been checked. As it is
shown in the presented examples, the proposed methodology allows tackling three-dimensional simulations of material
failure in small computers in very affordable times.
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Appendix A

Let us consider the matrix K obtained by assembling of the elemental matrices K(e) defined as

K ¼AðKðeÞÞ; KðeÞ ¼
Z

XðeÞ
BðeÞ

T

� Calg � BðeÞ dX;

where the matrix Calg(x) is positive definite, therefore: wT Æ Calg Æ w > 0 "w 5 0 "x. Then,

vT � K � v ¼
Xnelem

e¼1

vðeÞ
T � KðeÞ � vðeÞ ¼

Xnelem

e¼1

Z
XðeÞ

vðeÞ
T � BðeÞ

T|fflfflfflfflfflffl{zfflfflfflfflfflffl}
wT

�Calg � BðeÞ.vðeÞ|fflfflfflffl{zfflfflfflffl}
w

�dX ¼
Xnelem

e¼1

Z
XðeÞ

wT � Calg � w|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
>0

�dX > 0 8v 6¼ 0

and matrix K is positive definite.
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