
Arch Computat Methods Eng (2014) 21:127–140
DOI 10.1007/s11831-014-9098-8

Recent Advances in Parallel Advancing Front Grid Generation

Rainald Löhner

Received: 21 August 2013 / Accepted: 21 August 2013 / Published online: 19 February 2014
© CIMNE, Barcelona, Spain 2014

Abstract The quest for scalable, parallel advancing front
grid generation techniques now spans more than two decades.
A recent innovation has been the use of a so-called domain-
defining grid, which has led to a dramatic increase in robust-
ness and speed. The domain-defining grid (DDG) has the
same fine surface triangulation as the final mesh desired, but
a much coarser interior mesh. The DDG renders the domain
to be gridded uniquely defined and allows for a well balanced
work distribution among the processors during all stages
of grid generation and improvement. In this way, most of
the shortcomings of previous techniques are overcome. Tim-
ings show that the approach is scalable and able to produce
large grids of high quality in a modest amount of clock-
time. These recent advances in parallel grid generation have
enabled a completely scalable simulation pipeline (grid gen-
eration, solvers, post-processing), opening the way for truly
large-scale computations using unstructured, body-fitted
grids.

Keywords Grid generation · Advancing front · Parallel
computing

1 Introduction

The widespread availability of parallel machines with hun-
dreds of thousands of cores and very large memory, solvers
that can harness the power of these machines, and the desire
to model in ever increasing detail geometrical and physical
features has led to a steady increase in the number of points

R. Löhner (B)
CFD Center, SPACS, M.S. 6A2 College of Science, George Mason
University, Fairfax, VA 22030-4444, USA
e-mail: rlohner@gmu.edu

and elements used in field solvers. During the 1990s, grids
in excess of 107 elements became common for production
runs in computational fluid dynamics (CFD) [4,5,28,50,69]
and computational electromagnetics [17,53]. This tendency
has continued during the first decade of the 21st century,
roughly following Moore’s law, i.e. gridsizes have increased
by an order of magnitude every 5 years. Presently, grids in
of the order of 109 elements are commonly used for lead-
ing edge applications in the aerospace, defense, automotive,
naval, energy and electromagnetics sectors.

While many solvers have been ported to distributed paral-
lel machines, grid generators have, in general, lagged behind.
One can cite several reasons for this:

(a) For many applications the CPU requirements of grid
generation are orders of magnitude less than those of
field solvers, i.e. it does not matter if the user has to wait
several hours for a grid;

(b) (Scalar) grid generators have achieved a high degree
of maturity, generality and widespread use, leading to
the usual inertia of workflow (‘modus operandi’) and
aversion to change;

(c) In recent years, low-cost machines with few cores but
very large memories have enabled the generation of
large grids with existing (scalar) software; and

(d) In many cases it is possible to generate a mesh that is
twice (2d times) as coarse as the one desired for the
simulation. This coarse mesh is then h-refined glob-
ally. Global h-refinement is easily ported to multicore
and/or distributed memory machines. Moreover, many
field solvers offer h-refinement as an option. With only
one level of h-refinement a mesh of 125 Mels (which is
easy to generate and split on any workstation) increases
to 1 Bels, and to 15.6 Bels (which should suffice for
many CFD runs) with two levels of h-refinement.

123

128 R. Löhner

For applications where remeshing is an integral part of sim-
ulations, e.g. problems with moving bodies [6,24,30,37,43,
51,52] or changing topologies [7,8], the time required for
mesh regeneration can easily consume a significant percent-
age of the total time required to solve the problem. This per-
centage increases drastically if the grid generation portion is
not completely parallelized. Faced with this situation, a num-
ber of efforts have been reported on parallel grid generation
[1,2,9–15,20,22,26,29,38,46,54,55,61,62,64,69].

The two most common ways of generating unstructured
grids are the advancing front technique (AFT) [19,27,35,
36,42,46,56–59] and the generalized Delaunay Triangula-
tion (GDT) [1,3,9,10,12,21,49,64,67,68]. The AFT intro-
duces one element at a time, while the GDT introduces a new
point at a time. Thus, both of these techniques are, in prin-
ciple, scalar by nature, with a large variation in the number
of operations required to introduce a new element or point.
While coding and data structures may influence the scalar
speed of the ‘core’ AFT or GDT, one often finds that for
large-scale applications, the evaluation of the desired ele-
ment size and shape in space, given by background grids,
sources or other means [47] consumes the largest fraction of
the total grid generation time. Furthermore, the time required
for mesh improvements (and any unstructured grid genera-
tor needs them) is in many cases higher than the core AFT
or GDT modules. Typical speeds for the complete genera-
tion of a mesh (surface, mesh, improvement) on current Intel
Xeon chips with 3.2 GHz and sufficient memory are of the
order of 0.5–2.0 Mels/min. Therefore, it would take approx-
imately 2,000 min (i.e. 1.5 days) to generate a mesh of 109

elements. Assuming perfect parallelization, this task could
be performed in the order of a minute on 2,000 processors,
clearly showing the need for parallel mesh generation.

Unstructured grid generators based on the AFT may be
parallelized by invoking distance arguments, i.e., the intro-
duction of a new element only affects (and is affected by)
the immediate vicinity. This allows for the introduction of
elements in parallel, provided that sufficient distance lies
between them.

Nearly two decades ago (when useful distributed mem-
ory parallel machines first appeared) Löhner et al. [38] intro-
duced a parallel AFT for 2-D applications. This was extended
shortly afterwards to 3-D by Shostko and Löhner [62]. The
spatial distribution of work was based on the subdivision of a
relatively fine background grid. While used for some demon-
stration runs, this scheme was not general enough for a pro-
duction environment. The background grid had to be adapted
in order to be sufficiently fine for a balanced workload. As
only background grid elements covering the domain to be
gridded were allowed, complex in/out tests had to be carried
out to remove refined elements lying outside the domain to be
gridded. Furthermore, element size specified at CAD entities
could not be ‘propagated’ into the domain, as is the case in the

scalar AFT, disabling an option favoured by many users and
rendering many grid generation data sets unusable. The oth-
erwise positive experience gained with this parallel AFT, and
the rise of shared-memory machines, prompted the search for
a more general parallel AFT. The key requirement was a par-
allel AFT that modified the mature, scalar AFT as little as
possible, while achieving significant speedups on common
parallel machines. This led to a shared-memory parallel AFT
(based on OpenMP) that applied the parallelism at the level
of the current front, and not globally [46]. This scheme has
been used for more than a decade, and has yielded a means of
speeding up grid generation by an order of magnitude. Given
that the parallelism is invoked at the level of the front, the
achievable scalability is clearly limited.

The advent of machines with hundreds of thousands of
processors has led to a re-evaluation of parallel grid gener-
ation options. It is clear that for machines with such a high
number of processors, every effort has to be made to extract
the maximum parallelism possible at every stage of the grid
generation. This means that the parallelism should not be
front-based, but volume-based. The easiest form of achiev-
ing volume-based parallelism is by using a grid to define
the regions to be meshed by each processor. Optimally, this
domain-defining grid (DDG) should have the same surface
triangulation as the desired fine mesh, but could be signifi-
cantly coarser in the interior so that it can be stored in each
processor. In this way, the definition of the domain to be
gridded is unique, something that is notoriously difficult to
achieve by other means (such as background grids, bins or
octrees). This DDG is then split so that in each subdomain a
similar number of elements is generated.

2 Desired Features for Parallel Meshers

Before describing parallel grid generators, we list the main
characteristics such tools should offer:

– Use of the (fine) surface mesh specified by the user: this
means that no global h-refinement can/ needs to be used;
the key assumption is that this surface mesh can not be
coarsened and then subsequently h-refined;

– Maximum re-use of existing scalar grid generation soft-
ware: it takes a decade to build a robust, production- qual-
ity 3-D grid generator; therefore, being able to reuse exist-
ing software would be extremely desirable;

– AFT or GDT: the two main ways of generating general
unstructured grids are the AFT and the GDT; the parallel
grid generator should be able to use any of these tech-
niques;

– Maximum re-use of existing grid generation features/
options, such as:

123

Parallel Advancing Front Grid Generation 129

Fig. 1 Splitting of domain
defining grid

Coarse Mesh (To Define Space to be Gridded) Load Balancing for Fine Mesh Generation

After Load Balancing

– Mesh size specified via background grid;
– Mesh size specified via sources;
– Mesh size specified via CAD entities (points, lines,

surfaces, domains);
– Optimal space-filling tet options;
– Link to boundary layer grids;

– Use of multicore parallel machines: given that massively
parallel machines will be composed of multicore chips, it
would be highly desirable to exploit effectively this type
of architecture.

3 Two-Level Parallel Mesh Generation

The key idea of the most recent parallel mesh generators is
the use of two levels of grid generation:

– One to define the domain to be gridded and subdivide
space into regions that will generate approximately the
same number of elements, and

– One that performs the parallel grid generation.

These two tasks, could, in principle, be carried out with differ-
ent grid generation techniques/codes, making the approach
very general. The procedure is shown conceptually in
Figs. 1, 2.

4 Basic Advancing Front Technique

Before going on, we recall for the sake of clarity and com-
pleteness the main algorithmic steps of the AFT:

Assume given:

– AG1: A definition of the spatial variation of element size,
stretchings, and stretching directions for the elements to
be created. In most cases, this is accomplished via a com-
bination of background grids, sources and CAD-based
information [47].

– AG2: A watertight, topologically consistent triangulation
that is commensurate with the desired element size and
shape. This is the so-called initial front.

– AG3: The generation parameters (element size, element
stretchings and stretching directions) for the faces of the
initial front.

Then:
While there are active faces left in the front:

– AF1: Select the next face ifout to be deleted from
the front; in order to avoid large elements crossing over
regions of small elements, the face forming the smallest
new element is selected;

– AF2: For the face to be deleted:

– AF2.1: Select a ‘best point’ position for the introduc-
tion of a new point ipnew;

– AF2.2: Determine whether a point exists in the
already generated grid that should be used in lieu
of ipnew; if there is such a point, set this point to
ipnew;

123

130 R. Löhner

Fig. 2 Parallel grid generation
technique (Option 1)

(c) After Meshing Interfaces 1/4, 2/3

(a) After Meshing Each Subdomain (b) After Meshing Interfaces 1/2, 3/4

– AF2.3: Determine whether the element formed with
the selected point ipnew crosses any given faces; if
it does, select a new point as ipnew and try again; if
none can be found: skip ifout;

– AF3: Add the new element, (point, faces) to their respec-
tive lists;

– AF4: Find the generation parameters for the new faces;
– AF5: Delete the known faces(s) from the list of faces;

End While
Individual aspects of the technique (such as optimal data
structures for speed, robust checking of face intersections,
filtering techniques to avoid unnecessary work, etc.) may be
found in [40,47].

5 Generation of the Domain Defining Grid (Step 1)

Given that the number of elements and points decreases with
the 3rd power of the element size, a mesh with elements
whose side-lengths are n times as large as the desired one
will only contain n−3 elements as the (fine) mesh desired.
The idea is then to generate, starting from the fine surface
mesh, a mesh whose elements are considerably larger than
the grid desired. A factor of n = 10 will lead to a mesh that
is generated in roughly 1/1000-th of the time required for
the fine mesh. For n = 20, the factor is 1/8000. The mesh
obtained, though, conforms to the general size distribution
required by the user, i.e. is completely general. Moreover,
it allows to determine exactly and easily which regions of

space need to be gridded (one of the problematic aspects of
earlier parallel grid generators [38,46,62]). In the following,
we will denote this mesh as the DDG.

In order to generate the DDG, the changes required to the
basic AFT are restricted to the desired element size, which
has to increase rapidly as elements are generated in the vol-
ume:

– The generation parameters for the initial front (Step AG3
above) are multiplied by the increase factor ci allowed
for each face removed from the front. Typical values are:
ci = 1.5 − 1.7.

– When a new point is added to the front, the grid genera-
tion parameters of the points belonging to the face being
removed ifout are multiplied by ci and used instead of
the usual ones (which are obtained from the background
grid and sources, see step AF4 above).

Note that as the AFT always removes the face generating
the smallest element from the front, no incompatibilities in
element size appear when these changes are invoked. Thus,
the generation of the DDG is of the same robustness as the
basic underlying scalar AFT.

In practice one observes that the total number of extra
points required to fill up the complete volume is of the order
of the points on the boundary while element quality does not
suffer.

6 Load Balancing the DDG (Step 2)

Given the DDG, the next task is to subdivide this mesh so
as to obtain regions in which roughly the same numbers

123

Parallel Advancing Front Grid Generation 131

Fig. 3 Parallel grid generation
technique (Option 2)

(a) After Meshing Each Subdomain (b) After Modified DDG

(c) New Front in Modified DDG (d) After Meshing Each Subdomain

of elements will be generated. A number of load balanc-
ing techniques and codes have been developed over the last
two decades [23,31,32,39,65,66]. In principle, any of these
can be used in order to obtain the subdivision required. For
the results shown here, we used FESPLIT [39], which offers
the possibility of subdividing grids based on the advancing
front/greedy, recursive coordinate/moment bisection, or via
spacefilling curves. Once an initial subdivision is obtained,
FESPLIT improves the load balance (e.g. surface to volume
ratios, continuity of subdivisions, etc.) using a diffusion tech-
nique [39].

7 Generation of the Final Mesh (Step 3)

Once the subdivision of space is obtained, the mesh is gen-
erated in parallel. The technique used here is the ‘inside-out’
procedure first described in [38,62]. Two variants are possi-
ble. The traditional one consists in 4 passes, which are shown
in Fig. 2.

– Pass 1: Mesh, in parallel, the zones inside the subdivision
domains (see Fig. 2a);

– Pass 2: Mesh, in parallel, the zones bordering the regions
which have been left empty after pass 1, by pairing two
domains at a time; by using a colouring technique, most
of these inter-domain regions can be meshed completely
in parallel (see Fig. 2b);

– Pass 3: Mesh, in parallel, the zones bordering more than
two regions (groups of domains), which have been left

empty after pass 2, by combining three or more domains
at a time; as before, most of these inter-domain regions
can be meshed completely in parallel by using a colouring
technique;

– Pass 4: If required, mesh the remaining regions on proces-
sor 1.

This variant suffers from the so-called ’logarithmic trap’.
While the first parallel grid generation pass (i.e. generating
elements inside each domain) scales perfectly, the scaling
can degrade quickly for the subsequent passes (i.e. those that
mesh the inter-domain boundary regions). This is because
the inherent parallelism is immediately diminished as either
pairs (pass 2) or clumps (pass 3) are treated.

A second variant, based on the domain defining grid, offers
much higher inherent parallelism. Denoting by DDG0 the
initial subdivision of the DDG, it proceeds as follows:

– Pass 1: Mesh, in parallel, the zones inside the subdivision
domains (see Fig. 3a);

– Pass 2: Modify the partition of DDG0 slightly by adding
1–2 extra layers of elements to each domain idomn from
the neighbouring domains jdomn for which idomn <
jdomn; redistribute the active front; then mesh in parallel
all the (new) interior zones (see Fig. 3b, c);

– Pass 3: Modify again the partition of DDG0 slightly by
adding 1–2 extra layers of elements to each domain idomn
from the neighbouring domains jdomn for which idomn
> jdomn; redistribute the active front; then mesh in par-
allel all the (new) interior zones;

123

132 R. Löhner

A

B

C

DDG

Active Front

Generated Mesh

Point of Face Outside DDG

Fig. 4 Reject if face outside DDG

A

B

C

DDG

Active Front

Generated Mesh

Ideal Point
Outside DDG

Fig. 5 Reject if ideal point outside DDG

A

B

C

DDG

Active Front

Generated Mesh

Close Point Outside DDG

Fig. 6 Reject if close point outside DDG

– Pass 4: If required, mesh the remaining regions on proces-
sor 1.

It is important to emphasize that regardless of the option used,
all data is kept local. The list of elements and points being
generated, the active front, and all other arrays are stored in
the processor where they are being generated.

The following changes to the basic AFT are required in
order to obtain a reliable parallel meshing algorithm:

– If any of the points of the face to be removed lies out-
side the local DDG, the face is marked as prohibited and
skipped (Fig. 4);

– If the ‘best point’ position for the introduction of a new
point lies outside the local DDG, the face is marked as
prohibited and skipped (Fig. 5);

– If any ‘close point’ lies outside the local DDG, it is
removed from the list of candidates to form a new ele-
ment (Fig. 6);

– If any of the edges of the face to be removed ifout lies
outside the local DDG, the face is marked as prohibited

A

B

C

DDG

Active Front

Generated Mesh

AC Outside DDG

Fig. 7 Reject if face/edge outside DDG

and skipped; this test is carried out by using a neighbour
to neighbour traversal test between the points of the edge
(see Fig. 7);

– If ipnew is on both the inter-processor boundary of the
DDG and the actual surface of the domain: the face is
marked as prohibited and skipped;

– When assigning the faces and points to the local DDG,
a conservative approach is taken; i.e. should an active
front point coincide with the points of the DDG, all the
surrounding DDG elements are tested to see if the point
should be assigned to the present domain.

8 Mesh Redistribution (Step 4)

After the parallel advancing front has completed the mesh,
the pieces generated in each of the individual passes will be
scattered among the different processors. In order to arrive
at a consistent mesh, the elements and points need to be
redistributed and doubly defined points need to be removed.

Given that for each point the host element in the DDG is
known, and that for each element of the DDG the processor
it has been assigned to is also known, it is an easy matter so
send the elements and the associated points to the proces-
sors they need to be. Each element is sent (if required; the
majority already reside in the memory of the target processor)
to the lowest processor assigned via points from the DDG.
Doubly defined points are removed using an octree, so that
this operation has O(N log(N)) complexity locally (but runs
completely parallel in a distributed setting).

The next step is to find the correlation between the points
of neighbouring processors. In order to keep the procedure as
general as possible, the following algorithmic steps are taken:

– The bounding box of each domain is computed;
– The bounding boxes of other domains that overlap the

bounding box of each domain are determined; this deter-
mines a list of possible neighbouring domains;

– Each pair of possible neighbouring domains is tested in
depth using octrees; in this way, the lists of neighbouring
domains and points are obtained (so-called send/receive
lists).

123

Parallel Advancing Front Grid Generation 133

One could also have used the DDG to obtain this information.
We remark that if one considers the overall parallel grid gen-
eration procedure, the time required for this step is negligible.

9 Mesh Improvement (Step 5)

After the generation of the mesh using the parallel advancing
front technique (or any other technique for that matter) has
been completed, the mesh quality is improved by a combi-
nation of several algorithms, such as:

– Diagonal swapping,
– Removal of bad elements,
– Laplacian/elasticity smoothing, and
– Selective mesh movement.

One should emphasize that mesh improvement may require
CPU times that are comparable to those required by the basic
grid generation technique, making it imperative to fully paral-
lelize this necessary step as well. All of the procedures listed
above have been implemented and run in parallel (shared
locally via OMP and distributed globally via MPI).

9.1 Diagonal Swapping

Diagonal swapping attempts to improve the quality of the
mesh by reconnecting locally the points in a different way
[18]. The quality of every possible new combination is tested
against the current connectivity. The number of cases to be
tested can grow factorially with the number of elements sur-
rounding an edge [47]. Given that these tests are computa-
tionally intensive, considerable care is required when coding
a fast diagonal swapper. Techniques that are commonly used
include:

– Treatment of bad, untested elements only (i.e. those
whole quality measure falls above/below a certain thresh-
old);

– Processing of elements in an ordered way, starting with
the worst (highest chance of reconnection);

– Rejection of bad combinations at the earliest possible
indication of worsening quality;

– Marking of tested and unswapped elements in each pass.

At the boundaries between processors, diagonal swapping
would require a considerable amount of testing and informa-
tion transfer. For this reason, it was decided not to allow any
diagonal swapping for the external faces of each subdomain.

9.2 Removal of Bad Elements

A simple way to improve a mesh containing bad elements
is to get rid of them. The bad elements are identified and

compiled into a list. An element is removed by collapsing
the points of one of the edges. This operation also removes
all the elements that share this edge, implying that one has to
check also all elements that contain the end-points of the edge
being removed. This procedure of removing bad elements is
simple to implement and relatively fast. On the other hand,
it can only improve mesh quality to a certain degree. It is
therefore used mainly in a pre-smoothing or pre-optimization
stage, where its main function is to eradicate from the mesh
elements of very bad quality.

At the boundaries between processors, edge removal
would require a considerable amount of testing and infor-
mation transfer. For this reason, it was decided not to allow
any edge removal for the external faces of each subdomain.

9.3 Laplacian/Elasticity Smoothing

A number of smoothing techniques are lumped under this
name. For the usual Laplacian smoothing, the edges of the
triangulation are assumed to represent springs. These springs
are relaxed in time using an explicit time stepping scheme,
until an equilibrium of spring-forces has been established.
Because ‘globally’ the variations of element size and shape
are smooth, most of the non-equilibrium forces are local in
nature. This implies that a significant improvement in mesh
quality can be achieved rather quickly (5–6 timesteps or
passes over the mesh). For Elasticity smoothing, the par-
tial differential equations describing an elastic medium are
solved. As before, a few relaxation passes over the mesh
are usually enough to achieve a considerable mesh improve-
ment. In both cases, no movement of points is allowed at
the surface of the computational domain. The application of
any smoothing technique can result in inverted or negative
elements. The presence of even one element with a negative
Jacobian will render most field solvers inoperable. There-
fore, these negative elements are eliminated. For the AFT,
it has been found advisable to remove not only the negative
elements, but also all elements that share points with them.
This element removal gives rise to voids or holes in the mesh,
which are regridded using the advancing front technique.

At the boundaries between processors, point movement
and possible removal/remeshing would require a consider-
able amount of testing and information transfer. For this rea-
son, it was decided not to allow any change for the points of
the external faces of each subdomain.

9.4 Selective Mesh Movement

Selective mesh movement tries to improve the mesh quality
by performing a local movement of the points. If the move-
ment results in an improvement of mesh quality, the move-
ment is kept. Otherwise, the old point position is retained.
The most natural way to move points is along the directions

123

134 R. Löhner

Fig. 8 a Garage: Outline of
geometry. b–d Garage: Internal
surface of DDG partition and
remaining front after each pass

123

Parallel Advancing Front Grid Generation 135

Table 1 Garage
Machine nproc nprol ncore nelem CPU (sec) AbsSpeed

(els/sec)
RelSpeed
(els/sec/core)

Xeon(1) 1 8 8 120 M 2,293 52,333 6,542

SGI ITL 8 1 8 121 M 1,605 75,389 9,423

SGI ITL 8 8 64 121 M 516 234,496 3,664

Cry AMD 8 1 8 121 M 2,512 48,169 6,021

Cry AMD 16 1 16 121 M 1,954 61,924 3,870

Cry AMD 32 1 32 121 M 1,118 100,082 3,128

SGI ITL 16 1 16 121 M 1,048 115,458 7,216

SGI ITL 16 2 32 121 M 667 181,409 5,669

SGI ITL 16 4 64 121 M 407 297,297 4,645

SGI ITL 16 8 128 121 M 329 367,781 2,873

SGI ITL 32 1 32 121 M 646 187,306 5,853

SGI ITL 32 2 64 121 M 427 283,372 4,427

SGI ITL 32 4 128 121 M 346 349,710 2,732

SGI ITL 32 8 256 121 M 316 383,030 1,496

Cry AMD 64 1 64 972 M 6,048 160,714 2,511

SGI ITL 64 8 512 1010 M 2,504 403,354 788

of the edges touching them. After each of these movements,
the quality of each element containing the point being moved
is checked. Only movements that produce an improvement
in element quality are kept. This procedure, while general, is
extremely expensive for tetrahedral meshes. This is because,
for each pass over the mesh, we have approximately 7 edges
for each point, i.e. 14 movement directions; approximately
22 elements (4 nodes per element, 5.5 elements per point)
surrounding each point to be evaluated for each of the move-
ment directions; i.e. approximately 308*npoin elements to
be tested. To make matters worse, the evaluation of ele-
ment quality typically involves arc-cosines (for angle eval-
uations), which consume a large amount of CPU time. The
main strength of selective mesh movement algorithms is that
they remove efficiently very bad elements. They are there-
fore used only for points surrounded by bad elements, and as
a post-smoothing procedure.

At the boundaries between processors, selective point
movement removal would require a considerable amount
of testing and information transfer. For this reason, it was
decided not to allow any edge removal for the external faces
of each subdomain.

9.5 A Second Mesh Improvement Pass

As seen above, the mesh improvement techniques as imple-
mented do not allow a change of the inter-processor bound-
ary. This implies that the inter-processor regions will not be
able to achieve the best possible mesh. In order to improve the
mesh in these regions as well, the DDG is again redistributed

among processors. The first distribution is taken as a starting
point. Then, 1–2 extra layers of elements are added to the
each domain idomn from the neighbouring domains jdomn
for which idomn < jdomn. The elements of the generated
(and smoothed) mesh are then redistributed as before based
on the new DDG partition, and a second mesh improvement
pass is performed using all the techniques discussed above.

10 Examples

The parallel advancing front grid generator described above
has been in operation for approximately a year. It is still
undergoing considerable changes and improvements, so the
numbers quoted may improve over time. In the sequel nproc
denotes the number of mpi processes (i.e. subdomains), while
nprol denotes the number of shared-memory (OpenMP)
cores used per mpi process/subdomain. The total number
of cores employed is then given by ncore=nproc*nprol.
The tables also quote the absolute (els/sec) and relative
(els/sec/core) grid generation speeds achieved. Note that for
perfect scaling, the relative grid generation speed should stay
constant.

10.1 Garage

This example was taken from a blast simulation carried out
for an office complex. The outline of the domain, as well as
the trace of the domain defining grid partition on the surface
is shown in Fig. 8a. Figure 8b–d show the trace of the domain

123

136 R. Löhner

Fig. 9 a Generic city center:
Outline of geometry. b–d
Generic city center: Internal
surface of DDG partition and
remaining front after each pass

123

Parallel Advancing Front Grid Generation 137

Table 2 Generic city center
Machine nproc nprol ncore nelem CPU (sec) AbsSpeed

(els/sec)
RelSpeed
(els/sec/core)

Cry AMD 32 1 32 135 M 1,824 74,013 2,312

SGI ITL 16 8 128 135 M 556 242,805 1,897

SGI ITL 32 1 32 135 M 977 138,178 4,318

SGI ITL 32 2 64 135 M 754 179,045 2,797

SGI ITL 32 4 128 135 M 571 236,427 1,847

SGI ITL 32 8 256 135 M 488 276,639 1,080

Fig. 10 a Shuttle: Outline of
domain. b, c Shuttle: Domain
defining grid partition. d, e
Shuttle: Front after 1st parallel
grid generation pass

123

138 R. Löhner

Table 3 Shuttle
Machine nproc nprol ncore nelem CPU (sec) AbsSpeed

(els/sec)
RelSpeed
(els/sec/core)

Xeon 8 1 8 27 M 872 30,963 3,870

Xeon 8 1 8 108 M 3,128 34,526 4,315

Cry AMD 16 1 16 108 M 2,204 49,002 3,062

Cry AMD 32 1 32 108 M 1,458 74,074 2,315

Cry AMD 64 1 64 108 M 1,344 80,357 1,255

defining grid partition on the surface as well as the fronts after
the parallel grid generation passes using 64 domains (mpi
processors) for a finer mesh. Table 1 gives a compilation of
timings for different mesh sizes, domains and processors on
different machines. One may note that:

(a) Generating the 121 M mesh on one 8-core shared mem-
ory node (i.e. nproc=1, nprol=8) is slower than the
distributed memory equivalent (i.e.nproc=8,nprol=1);

(b) The number of elements per core should exceed a mini-
mum value (typically of the order of 2–4 Mels) in order
to reach a generation speed per core that is acceptable;

(c) The local OMP scaling improves as the number of ele-
ments in each domain is increased;

(d) It only takes on the order of five minutes to generate a
mesh of 121 Mels on 256 cores (nproc=32, nprol=8).

(e) It only takes on the order of forty minutes to generate a
mesh of 1 Bels on 512 cores (nproc=64, nprol=8).

10.2 Generic City Center

This example was taken from a recent blast and dispersion
simulation. The outline of the domain, as well as the active
front after each of the parallel grid generation passes for 32
processors (mpi domains) are shown in Fig. 9a–d. Table 2
gives a compilation of timings for different mesh sizes,
domains and processors on different machines. One may
observe the same general trends as seen for the previous case.

10.3 Shuttle Ascent Configuration

This example has also been used repeatedly for benchmark-
ing purposes. The outline of the domain may be seen in
Fig. 10a. The trace of the domain defining grid partition on
the surface is shown in Fig. 10b, c. Figure 5d,e show the
active front after the first generation pass using 8 domains
(mpi processors). This mesh had approximately 120 Mels.
Table 3 gives a brief compilation of timings.

11 Conclusions and Outlook

Recent advances in parallel advancing grid generation tech-
niques for complex geometries and meshes with large size

variations have been described. A key innovation that took
place over the last three years has been the use of a DDG
that has the same fine surface triangulation as the final mesh
desired, but a much coarser interior mesh. In this way, the
domain to be gridded is uniquely defined and a balanced dis-
tribution of work among the processors is achieved during
all stages of grid generation and improvement, overcoming
most of the shortcomings of previous approaches.

Timings show that the approach is scalable and able to
produce large grids of high quality in a modest amount of
clocktime.

These recent advances in parallel grid generation have
enabled a completely scalable simulation pipeline (grid
generation, solvers, post-processing), opening the way for
truly large-scale computations using unstructured, body-
fitted grids.

Acknowledgments This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725, and also resources
of the DoD High Performance Computing Modernization Program. This
support is gratefully acknowledged.

References

1. Alleaume A, Francez L, Loriot M, Maman, N (2007) Large outof-
Core tetrahedral meshing. In: Proceedings of the 16th international
meshing roundtable, Sandia National Laboratory, Oct. 15–17

2. Andrae H, Ivanov E, Gluchshenko O, Kudryavtsev A (2008) Auto-
matic parallel generation of tetrahedral grids by using a domain
decomposition approach. J Comput Math Math Phys 48(8):1448–
1457

3. Baker TJ (1989) Developments and trends in three-dimensional
mesh generation. Appl Numer Math 5:275–304

4. Baum JD, Luo H, Löhner R (1993) Numerical simulation of a blast
inside a Boeing 747; AIAA-93-3091

5. Baum JD, Luo H, Löhner R (1995) Numerical simulation of blast
in the World Trade Center; AIAA-95-0085

6. Baum JD, Luo H, Löhner R, Yang C, Pelessone D, Charman C
(1996) A coupled fluid/structure modeling of shock interaction with
a truck; AIAA-96-0795

7. Baum JD, Luo H, Löhner R (1998) The numerical simulation of
strongly unsteady flows with hundreds of moving bodies; AIAA-
98-0788

8. Baum JD, Luo H, Mestreau E, Löhner R, Pelessone D, Charman C
(1999) A coupled CFD/CSD methodology for modeling weapon
detonation and fragmentation; AIAA-99-0794

123

Parallel Advancing Front Grid Generation 139

9. Blelloch GE, Hardwick JC, Miller GL, Talmor D (1999) Design and
implementation of a practical parallel Delaunay algorithm. Algo-
rithmica 24:243–269

10. Chew LP, Chrisochoides N, Sukup F (1997) Parallel constrained
Delaunay meshing; In: Proceedings 1997 workshop on trends in
unstructured mesh generation, June

11. Chrisochoides N, Nave D (1999) Simultaneous mesh generation
and partitioning for Delaunay meshes; In: Proceedings 8th interna-
tional meshing roundtable, South Lake Tahoe, October pp. 55–66

12. Chrisochoides N, Nave D (2003) Parallel Delaunay mesh genera-
tion kernel. Int J Numer Methods Eng 58:161–176

13. Chrisochoides N (2005) Parallel mesh generation. In: Bruaset AM,
Tveito A (eds) Numerical solution of partial differential equations
on parallel computers. Springer, Norfolk

14. de Cougny HL, Shephard MS, Ozturan C (1994) Parallel three-
dimensional mesh generation. Comput Syst Eng 5:311–323

15. de Cougny HL, Shephard MS, Ozturan C (1995) Parallel three-
dimensional mesh generation on distributed memory MIMD com-
puters. Tech. Rep. SCOREC Rep. # 7, Rensselaer Polytechnic Insti-
tute

16. de Cougny H, Shephard M (1999) Parallel volume meshing using
face removals and hierarchical repartitioning. Comput Methods
Appl Mech Eng 174(3–4):275–298

17. Darve E, Löhner R (1997) Advanced structured–unstructured
solver for electromagnetic scattering from multimaterial objects.
AIAA-97-0863

18. Freitag LA, Gooch C-Ollivier (1997) Tetrahedral mesh improve-
ment using swapping and smoothing. Int J Numer Methods Eng
40:3979–4002

19. Frykestig J (1994) Advancing front mesh generation techniques
with application to the finite element method; Pub. 94:10, Chalmers
University of Technology; Göteborg, Sweden

20. Galtier J, George PL (1997) Prepartitioning as a way to mesh subdo-
mains in parallel; In: Special Symposium on trends in unstructured
mesh generation pp 107–122, ASME/ASCE/SES

21. George PL, Hecht F, Saltel E (1991) Automatic mesh generator
with specified boundary. Comp Methods Appl Mech Eng 92:269–
288

22. George PL (1999) Tet meshing: construction, optimization and
adaptation. In: Proceedings of the 8th international meshing round-
table, South Lake Tahoe, October

23. von Hanxleden R, Scott LR (1991) Load balancing on message
passing architectures. J Parallel Distrib Comput 13:312–324

24. Hassan O, Bayne LB, Morgan K and Weatherill N P (1998) An
adaptive unstructured mesh method for transient flows involving
moving boundaries; pp. 662–674 in Computational fluid dynamics
’98 (Papailiou KD, Tsahalis D, Périaux J and Knörzer D eds.)
Wiley

25. Ito Y, Shih AM, Erukala AK, Soni BK, Chernikov A, Chrisochoides
N, Nakahashi K (2007) Parallel unstructured mesh generation by an
advancing front method. J Math Comput Simul 75(5–6):200–209

26. Ivanov EG, Andrae H, Kudryavtsev AN (2006) Domain decom-
position approach for automatic parallel generation of tetrahedral
grids. Int Math J Comput Methods Appl Math 6(2):178–193

27. Jin H, Tanner RI (1993) Generation of unstructured tetrahedral
meshes by the advancing front technique. Int J Numer Methods
Eng 36:1805–1823

28. Jou W (1998) Comments on the feasibility of LES for commercial
airplane wings. AIAA-98-2801

29. Kadow C, Walkington N (2003) Design of a projection-based par-
allel Delaunay mesh generation and refinement algorithm. In: Pro-
ceedings of the fourth symposium on trends in unstructured mesh
generation

30. Kamoulakos A, Chen V, Mestreau E, Löhner R (1996) Finite ele-
ment modelling of fluid/ structure interaction in explosively loaded
aircraft fuselage panels using PAMSHOCK/ PAMFLOW coupling.

Conference on spacecraft structures, materials and mechanical test-
ing, Noordwijk, The Netherlands, March

31. Karypis G, Kumar V (1998) A parallel algorithm for multilevel
graph partitioning and sparse matrix ordering. J Parallel Distrib
Comput 48:71–85

32. Karypis G, Kumar V (1999) Parallel multilevel k-way partitioning
scheme for irregular graphs. SIAM Rev 41(2):278–300

33. Larwood BG, Weatherill NP, Hassan O, Morgan K (2003) Domain
decomposition approach for parallel unstructured mesh generation.
Int J Numer Methods Eng 58(2):177–188

34. Liu J, Kailasanath K, Ramamurti R, Munday D, Gutmark E, Löhner
R (2009) Large-Eddy simulations of a supersonic jet and its near-
field acoustic properties. AIAA J 47(8):1849–1864

35. Löhner R (1988) Some useful data structures for the gener-
ation of unstructured grids. Comm Appl Numer Methods 4:
123–135

36. Löhner R, Parikh P (1988) Three-dimensional grid generation by
the advancing front method. Int J Numer Methods Fluids 8:1135–
1149

37. Löhner R (1990) Three-dimensional fluid-structure interaction
using a finite element solver and adaptive remeshing. Comput Syst
Eng 1(2–4):257–272

38. Löhner R, Camberos J, Merriam M (1992) Parallel unstructured
grid generation. Comput Methods Appl Mech Eng 95:343–357

39. Löhner R, Ramamurti R (1995) A load balancing algorithm for
unstructured grids. Comput Fluid Dyn 5:39–58

40. Löhner R (1996) Extensions and improvements of the advanc-
ing front grid generation technique. Comm Numer Methods Eng
12:683–702

41. Löhner R (1996) Regridding surface triangulations. J Comput Phys
126:1–10

42. Löhner R (1996) Progress in grid generation via the advancing
front technique. Eng Comput 12:186–210

43. Löhner R, Yang C, Cebral J, Baum JD, Luo H, Pelessone D, Char-
man C (1998) Fluid-structure-thermal interaction using a loose cou-
pling algorithm and adaptive unstructured grids; AIAA-98-2419

44. Löhner R (1998) Renumbering strategies for unstructured-grid
solvers operating on shared- memory, cache-based parallel
machines. Comput Methods Appl Mech Eng 163:95–109

45. Löhner R, Yang C and Oñate E (1998) Viscous free surface hydro-
dynamics using unstructured grids; In: Proceedings 22nd sympo-
sium naval hydrodynamics, Washington DC, August

46. Löhner R (2001) A parallel advancing front grid generation
scheme. Int J Numer Methods Eng 51:663–678

47. Löhner R (2008) Applied CFD techniques, 2nd edn. Wiley, Chich-
ester

48. Löhner R, Cebral JR, Camelli FF, Appanaboyina S, Baum JD,
Mestreau EL, Soto O (2008) Adaptive embedded and immersed
unstructured grid techniques. Comput Methods Appl Mech Eng
197:2173–2197

49. Marcum DL, Weatherill NP (1995) Unstructured grid generation
using iterative point insertion and local reconnection. AIAA J
33(9):1619–1625

50. Mavriplis DJ and Pirzadeh S (1999) Large-scale parallel unstruc-
tured mesh computations for 3-D high-lift analysis; ICASE Rep.
99–9

51. Mestreau E, Löhner R and Aita S (1993) TGV tunnel-entry sim-
ulations using a finite element code with automatic remeshing;
AIAA-93-0890

52. Mestreau E and Löhner R (1996) Airbag simulation using
fluid/structure coupling; AIAA-96-0798

53. Morgan K, Brookes PJ, Hassan O and Weatherill NP (1997) Par-
allel processing for the simulation of problems involving scat-
tering of electro-magnetic waves; In: Proceedings Symposium
advances in computational mechanics (Demkowicz L and Reddy
JN eds)

123

140 R. Löhner

54. Okusanya T, Peraire J (1996) Parallel unstructured mesh genera-
tion. In: Proceedings 5th international conference numerical grid
generation in CFD and related fields, Mississippi, April

55. Okusanya T, Peraire J (1997) 3-D Parallel unstructured mesh gen-
eration. In: Proceedings of the joint ASME/ASCE/SES summer
meeting

56. Peraire J, Vahdati M, Morgan K, Zienkiewicz OC (1987) Adaptive
remeshing for compressible flow computations. J Comput Phys
72:449–466

57. Peraire J, Peiro J, Formaggia L, Morgan K, Zienkiewicz OC (1988)
Finite element euler calculations in three dimensions. Int J Numer
Methods Eng 26:2135–2159

58. Peraire J, Morgan K, Peiro J (1990) Unstructured finite element
mesh generation and adaptive procedures for CFD; AGARD-CP-
464, 18

59. Peraire J, Morgan K, Peiro J (1992) Adaptive Remeshing in 3-D.
J Comput Phys 103:269–285

60. Pirzadeh SZ, Zagaris G (2008) Domain decomposition by the
advancing-partition method for parallel unstructured grid gener-
ation. NASA/TM-2008-215350, L-19508

61. Said R, Weatherill NP, Morgan K, Verhoeven NA (1999) Distrib-
uted parallel Delaunay mesh generation. Comput Methods Appl
Mech 177:109–125

62. Shostko A, Löhner R (1995) Three-dimensional parallel unstruc-
tured grid generation. Int J Numer Methods Eng 38:905–925

63. Tilch R, Tabbal A, Zhu M, Decker F, Löhner R (2008) Combination
of body-fitted and embedded grids for external vehicle aerodynam-
ics. Eng Comput 25(1):28–41

64. Tremel U, Sorensen KA, Hitzel S, Rieger H, Hassan O, Weatherill
NP (2006) Parallel remeshing of unstructured volume grids for
CFD applications. Int J Numer Methods Fluids 53(8):1361–1379

65. Vidwans A, Kallinderis Y and Venkatakrishnan V (1993) A paral-
lel load balancing algorithm for 3-D adaptive unstructured grids;
AIAA-93-3313-CP

66. Williams D (1990) Performance of dynamic load balancing algo-
rithms for unstructured grid calculations. CalTech Report C3P913

67. Weatherill NP (1992) Delaunay triangulation in computational
fluid dynamics. Comput Math Appl 24(5/6):129–150

68. Weatherill NP, Hassan O (1994) Efficient three-dimensional Delau-
nay triangulation with automatic point creation and imposed
boundary constraints. Int J Numer Methods Eng 37:2005–2039

69. Yoshimura S, Nitta H, Yagawa G, Akiba H (1998) Parallel auto-
matic mesh generation method of ten-million nodes problem using
fuzzy knowledge processing and computational geometry. In: Pro-
ceedings of the 4th World CongComp. Mech. Buenos Aires,
Argentina, July

123

	Recent Advances in Parallel Advancing Front Grid Generation
	Abstract
	1 Introduction
	2 Desired Features for Parallel Meshers
	3 Two-Level Parallel Mesh Generation
	4 Basic Advancing Front Technique
	5 Generation of the Domain Defining Grid (Step 1)
	6 Load Balancing the DDG (Step 2)
	7 Generation of the Final Mesh (Step 3)
	8 Mesh Redistribution (Step 4)
	9 Mesh Improvement (Step 5)
	9.1 Diagonal Swapping
	9.2 Removal of Bad Elements
	9.3 Laplacian/Elasticity Smoothing
	9.4 Selective Mesh Movement
	9.5 A Second Mesh Improvement Pass

	10 Examples
	10.1 Garage
	10.2 Generic City Center
	10.3 Shuttle Ascent Configuration

	11 Conclusions and Outlook
	Acknowledgments
	References

