
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-–9 June 2022, Oslo, Norway

HYBRID FINITE-VOLUME/DISCONTINUOUS GALERKIN
FRAMEWORK FOR THE SOLUTION OF MULTIPHYSICS

PROBLEMS USING UNSTRUCTURED MESHES

V. Maltsev1, P. Tsoutsanis1, M. Skote1

1 School of Aerospace, transport and Manufacturing
Cranfield University,

Cranfield MK43 0AL, United Kingdom,
email: v.maltsev@cranfield.ac.uk, panagiotis.tsoutsanis@cranfield.ac.uk,

m.skote@cranfield.ac.uk

Key words: Multi-Species flows, Finite Volume, Discontinuous Galerkin, Diffuse Interface
Models

Abstract. A hybrid FV/DG framework is developed for the simulation of compressible multi-
species flows on unstructured meshes with a five-equation Diffuse-Interface Model [1]. The high
order DG method is employed for the purpose of limiting the material interface smearing typical
of the diffuse-interface models resulting from excessive numerical dissipation [2, 3]. In order to
ensure high-order accuracy in smooth flow regions and non-oscillatory behaviour near shocks or
material interfaces, the hybrid scheme resorts to the underlying FV method when invalid cells
are detected by a troubled cell indicator checking the unlimited DG solution, and enables a high-
order non-linear CWENOZ reconstruction [4,5] if the solution present oscillations. The CWENO
and CWENOZ type reconstruction uses a high-order polynomial for the central stencil and a
lower-order polynomial for the directional stencils enhancing robustness and efficiency of classic
WENO schemes. To achieve consistency in advecting material interfaces at constant pressure
and velocity, the source term from the non-conservative equation is discretised compatibly with
the Riemann solver, following the work of Johnsen and Colonius [6].

1 INTRODUCTION

The simulation of multi-species flows in compressible medium is of growing interest in the
CFD community as these kind of flows can be encountered in many areas of science and en-
gineering. Physically, the material interface separating two different phases or species is in
the order of nanometers, however, the way it is approximated differentiates the main meth-
ods developed for simulating such flows. In an Eulerian framework, two main classes became
popular for simulating multi-species flows: the Sharp Interface Methods (SIM), and the Diffuse
Interface Methods (DIM). SIM treats the interface as infinitely thin and does not allow fluid
mixing at the interface, and includes several subcategories such the volume-of-fluid (VOF) [7]
and the level-set-method [8,9], which are well established in the context of incompressible flows.
In this context, the Lagrangian front tracking method has also to be mentioned [10, 11]. On
the other hand, the DIM treats the material interface as a diffused zone and allows the artifi-
cial mixing of the species in proximity of the interface. A plethora of models were developed
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on this assumption, first of which the seven-equation model of Baer and Nunziato [12] for
the detonation-to-deflagration transition in granular materials, and following, the four-equation
model of Abgrall [13] with interface-equilibrium condition (IEC) for the simulation of two-ideal
gases, the reduced five-equation model of Kapila et al. [14], and the five-equation model of Allaire
et al. [1] with isobaric closure for the simulation of two-phase flows. Many other models were
derived, accounting for additional physical features, such the unified hyperbolic formulation
of Godunov-Peshkov-Romenskij (GPR model) [15, 16] and the elasto-plastic and visco-plastic
models of Favrie and Gavrilyuk [17, 18]. DIM are easier to be implemented compared to SIM
as the same set of equation is applied everywhere in the domain, and in the context of com-
pressible flows they are more robust in enforcing discrete conservation. In the present work, the
five-equation model of Allaire is adopted.

The drawback of adopting a DIM is the increasing interface smearing due to numerical dis-
sipation, and thus requires a careful calibration of the spatial discretisation, or, as proposed
by So et al. [19], Shuckla et al. [20], and Tiwari et al. [21], can be counteracted by the intro-
duction of regularization terms to counteract for the interface dissipation. In this work we will
investigate in that sense the performance of a high-order spatial discretisation, through a hybrid
Discontinuous Galerkin (DG) and a high-order Finite Volume (FV) scheme. The DG method
is well known for its accuracy and is nowadays a typical candidate for high-order methods, al-
though computationally demanding and non-trivial for the treatment of non-conservative terms.
DIM generally contain at least one equation written in non-conservative form that accounts for
the volume fraction advection. Path-conservative [22] and Local DG [23] techniques have been
applied to account for non-conservative terms. Our strategy will take advantage of the discreti-
sation introduced by Johnsen and Colonius [6], where the source term is treated as a surface
integral and the volume fraction from the bulk flow is used. Potential oscillations in the solution
resulting from material or other discontinuities are detected by a troubled cell indicator checking
the unlimited DG solution. For the cells deemed as troubled the hybrid scheme will resort to
the high-order CWENOZ [5, 24] reconstruction of the underlying FV thus ensuring high-order
accuracy in smooth regions and non-oscillatory behaviour in presence of shocks or material in-
terfaces. The implementation is performed within the open-source Unstructured Compressible
Navier-Stokes (UCNS3D) [25,26] code.

2 GOVERNING EQUATIONS

The diffuse-interface model used in this work is the quasi-conservative five-equation model
of Allaire et al. [1] and consists of two continuity equations Eq.(1) and Eq.(2), a momentum
equation per dimension Eq.(3), an energy equation Eq.(4), and the non-conservative advection
equation of the volume fraction of one of the two fluids Eq.(5) as given below:

∂(a1ρ1)

∂t
+∇ · (a1ρ1u) = 0, (1)

∂(a2ρ2)

∂t
+∇ · (a2ρ2u) = 0, (2)

∂ρu

∂t
+∇ · (ρuu+ pI) = 0, (3)
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∂E

∂t
+∇ · (E + p)u = 0, (4)

∂a1
∂t

+ u · ∇a1 = 0, (5)

where ρ is the density, u = (u, v, w)T is the velocity, p is the pressure, E is the total energy
and a is the volume fraction. The widely used stiffened gas EOS is employed for closing the
five-equation model. It has been primarily selected due to its application for flow problems
involving gases, liquids and solids. The stiffened gas EOS characterises each fluid pressure as:

pi = (γi − 1)ρiϵi − γiπ∞,i, (6)

where π∞,i ≥ 0 is a reference pressure, and will be set to π∞ = 0 for gases. The total mass and
ρϵ being given by:

ρ =
∑
i

aiρi, (7)

and ρϵ being

ρϵ =
∑
i

aiρiϵi, (8)

where ϵ is the internal energy, with ρϵ = E − 1
2ρuu. The EOS of the mixture reads

ξ =
1

γ − 1
=
∑
i

ai
γi − 1

, (9)

π∞γ

γ − 1
=
∑
i

ai
π∞,iγi
γi − 1

, (10)

p = (γ − 1)ρϵ− γπ∞, (11)

3 NUMERICAL FRAMEWORK

3.1 Conservative Equations

The first four equations of Allaire’s model as in Eqs.1 to 4, which are written in conservative
form, are solved with a modal DG scheme [27, 28]. For the DG discretisation, the weak form
of the above equation has to considered, and is obtained by the multiplication with a smooth
test function ϕ(x), integrating over the domain Ω and performing an integration by parts. This
results in: ∫

Ω
ϕ(x, y, z)

∂U

∂t
dΩ+

∮
∂Ω
ϕ(x, y, z)F(U) · ndS =

∫
Ω
∇ϕ(x, y, z) · F(U)dΩ. (12)

The solution is discretely approximated by a collection of piecewise solution, and on each element
those are defined as a combination of n local polynomial basis functions P (x, y, z). The discrete
solution lies in a finite-element space of discontinuous functions, i.e. a Sobolev space [29] Vh =
{ϕh ∈ L∞ : ϕh|Ω ∈ V k(Ω), k = 0, 1, 2, ..., N}, where V k is the space of polynomials of degree up
to k. The discrete solution Uh(x, y, z), with expansion coefficients denoted by uh, can be seen
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as expansions over a finite element basis P k
j in the aforementioned polynomial space, where d is

the number of degrees of freedom:

Uh(x, y, z, t) =

d∑
j=1

uh(t)P
k
j (x, y, z). (13)

The basis function is here a modal cell-centered Taylor expansion truncated to the desired
accuracy:

P k
j (x, y, z)|Ωl

=
(x− xcl)

pi

hpil

(y − ycl)
qi

hqil

(z − zcl)
ri

hril
− 1

|Ωl|

∫
Ωl

(x− xcl)
pi

hpil

(y − ycl)
qi

hqil

(z − zcl)
ri

hril
dΩl

(14)
where 0 ≤ pi + qi + ri ≤ k and l ranges over the total number of elements. The normalisation
coefficient h, used to improve the mass matrix conditioning, is taken as the square root of
target cell’s volume [30]. It is convenient to express the integrals of Eq.(12) in terms of an
element E of the domain, that in this work will be allowed to be of an arbitrary shape. In
order to account for arbitrary shaped elements, in 2D quadrilateral elements are decomposed to
triangular elements [31]. The boundary integral will be included in the summation over the faces
f of the element E, with total number of faces Nf , and the test function is taken from the same

polynomial space of the solution expansion ϕh(x, y, z) =
∑d

j=1 P
k
j (x, y, z) and the semi-discrete

form will therefore read:

d

dt

∫
E
P k
i P

k
j uhdΩ+

Nf∑
f∈∂E

∮
f
P k
j F(Uh) · ndS =

∫
E
∇P k

j · F(Uh)dΩ. (15)

The volume integral on the right hand side of Eq.(15) and the surface integral on the left hand
side can be calculated by an appropriate Gaussian quadrature rule. Referring with L and M ,
and with ωj and ψl, to the total number of surface and volume quadrature points and weights
respectively, Eq.(15) is approximated with:

d

dt

∫
E
P k
i P

k
j uhdΩ =

M∑
m=1

ωjF(Uh(xE,m)) · ∇P k
j (xE,m)|E|−

Nf∑
f∈∂E

L∑
l=1

ψlF̃(U
L
h (xf,l),U

R
h (xf,l)) · nP k

j (xf,l)|f |

(16)

where F̃ is the intercell numerical flux. For the inviscid fluxes the approximate HLLC (Harten-
Lax-van Leer-Contact) Riemann solver of Toro [32] is employed, unless otherwise stated. The
temporal discretisation employs the 3rd-order explicit Strong Stability Preserving (SSP) Runge-
Kutta method [33] which is stable for CFL ≤ 1. All the volume/surface/line integrals are
approximated by Gaussian quadrature rule suitable for the order of polynomial employed.

3.2 Non-conservative equation

The volume fraction advection equation Eq.(5) is written in non-conservative form, and re-
quires a careful treatment. The volume fraction advection Eq.(5) is rewritten in a mathematically
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equivalent form as introduced by Johnsen and Colonius [6]:

∂a1
∂t

+∇ · (a1u) = a1∇ · u. (17)

The term on the RHS of Eq.(17) is treated as a source term and following the approach of Johnsen
and Colonius [6] it is numerically approximated as surface integral, rather than a volume one,
while using the same velocity estimate as the one used for the evaluation of the fluxes as shown
below: ∫

Vi

s dV ≈
∫
Vi

a1 dV ·
∫
∂Vi

(un)
Riem. dS. (18)

Therefore, the discrete form for the non conservative equation reads:

d

dt

∫
E
P k
i P

k
j uhdΩ =

M∑
m=1

ωjF(Uh(xE,m)) · ∇P k
j (xE,m)|E|−

Nf∑
f∈∂E

L∑
l=1

ψlF̃(U
L
h (xf,l),U

R
h (xf,l)) · nP k

j (xf,l)− ani,1 · uRiem
n (xf,l))|f |

(19)

3.3 Reconstruction

The FV component of the present algorithm used in UCNS3D [25,26] follows the approaches of
Tsoutsanis et al. [5,24,31,34], Titarev et al. [35] that have been previously applied to smooth and
discontinuous flow problems [5,24,25,31,34–52]. The CWENOZ scheme in particular employed
in this study follows the implementation of Tsoutsanis and Dumbser [5] and is the combination of
an optimal (high-order) polynomial popt with lower-order polynomials. The optimal polynomial
uses the central stencil, while the lower-order polynomials employ the directional stencils. When
the variation of the solution is smooth, the optimal polynomial is recovered and therefore the
desired-order of accuracy is obtained. In the presence of discontinuous data, at least one of the
lower-order polynomials arising from the directional stencils could contain smooth data, hence
essentially reducing the oscillations in the computed solution, which is of great importance in
situations of shock interaction with material interfaces. All the polynomials involved satisfy the
requirement of matching the cell averages of the solution, therefore they are solved with the
same constrained least-squares technique. The directional stencils employ the Type3 definition
which includes one directional stencil per element face as detailed in the work by Tsoutsanis [51].
The optimal polynomial is defined as follows:

popt(x, y, z) =

st∑
s=1

λsps(x, y, z), (20)

where s is the stencil index, with c = 1 being the central, c = 2, 3, ... being the directional, st
being the total number of stencils, and λs being the linear coefficients for each stencil, whose
sum is equal to 1. The p1 polynomial is not computed directly, but computed by subtracting
the lower-order polynomials from the optimum polynomial as follows:

p1(x, y, z) =
1

λ1

(
popt(x, y, z)−

st∑
s=2

λsps(x, y, z)

)
. (21)
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The CWENOZ reconstruction polynomial is given as a non-linear combination of all the poly-
nomials in the following manner:

p(x, y, z)cwenoz =

st∑
s=1

ωsps(x, y, z), (22)

where ωs correspond to the non-linear weights assigned to each polynomial, and in regions with
smooth data ωs ≈ λs, hence obtaining the high-order approximation from the central stencil, and
in regions of discontinuous solutions the reconstructed solution will be mostly influenced from
the lower-order polynomials of the directional stencils. The WENOZ component of combining
unequal degree polynomials as introduced by Borges et al. and Castro et al. [4, 53] is employed
in this study, but adapted for unequal polynomials. The non-linear weights are now defined as:

ωs =
ω̃s

st∑
s=1

ω̃s

where ω̃s = λs

(
1 +

τ

ϵ+ SIs

)
. (23)

With τ being the universal oscillation indicator and taken as the absolute difference between
the smoothness indicators as follows:

τ =


st∑
s=2

|SIs − SI1|

st − 1


b

. (24)

Similarly to the WENO scheme ϵ = 10−6 is used and b = 4. The smoothness indicator SIm is
given by:

SIs =
∑

1≤|β|≤r

∫
V ′
0

(
Dβps(x, y, z)

)2
(dx, dy, dz), (25)

where β is a multi-index, r is the polynomial’s order, λm is the linear weight. The value set to
prevent division by zero of ϵ = 10−6 is used, with b = 4 and D being the derivative operator.
The smoothness indicator is a quadratic function of the degrees of freedom (ask) and Eq.(25) can
be rewritten as:

SIs =

K∑
k=1

ask

 K∑
q=1

OIkqa
s
q

 , (26)

where the oscillation indication matrix OIkq is given by:

OIkq =
∑

1≤|β|≤r

∫
V ′
0

(
Dβϕk(x, y, z)

)(
Dβϕq(x, y, z)

)
(dx, dy, dz), (27)

which can be precomputed and stored at the beginning of the simulation. For the directional
stencils and their corresponding polynomials we employ r = 1 to obtain 2nd-order of accuracy,
and any arbitrary order of accuracy for the polynomial associated with the central stencil. The
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linear weights are computed by firstly assigning the non-normalised linear weight for the central
stencil λ

′
1 an arbitrary value, and then normalising this as follows:

λ1 = 1− 1

λ
′
1

, (28)

with the linear weights associated with lower-order polynomials being equal and provided by
the following expression:

λs =
1− λ1
st − 1

, (29)

where st is the total number of stencils.

3.4 Troubled-cell indicator

In the context of flows with shocks, material interfaces or other discontinuities, the unlimited
DG solution is prone to exhibit oscillations and/or non-linear instabilities. Typically, the DG
solution in each cell in the domain is checked with a troubled-cell indicator, designed to flag those
cells where certain criteria are violated. In this work we use a detector similar in philosophy to
the one developed in [54], which in turn is based on the KXRCF indicator [55] developed on the
DG superconvergence property argument. The modification we propose with respect to [54] is
to cell-average the solution of the neighbouring cells over the respective cell and not over the
target cell like in [54]. This results in the following:∑N

n=1 |
1
Ω0

∫
Ω0
u0(x, y, z)dV − 1

Ωn

∫
Ωn
un(x, y, z))dV |

maxn∈{0...N}{ 1
Ωn

|
∫
Ωn
un(x, y, z)dV |}

> Ck (30)

where the threshold value Ck is usually taken to be 0.1 and the detector is applied to density
and energy variables only, unless otherwise specified.

4 RESULTS AND DISCUSSION

4.0.1 Multi-species convergence test

For verifying the designed order of spatial accuracy for the numerical schemes developed, a
multi-species advection test similar to the one employed by Wong and Lele [56] is used. In this
test a smooth volume fraction initial profile of two gases is advected for ten periods in a periodic
computational domain. The initial condition is given by:

(ρ1, ρ2, u, v, p, a1) = (7, 1, 1, 0, 1/1.4, 0.5 + 0.25 sin(2π(x− 0.5))) . (31)

The 2D computational domain is defined by [0, 1]2, and the problem is run on three different
type of meshes: a uniform quadrilateral mesh, an unstructured triangular mesh as in figure
Fig.(1)(a) and a hybrid mesh consisting of arbitrary quadrilateral and triangular elements as in
figure Fig.(1)(b), each with 16, 32, 64 and 128 edges per side resolution. The simulation is run
for a time of tf = 10 and the two gases selected are nitrogen and helium with specific heats 1.4
and 1.66 respectively. The numerical errors eL2 and the eL∞ are computed as follows:

eL2 =

√∑
i

∫
Ωi

(Ue (x, tf )−Uc (x, tf ))
2 dV∑

i |Ωi|
, (32)
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(a) Triangular mesh (b) Hybrid mesh

Figure 1: Computed results for the solid body rotation on hybrid mesh with 64 edges per side
with 3rd order polynomial.

eL∞ = Max |(Ue (x, tf )−Uc (x, tf )| , (33)

where Uc (x, tf ) and Ue (x, tf ) are the computed and exact solutions at the end of the simulation
tf = 10.0. The exact solution Ue (x, tf ) being given by the initial condition itself at t = 0. The
results are listed in table Tab.(1) for all meshes and polynomials P2 and P3, corresponding to a
formal 3rd and 4th order respectively. The error norms for volume fraction of species 1, a1, and
mass fraction of species 1, a1ρ1, are close to the target theoretical order of convergence, and the
latter variable is overall slightly more accurate on all meshes and discretisation orders.

4.1 Isolated material interface advection

For assessing the non-oscillatory properties of the considered schemes, the advection of a sharp
material interface within a periodic domain is considered. A sharp material interface is frequently
encountered in several multicomponent flows, hence the robustness of the proposed methods is of
paramount importance, for the successful deployment of these schemes in multicomponent flows.
The material interface is advected with constant velocity across the computational domain, and
the pressure and temperature is also constant across the interface. The initial conditions are
given by:

(ρ, u, v, p, γ, a1) =

{
(10.0, 0.5, 0, 1/1.4, 1.4, 1) , if x < 0.5

(1.0, 0.5, 0, 1/1.4, 1.66, 0) , otherwise.
(34)

The problem is solved on three type of meshed defined on a 2D computational domain defined,
again, by [0, 1]2. A uniform quadrilateral, as well as unstructured triangular and hybrid meshes
are tested, as shown in Fig.(1), each with 32 edges per side resolution, and the simulation is run
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Table 1: Values for eL∞ and eL2 error norms and convergence rates for the volume fraction and
mass fraction of species 1, a1 and a1ρ1 respectively, computed with the hybrid FV/DG scheme
on uniform and unstructured meshes at the final time t=10.0.

Order/Number of Edges a1 a1ρ1

Quadrilateral Mesh eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2

P2/16 1.79E-02 - 1.07E-02 - 3.66E-03 - 1.75E-03 -
P2/32 2.38E-03 2.91 1.48E-03 2.85 5.44E-04 2.75 2.44E-04 2.84
P2/64 3.15E-04 2.92 1.84E-04 3.01 7.46E-05 2.87 2.98E-05 3.04
P2/128 3.62E-05 3.12 2.30E-05 3.00 9.42E-06 2.98 3.76E-06 2.99
P3/16 5.26E-03 - 2.56E-03 - 1.34E-03 - 3.61E-04 -
P3/32 3.23E-04 4.03 1.18E-04 4.44 8.24E-05 4.02 2.35E-05 3.94
P3/64 3.24E-05 3.32 8.29E-06 3.83 7.16E-06 3.52 1.63E-06 3.85
P3/128 1.99E-06 4.03 5.21E-07 3.99 4.66E-07 3.94 9.79E-08 4.06

Triangular Mesh eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2

P2/16 2.90E-03 - 1.77E-03 - 3.03E-03 - 3.73E-04 -
P2/32 3.92E-04 2.89 2.40E-04 2.88 4.28E-04 2.83 5.58E-05 2.74
P2/64 4.91E-05 2.99 3.08E-05 2.96 5.17E-05 3.05 7.49E-06 2.90
P2/128 6.03E-06 3.03 3.85E-06 3.00 7.12E-06 2.86 8.52E-07 3.14
P3/16 1.84E-04 - 6.85E-05 - 6.47E-05 - 1.55E-05 -
P3/32 1.35E-05 3.77 4.70E-06 3.87 6.36E-06 3.35 1.15E-06 3.75
P3/64 8.04E-07 4.07 2.87E-07 4.03 4.28E-07 3.89 8.01E-08 3.85
P3/128 5.90E-08 3.77 1.95E-08 3.88 2.92E-08 3.87 5.36E-09 3.90

Hybrid Mesh eL∞ OL∞ eL2 OL2 eL∞ OL∞ eL2 OL2

P2/16 7.73E-03 - 4.31E-03 - 2.01E-03 - 7.44E-04 -
P2/32 1.00E-03 2.95 5.23E-04 3.04 2.47E-04 3.02 8.80E-05 3.08
P2/64 1.14E-04 3.14 6.24E-05 3.07 2.94E-05 3.07 1.07E-05 3.05
P2/128 1.51E-05 2.92 7.66E-06 3.03 3.98E-06 2.88 1.32E-06 3.02
P3/16 7.49E-04 - 2.38E-04 - 3.02E-04 - 6.29E-05 -
P3/32 5.64E-05 3.73 1.39E-05 4.10 2.21E-05 3.77 3.98E-06 3.98
P3/64 3.61E-06 3.97 6.85E-07 4.34 1.96E-06 3.50 2.58E-07 3.94
P3/128 1.99E-07 4.18 4.52E-08 3.98 1.50E-07 3.70 1.91E-08 3.76

for a time of tf = 2. The adopted scheme is a 3rd order DG scheme with 3rd order CWENOZ
reconstruction for the troubled cells.

From figure Fig.(2) is clear how the improved accuracy of the hybrid FV/DG schem, is ben-
eficial for reducing the numerical dissipation, and resulting in a less smeared material interface
at the final time compared to the pure FV method. The reconstruction on primitive variable
also results in uniform velocity and pressure solutions, and free of oscillations, as confirmed by
the normalised pressure error which is close to machine precision.
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(a) Quadrilateral mesh (b) Triangular mesh

(c) Hybrid mesh (d) Pressure plot

Figure 2: Computed results for the solid body rotation on hybrid mesh with 64 edges per side
with 3rd order polynomial.

4.2 Helium bubble - shock wave interaction

The interaction of a weak shockwave in air and a helium bubble is considered in 2D. Several
variations of this test problem have been widely used [6,57,58] for assessing the performance of
several techniques for multicomponent flow modelling, and is based on the experimental setup
by Haas and Sturtevant [59]. A bubble of diameter Db = 5cm, is placed within an air filled shock
tube. The bubble consists of helium and air of 28% mass concentration. A shockwave moving
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(e) Velocity plot (f) Normalised pressure error

Figure 2: Computed results for the solid body rotation on hybrid mesh with 64 edges per side
with 3rd order polynomial.

from right to left of the setup impacts the bubble contaminated by the surrounding air. The
specific heats of 1.4 and 1.66 are used for air and helium, respectively, and the initial condition
is given by:

(a1ρ1, a2ρ2, u, v, p, a1) =


(0.0, 1.204, 0, 0, 101325, 0) , for Pre-shock

(0.0, 1.658,−114.49, 0, 159060, 0) , for Post-shock

(0.158, 0.061, 0, 0, 101325, 0.95) , for Bubble.

(35)

The computation domain is discretised by a hybrid unstructured mesh consisting of quadrilateral
and triangular elements for a total count of ≈ 250k elements, and a 3rd order DG scheme with
3rd order CWENOZ reconstruction, namely P2 − CWENOZ3, is adopted. The sequence in
Fig.(3) illustrates the initial instants of the shock wave interaction with the material interface
up to time t = 517µs. Thanks to the reduced dissipation of the scheme, the initial material
interface is only slightly diffused, and it is also possible to observe the onset of instabilities at
the interface.

5 CONCLUSIONS

This work presented a hybrid DG/FV framework for the solution of multi-species flows with
an attempt at reducing the interface smearing of the material interface typical of diffuse-interface
models. The five-equation diffuse-interface model of Allaire et al. [1] is solved with a modal DG
scheme in smooth flow regions, and a troubled cell indicator detects the region with discontinuous
features such material interfaces and shock waves. For the cells deemed as troubled, a FV type
reconstruction is activated following the CWENOZ paradigm, reducing the computational costs
and increasing the robustness of the classic WENO schemes. The reconstruction is performed on
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Figure 3: Density gradient magnitude (left) and volume fraction contours (right) for helium
bubble-shock wave interaction for times t = 57µs, t = 104µs, t = 208µs, t = 417µs and
t = 517µs from top to bottom respectively

primitive variables in order to avoid oscillation at interfaces as shown in the results section, and
the higher accuracy provided by the DG discretisation is beneficial to avoid excessive interface
smearing. Future developments will aim to extend the present framework to non-equilibrium
models and will seek for ad-hoc troubled cell indicators for multi-species flow problems.
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