
14th World Congress in Computational Mechanics (WCCM) 

ECCOMAS Congress 2020 

Virtual Congress: 11 – 15 January 2021 
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds) 

 

 
 

PERIDYNAMIC FINITE ELEMENT MODELLING OF QUASIBRITTLE 

STRUCTURES 

14TH WCCM – ECCOMAS CONGRESS 2020 

NICOLAS SAU¹, ANA CECILIA BORBON-ALMADA¹ AND ANTONIA LOPEZ-

HIGUERA¹ 

 ¹University of Sonora, Civil Engineering and Mines Department  

Boulevard Encinas y Rosales S/N, 83000 

nicolas.sau@unison.mx, www.dicym.unison.mx 

 

 

 

Key words: Concrete, Materials, FEM, Peridynamics, Fracture. 

Abstract. In a number of applications, large size structures subjected to loads that cause highly 

non-linear behavior need to be analyzed. With the peridynamic theory, proposed by Stewart 

Silling in 2000 and 2007, elasticity and damage in quasibrittle structures such as plain and 

reinforced concrete structures can be modeled with the peridynamic theory. To model these 

structures, lattice models with brittle beam elements are used to model concrete. A shortcoming 

of lattice and particle models is that they are highly demanding of computational power. 

Molecular dynamics may be, in some cases an appropriate tool for analyzing microcracks in 

quasibrittle materials in compression, but molecular dynamics becomes infeasible at scales 

larger than a few million atoms. For example, in masonry structures, cracks form in the brick 

mortar joints, and concrete blocks can be assumed to have a uniform displacement field. This 

allows us to use the peridynamic finite element model, which is an improvement over discrete 

lattice models. This model assumes a continuous displacement field within each finite element, 

with displacement discontinuities allowed to develop between finite elements. The objective of 

this work is to model cracks in quasibrittle structures, with the peridynamic model. The 

peridynamic finite element model is shown to be much more computer time- and memory-

efficient than the similar discrete particle-based models. Results show that this implementation 

appears to be more computationally efficient than particle or lattice models. 
 

 

1 INTRODUCTION 

Quasibrittle structures that are subjected to loads that cause the formation and propagation 

of cracks exhibit highly nonlinear behaviour, where models based on continuum mechanics are 

no longer applicable. With the development of the finite element method, models based upon 

fracture mechanics concepts were formulated, where the main disadvantage of these models is 

that they are impractical, since multiple cracks need to be represented in the material [1, 3]. 

The use of smeared crack models using continuum damage theories appeared to be a more 

suitable technique to model damage in concrete structures. Nevertheless, spurious mesh 
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sensitivity was one of the many problems associated with the smeared crack approach [1]. In 

an effort to correct the shortcomings of continuum models, the peridynamic model was 

proposed in 2000 by Silling. Governing equations in the peridynamic model do not assume 

spatial differentiability of the displacement field and permit discontinuities to arise as part of 

the solution [9]. In addition, the peridynamic theory is non-local, where locality is recovered as 

a special case [10].  

 

2 PERIDYNAMIC FINITE ELEMENT METHOD 

The bond-based peridynamic model proposed a pair-wise vector function in units of force 

per unit volume squared fij that represents the interaction between particles i and j inside a 

material horizon 𝛿 [9]. The sum of all internal forces per unit volume acting on a particle i is 

expressed as: 

∫ 𝑓𝑖𝑗𝑉𝐽
𝑑𝑉𝑗 + 𝑏𝑖 = 𝜌𝑖

𝜕2𝑢𝑖

𝜕𝑡2
,      (1) 

in which 𝑏𝑖 is the body force acting on particle i; 
𝜕2𝑢𝑖

𝜕𝑡2
  and 𝜌𝑖 are the acceleration and density 

of particle i respectively. This integral is performed on all particles j within 𝛿. In the micropolar 

peridynamic model a moment equation must be added [4, 7]: 

∫ 𝑚𝑖𝑗𝑉𝐽
𝑑𝑉𝑗 + 𝑚𝑖 = 𝐼𝑖

𝜕2𝜃𝑖

𝜕𝑡2 ,        (2) 

where the moment per unit volume squared is 𝑚𝑖𝑗 and 𝑚𝑖 is a moment density function [4]. 

These moments and forces can be functions of the relative positions  𝜉𝑖𝑗 , the relative 

displacements 𝜂𝑖𝑗, and the rotations of particles 𝜃𝑖  and𝜃𝑗 , where forces 𝑓𝑖𝑗  and moments 

𝑚𝑖𝑗 between particles can be expressed using the following matrix at the linear micro-elastic 

level as 

 

[
 
 
 
 
 
 
 
𝑓𝑥

𝑖

𝑓𝑦
𝑖

�̂�𝑧
𝑖

𝑓𝑥
𝑗

𝑓𝑦
𝑗

�̂�𝑧
𝑗
]
 
 
 
 
 
 
 

=
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𝑐/𝐿 0 0 −𝑐/𝐿 0 0

0 12𝑑/𝐿3 6𝑑/𝐿2 0 −12𝑑/𝐿3 6𝑑/𝐿2

0 6𝑑/𝐿2 4𝑑/𝐿 0 −6𝑑/𝐿2 2𝑑/𝐿
−𝑐/𝐿 0 0 𝑐/𝐿 0 0

0 −12𝑑/𝐿3 −6𝑑/𝐿2 0 12𝑑/𝐿3 −6𝑑/𝐿2

0 6𝑑/𝐿2 2𝑑/𝐿 0 −6𝑑/𝐿2 4𝑑/𝐿 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
�̂�𝑖

𝑣𝑖

𝜃𝑧
𝑖

�̂�𝑗

𝑣𝑗

𝜃𝑧
𝑗
]
 
 
 
 
 
 

.         (3) 

The parameters c and d are given by 𝑐 =  𝐸′𝐴  and  𝑑 =  𝐸′𝐼′  respectively, where the cross-

sectional area of the link between particles is A’. The variable 𝐸′ is the modulus of elasticity, 𝐼′ 
is the moment of inertia and 𝐿 is its length. The relative displacements in the 𝑥 and the 

𝑦 direction are 𝜂𝑖𝑗
𝑥 = �̂�𝑖 − �̂�𝑗 and 𝜂𝑖𝑗

𝑦
= 𝑣𝑖 − 𝑣𝑗 respectively. Similarly, links in a tree-

dimensional model have a circular cross-sectional area with a moment of inertia 𝐼′, polar 

moment of inertia 2𝐼′ and an area 𝐴′, all these links have a finite length with an infinite number 

of particles 𝑗, attached to each particle 𝑖 [7]. Relationships between peridynamic constants 

(𝑐, 𝑑) and conventional linear elastic constants (𝐸, 𝜈) can be obtained by calculating the strain 
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energy density of all the peridynamic links attached to a particle inside a material horizon 𝛿.  

These relationships are given by  

𝑐 =  
6𝐸

𝜋𝛿3𝑡(1−𝜈)
, 𝑑 =  

𝐸(1−3𝜈)

6𝜋𝛿𝑡(1−𝜈2)
,                                             (4) 

for two-dimensional plane stress problems and   

𝑐 =  
6𝐸

𝜋𝛿4(1−2𝜈)
, 𝑑 =  

𝐸(1−4𝜈)

4𝜋𝛿2(1−2𝜈)(1+𝜈)
,                                     (5) 

for three-dimensional models [7]. 
Using the definition given in [6], the peridynamic stress tensor in cylindrical coordinates is 

given by 

𝜎𝑘𝑙 =
1

2
∫ ∫ ∫ (𝑦 + 𝑧)

𝛿−𝑦

0

𝛿

0

2𝜋

0
𝑓𝑘  𝑚𝑙 𝑑𝑧 𝑑𝑦 𝑑𝜃.    (6) 

Where  𝜎𝑘𝑙 is the stress tensor, 𝑓𝑘 is the pair wise force or moment function per unit volume 

squared,𝑦, 𝑧 are the distances between particles  𝑖 and 𝑗, and 𝑚𝑙 is the unit vector in the direction 

of the normal of the plane where the stress is measured. Linear elastic constitutive stress-strain 

relationships can also be obtained using this stress definition and the Micropolar Peridynamic 

Model.  

For non-linear and quasibrittle materials a micro-elastic damage model was proposed, where 

the stiffness of a peridynamic link depends upon the axial stretch of the link between particles, 

and also upon the maximum stretch of all other peridynamic links connected to a single. This 

link remains linearly elastic as long as its stretch is smaller than a tensile limit,  and larger than 

a compressive limit. If the stretch exceeds a tensile limit, the tensile peridynamic force remains 

constant until the stretch exceeds another specific limit, after which the force goes down to zero. 

On the other hand if the stretch is less than a compressive limit, there are two possibilities. If 

the maximum transverse stretch is smaller than a prescribed stretch, the link remains linear 

elastic, while if the stretch is greater, the compressive force remains constant until exceeds 

another prescribed limit, after which it plunges to zero. The plateau of this model is able to 

simulate dissipation of energy due to aggregate contact and friction [8]. 

Expressions for the peridynamic finite element method are obtained using the classical 

potential energy approach. This finite element implementation is limited to two-dimensional 

plane stress problems. Triangular, quadrilateral, one-dimensional, and zero-dimensional 

elements can be simulated in the model [4, 7]. 

The linear portion of the microelastic model is written as:     

{𝑑𝑓𝑖𝑗} = [𝑘𝑖𝑗]{𝑑𝑖𝑗}𝑑𝑉𝑖𝑑𝑉𝑗,      (6) 

and the differential strain energy between particles i  and j  is given by:    

𝑑𝑈𝑖𝑗 =
1

2
[𝑑𝑖𝑗]{𝑓𝑖𝑗} =

1

2
[𝑑𝑖𝑗][𝑘𝑖𝑗]{𝑑𝑖𝑗}𝑑𝑉𝑖𝑑𝑉𝑗 .    (7) 

The total accumulated strain energy within an element domain is given by:  

 𝑈 =
1

2
∬

1

2𝑅
[𝑑𝑖𝑗][𝑘𝑖𝑗]{𝑑𝑖𝑗}𝑑𝑉𝑖𝑑𝑉𝑗 ,     (8) 

and partitioning Equation 8 into num_el finite elements within the problem domain, the 

following expression is obtained 

𝑈 =
1

4
∑ (∫ (∑ (∫ [𝑑𝑖𝑗][𝑘𝑖𝑗]{𝑑𝑖𝑗}𝑗

𝑑𝑉𝑗)
𝑛𝑢𝑚_𝑒𝑙
𝑗=1 ) 𝑑𝑉𝑖𝑖

) .𝑛𝑢𝑚_𝑒𝑙
𝑖=1    (9) 
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Equation (9) is partitioned as a summation of the strain energy stored in peridynamic links 

connecting pairs of finite elements i and j. 

The displacement vector at any point within element i ,{𝑑𝑖𝑗} is interpolated from the element 

nodal displacements {𝐷𝑖𝑗} using interpolation functions: 

{𝑑𝑖} = [𝑁𝑖]{𝐷𝑖}.     (10) 

Similarly, the displacement vector at any point within element j , {𝑑𝑗} is interpolated from 

element j ’s element nodal displacements{𝐷𝑗}. 

    {𝑑𝑗} = [𝑁𝑗]{𝐷𝑗}.      (11) 

and for the pair of elements i  and j : 

{𝑑𝑖𝑗} = {
[𝑁𝑖]

[𝑁𝑗]
} = {

[𝑁𝑖]{𝐷𝑖}

[𝑁𝑗]{𝐷𝑗}
} = [

[𝑁𝑖] [0]

[0] [𝑁𝑗]
] {

{𝐷𝑖}

{𝐷𝑗}
} = [𝑁𝑖𝑗]{𝐷𝑖𝑗},  (12) 

therefore, Equation 9 can be rewritten as: 

𝑈 = [𝐷𝑖𝑗] [
1

2
∑ (∫ (∑ (∫ [𝑁𝑖𝑗][𝑘𝑖𝑗]{𝑁

𝑖𝑗}
𝑗

𝑑𝑉𝑗)
𝑛𝑢𝑚_𝑒𝑙
𝑗=1 ) 𝑑𝑉𝑖𝑖

)𝑛𝑢𝑚_𝑒𝑙
𝑖=1 ] {𝐷𝑖𝑗}.  (13) 

The strain energy stored within the entire domain R is given by: 

 𝑈 =
1

2
[𝐷][𝐾]{𝐷},     (14) 

where {𝐷} is the vector of all nodal displacements, and the matrix [𝐾] is the global stiffness 

matrix. Comparing Equations (13) and (14), and recognizing that the equality must hold for all 

possible nodal displacement vectors {𝐷} the matrix [𝐾] becomes:     

[𝐾] =
1

2
∑ (∫ (∑ (∫ [𝑁𝑖𝑗][𝑘𝑖𝑗]{𝑁

𝑖𝑗}
𝑗

𝑑𝑉𝑗)
𝑛𝑢𝑚_𝑒𝑙
𝑗=1 )𝑑𝑉𝑖𝑖

) ,𝑛𝑢𝑚_𝑒𝑙
𝑖=1     (15) 

where [𝐾] is the global stiffness matrix and  [𝑁𝑖𝑗] are the shape functions obtained from 

peridynamic links between elements i  and j .  

Once obtained the global stiffness matrix, displacements {𝐷} are obtained using: 

[𝐾]{𝐷} = [𝑃],      (16) 

where [𝑃] are the global nodal forces from surface loads or point loads. By inverting matrix 
[𝐾] with a suitable technique, displacements are obtained, and pair-wise forces, stretches and 

strains are obtained. Using a maximum principal tensile strain criterion, two dimensional 

elements are automatically converted into zero-dimensional elements. With the application of 

a simplest micro-elastic damage model, peridynamic links are sequentially eliminated to 

simulate damage. For simplicity and efficiency, it is assumed that only links in between zero-

dimensional elements are removed. In addition, nodes on adjacent membrane elements can be 

disconnected in order to allow crack propagation between two dimensional elements [7]. 

Damage and plasticity can also be computed using the stress definition in (6) using the element 

stiffness matrices from elements i and j. 

𝜎𝑘𝑙 =
1

2
∫ ∫ [[𝑘𝑖𝑗]{𝑑𝑖𝑗}]

𝑘

𝛿−𝑦

0𝑗
 𝑚𝑙 𝑑𝑦 𝑑𝑉𝑗.     (6) 

Where  𝜎𝑘𝑙 is the stress tensor and the integration that is performed on all particles j that interact 

with a single particle i within a material horizon 𝛿 at some point i. Noting that the units of the 

stress tensor are correct for 2-D and 3-D problems. To obtain strains, one can use the average 

strain of a single element, or by calculating the strain energy of a particular step of all 

peridynamic links attached to a particle i, with the following equation: 
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휀𝑘𝑙 =
𝜕𝑈

𝜕𝜎𝑘𝑙
.       (7) 

Once stresses and strains are obtained, classical plasticity and damage models depicted in [5, 

2] are used to simulate non-linear material behavior. 

 

3 APPLICATION TO QUASIBRITTLE STRUCTURES 

An example of a plain concrete specimen subjected to uniaxial tension is analyzed using the 

peridynamic finite element model described in the previous section. In this case, the analysis is 

a two-dimensional plane stress model, where elements are sequentially converted into zero-

dimensional elements, using a maximum tensile strain criterion. The total length is 64” with 

32” of width 16x8=128 quadrilateral elements were used with 4x4=16 zero-dimensional 

nodes/elements in each quadrilateral element. The concrete modulus of elasticity used is 3605 

ksi, with a Poisson´s ratio of 0.2, the material horizon 𝛿 is 6” and the values of c and d are 1076 

kip/in6 and 39.8 kip/in4 respectively. The maximum tensile stretch is 1.3x10-4 and the maximum 

compressive stretch is 1.1x10-3. A high strength is given to the elements located at the top and 

the bottom boundaries in order to prevent changes in the boundary conditions of the problem 

and to prevent potential boundary effects. Also, a weak element with a low tensile strength is 

located at the right part of the specimen to initiate crack propagation of the specimen (Fig. 1). 

Figure 2 illustrates a plot of stress versus strain obtained from the uniaxial tension example 

depicted above. The stress is obtained by dividing the load by the cross-sectional area, and the 

strain is simply the displacement at the top of the specimen divided by its length. 

Uniaxial tensile tests of concrete specimen are not easy to perform, nevertheless from direct 

and indirect physical experimentation the concrete maximum tensile strength is approximately 

7 to 10% percent of the maximum compressive strength. Maximum compressive strength for 

concrete with a Modulus of Elasticity of 3605 ksi is 4000 psi or 4 ksi. Therefore, the maximum 

tensile strength should be 0.4 ksi. According to figure 2 the maximum tensile strength is 0.12 

ksi which is about 3% of the maximum compressive strength. In this case, the model 

underestimates real values obtained in laboratory tests. 
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Figure 1: Plain concrete specimen subjected to 0.03 and 0.16 kips. 
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Figure 2: Plot of stress vs. strain of the model depicted in Figure 1. 

 

3 CONCLUSIONS 

In this work, the peridynamic finite element model was depicted and applied to quasibrittle 

structures. It was assumed that the displacement field is continuous inside each finite element 

with displacement discontinuities allowed to develop between finite elements. For the example 

described, zero-dimensional elements were used to show the crack path. Comparing with 

physical tests, results show that the tensile strength was underestimated. One possible cause of 

this, is that the material horizon should include a sufficient number of material points in order 

to obtain better integrations in the model. 

The peridynamic finite element model shown is much more computer time and memory-

efficient than the similar discrete particle-based models, due to the fact that the number of 

degrees of freedom are reduced. 

Although, in order to obtain better results, mesh convergence studies are required, where 

more degrees of freedom are included. In addition, three-dimensional computer simulation 

studies must be performed. In addition, more quasibrittle physical tests should be implemented 

in order to compare with model results. 
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