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Abstract. We derive an efficient numerical scheme for transient wave propagation in configu-
rations where a fluid domain and a solid domain are separated by a thin coating material. These
type of configurations are numerically challenging for multiple factors: managing fluid – solid
coupling, enabling non-conform space discretizations, and rendering robust time discrete algo-
rithm w.r.t the thin layer thickness. By combining the mortar element method with effective
transmission conditions we are able to address these challenges. We illustrate our approach
by proposing relevant 2D numerical illustrations inspired from simple ultrasonic testing experi-
ments.

1 INTRODUCTION

In the present communication, we consider the problem of efficient numerical modeling of
high-frequency transient wave propagation in a configuration where a solid material is sur-
rounded by a fluid, and at the fluid – solid interface a thin layer of material is present. This
configuration typically occurs when representing Ultrasonic Testing (UT) of immersed coated
specimens. The computational challenges associated to this type of configurations are threefold:

(1) The thickness of the coating material, denoted by η in the following, is significantly smaller
than the wavelength of interest, thus degrading the efficiency of standard approaches with
explicit time scheme, as they suffer from a stability condition on the time step in O(η).

(2) In UT applications, the wavelength in the fluid are usually smaller than in the solid (due to
lower wave velocities). Hence traditional conform approaches will impose an over-refined
mesh in the solid domain, leading to a potentially significant cost overhead.

(3) As any fluid – structure interaction problem, one has to operate a specific treatment in
order to incorporate the normal stress and normal velocity continuity conditions within
their numerical scheme.

Various tools and techniques can be found in the literature to overcome some of these com-
putational bottlenecks. For instance, authors in [1] use an implicit scheme (only) in the thin
layer. Their approach alleviates the dependency of the time step w.r.t. the layer thickness.
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It is based on the mortar element method [2] allowing for non-conform coupling between the
domains. However it is done at the price of solving at each iteration a linear system of size
proportionate to the number of degrees of freedom in the layer and should require some adjust-
ment to incorporate fluid – solid transmission conditions. In [3] a local time stepping method is
proposed which effectively reduces the influence of refined or complex regions of the mesh onto
the stability condition of the explicit time scheme. Essentially, this is performed by adding sub-
iterations between coarse time steps. Their approach imposes the use of discontinuous Galerkin
methods [4] in order to address non-conform meshes, and cannot support as-is coupling between
fluid and solid propagators. Other approaches rely on a simplification of the wave propagator in
the coating layer based upon asymptotic developments – the asymptotic parameter being pro-
portionate to the thickness η. A typical example in the literature is [5]. More recently authors
in [6] derived Effective Transmission Conditions (ETC) between two solid domains surrounding
the layer while insuring convergence to the exact solution as the thickness tends to zero. Their
effective numerical procedure leads to a time step independent of the layer thickness, however
supporting acoustic – elastic waves coupling with non-conforming meshes is not addressed in
their approach.

Inspired from this seminal body of work, our approach combine the use of ETC – as in [5] –
with an adequate form of the mortar element method – as in [1]. It is in essence the extension
of [7] to configurations with fluid and solid propagators. The mortar unknowns are treated
with an implicit time-scheme, from which we can expect the stability condition of the complete
numerical procedure to be independent of the layer thickness or effective parameters. This
method supports (by construction) non-conform meshes, and we are able to adapt it to support
fluid – solid coupling. Combining these elements we are able to address the various computational
challenges associated to the configurations of interest.

The outline of our paper is as follows. In Section 2 we detail the modeling setting used to
represent UT experiments of an immersed and coated solid material. In Section 3 we present the
numerical procedure leading to a fully discrete scheme. This procedure combine spectral finite
elements [9] for the space discretization and second order schemes [8] for the time discretization.
We illustrate our approach in Section 4 with some relevant numerical results, and provide some
conclusion and perspectives in the last Section.

2 WAVE PROPAGATION THROUGH AN IMMERSED AND COATED SOLID

2.1 Geometrical considerations

Let N = 2 or N = 3 denotes the space dimension. As depicted in Figure 1, we consider
the open domain Ωs ⊂ RN occupied by a solid material subject to an UT experiment. This
solid material is partially adjacent to a fluid (typically water) occupying the fluid domain Ωf .
Between the solid and fluid domains, we consider a thin coating material occupying the volume
Ωη, where η represents an upper bound of the (local) thickness of the coating domain. As a
basic assumption of the following developments, we assume that η is significantly smaller that
the wavelengths of interest, hence justifying the label of “coating” domain.

Additionally, we consider an extruded structure of Ωη that we detail in this subsection in
a 2D context for simplicity – the extension for N = 3 being conceptually straightforward.
Let Γ represents the “middle” line of the domain characterized by its parametric coordinate
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Figure 1: Representation of the type of geometrical configuration of interest for N = 2. The
hatched area, above the solid domain Ωs and below the fluid domain Ωf , represents the coating
layer Ωη.

transformation ψ : [0; 1] 7→ x ∈ Γ, assumed to be a C1 – diffeomorphism. Let Γ± be the
“upper” and “lower” boundary lines of the domain. They are obtained from the middle line
through the transformations ϕη

± : x 7→ x′ ∈ Γ±, i.e.

Γ± =
{
x′ ∣∣ x′ = ϕη

±
(
ψ(u)

)
, ∀u ∈ [0; 1]

}
.

These transformations depend on the upper bound of the thickness η and are also assumed to be
C1 – diffeomorphisms. The remaining “left” and “right” boundary lines of the domain denoted
by Γ0 and Γ1 are segments defined as

∀β ∈ {0, 1}, Γβ =
{
x′ ∣∣ x′ = vϕη

+

(
ψ(β)

)
+ (1− v)ϕη

−
(
ψ(β)

)
, ∀v ∈ [0; 1]

}
,

and we define the domain Ωη as the open set with boundary ∂Ωη = Γ+ ∪ Γ− ∪ Γ0 ∪ Γ1 – see
Figure 1 for a representation of such configurations.

2.2 Elastic and acoustic linear wave propagation models

Within the solid domain, we consider u the space and time dependent material displacement
generated by the high-frequency and low amplitude waves during their course. Internal mechan-
ical stresses σ are associated to this displacement. As standard in ultrasonic wave propagation
modeling, we assume a fully linear constitutive law, and in the particular case of this communi-
cation we consider – without loss of generality – an isotropic material. In this context we recover
Hooke’s law

σ(u) = λtr(ε(u))I+ 2µε(u), ε(u) = 1
2

(
∇u+∇u⊺),
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where ε(u) is the linearized Green – Lagrange tensor associated to the displacement u, tr(·) is
the trace of a second order tensor, I is the identity second order tensor, and {λ, µ} are the Lamé’s
coefficients. In addition to this constitutive law, we recall the standard linear elasto-dynamic
equation

ρs∂
2
ttu−∇ · σ(u) = 0, in Ωs, (1)

where ∇· is the divergence operator applied to second order tensors, and ρs is the mass density
of the material.

Within the fluid domain, we consider v the velocity field and p the pressure field associated
to the acoustic wave propagation. They are linked through the standard wave equations

1

ρfc2
∂tp+∇ · v + f = 0, ρf∂tv +∇p = 0, in Ωf , (2)

where f is a time and space dependent source term representing some known acoustic emitter,
∇· is the divergence operator applied to vector fields, c is the speed of waves in the fluid domain,
and ρf is the mass density of the fluid. Defining ϕ the acoustic velocity potential such that

v =
1

ρf
∇ϕ, p = −∂tϕ, (3)

where the second relation is obtained using (2), we recover the traditional second order wave
equation

1

ρfc2
∂2ttϕ− 1

ρf
∆ϕ = f, in Ωf . (4)

2.3 Effective transmission conditions to represent the coating material

To represent the propagation within the coating material, we resort to effective transmission
conditions (ETC) as in [5] that we adapt to fluid – solid coupling. To simplify the presentation,
we will use extensively the following notation

∀d ∈ {1, N}, ∀f ∈ [L2(Γ±)]
d, f± = f ◦ ϕη

± ∈ [L2(Γ)]d.

In particular, we define the mechanical fluxes associated to the fluid and solid fluxes as

τ+ = −p+ n, τ− = σ− · n, on Γ.

The mean value and jump of the fluxes are denoted by

⟨τ ⟩ = τ+ + τ−
2

, [τ ] = τ+ − τ−.

In the same manner, we define the mean value and jump of velocities on Γ as

⟨v⟩ = v+ + ∂tu−
2

, [v] = v+ − ∂tu−.

Without the presence of the coating layer, implying in particular that ϕη
± = I, satisfying the

standard fluid – solid transmission conditions implies

[v] · n = 0, [τ ] = 0, on Γ,
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which is essentially the continuity of the normal velocities and the mechanical fluxes. Note that,
because of the form of the fluid flux, this is equivalent to satisfying

[v] · n = 0, [τ ] · n = 0, τ− · n⊥ = 0, on Γ,

where n⊥ is any tangent vector of Γ. The underlying idea behind ETC, as in [5, 10], is to perturb
the two jump relations with spring – mass terms using the mean fluxes and velocities, namely

[v] · n = ηs ∂t⟨τ ⟩ · n, [τ ] · n = ηm ∂t⟨v⟩ · n, on Γ. (5)

Here s and m are the effective normal compliance and mass density of the coating layer. As
an illustrative example, in the case of an isotropic coating material in 2D admitting {λ′, µ′} as
Lamé’s parameters and ρ′ as mass density, a typical choice of effective parameters is

s =
1

λ′ + 2µ′
, m = ρ′. (6)

In the following, without loss of generality and to simplify the presentation, we will assume that
both the thickness η and the effective parameters {s,m} are constant w.r.t. space variables.

2.4 Mortar elements and coupled weak formulation

Incorporating such transmission conditions (especially in a potentially non-conform context)
is not self-evident. To address this challenge we resort to the mortar element method [2].
It is originally a domain decomposition approach enabling coupling of non-conforming space
discretizations. Recently [7] it has been used to incorporate ETC between two solids and we
extend this approach to fluid – solid coupling. To start with, we define the following unknowns

∂tλf = v+ · n, ∂tλs = τ− · n, (7)

which are, for any fixed time value, elements of L2(Γ). Using this definition and the jump
relations (5) we have

∂tλf − ∂tu− · n = ηs
∂2ttϕ+ + ∂2ttλs

2
, ∂tϕ+ − ∂tλs = ηm

∂2ttλf + ∂2ttu− · n
2

,

which can be integrated over time to reduce the order of time derivation. Satisfying these
conditions weakly, and combining with the weak form of formulations (1) and (4) yields the
following fully coupled weak formulation:

Find {ϕ(t),u(t), λf(t), λs(t)} ∈ H1(Ωf)× [H1(Ωs)]
N × L2(Γ)× L2(Γ) such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d2

dt2

∫
Ωf

1
ρfc2

ϕϕ⋆ dΩ +

∫
Ωf

1
ρf
∇ϕ ·∇ϕ⋆ dΩ +

d

dt

∫
Γ
λf ϕ

⋆
+ dΓ =

∫
Ωf

f ϕ⋆ dΩ,

d2

dt2

∫
Ωs

ρsu · u⋆ dΩ +

∫
Ωs

σ(u) : ε(u⋆) dΩ− d

dt

∫
Γ
λs u

⋆
− · ndΓ = 0,

d

dt

∫
Γ
ηm

(λf + u− · n
2

)
λ⋆f dΓ =

∫
Γ
(ϕ+ − λs)λ

⋆
f dΓ,

d

dt

∫
Γ
ηs
(ϕ+ + λs

2

)
λ⋆s dΓ =

∫
Γ
(λf − u− · n)λ⋆s dΓ,

(8)

for any set of test functions {ϕ⋆,u⋆, λ⋆f , λ
⋆
s} ∈ H1(Ωf)× [H1(Ωs)]

N × L2(Γ)× L2(Γ).
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3 FULLY DISCRETE SCHEME

3.1 Space discretization using spectral finite elements

We discretize in space the weak formulation (8) using spectral finite elements [9]. In its
original form, it is a H1 – conform, high order finite element method, based on quadrangular or
hexahedral meshes, with the Gauss – Lobatto distribution of nodes in the reference element. Let
us denote by Th(Ωf) and TH(Ωs) conform meshes of the fluid and solid domains with character-
istic mesh sizes h and H. In most cases, the gap between wave speeds in the two domains may
require two different mesh sizes to obtain better performances. Therefore, in the following we
assume that h ≤ H, potentially entailing non-conformities at the coupling interface. For each
element K in a mesh, we denote by FK the associated transformation of the reference quadran-
gle or hexahedron K̂. On the reference element, we consider Qα(K̂) the space of polynomials of
maximal order α ∈ N. Let p and q be two given natural integers, we define the following finite
element approximation spaces∣∣∣∣∣∣

Vh =
{
vh ∈ C0(Ωf)

∣∣∣ ∀K ∈ Th(Ωf), ∃! v̂ ∈ Qp(K̂), vh|K = v̂ ◦ F−1
K

}
⊂ H1(Ωf),

WH =
{
wH ∈ C0(Ωs)

∣∣∣ ∀K ∈ TH(Ωs), ∃! ŵ ∈ Qq(K̂), wH |K = ŵ ◦ F−1
K

}
⊂ H1(Ωs),

and the vectorial counterpart WH = [WH ]N ⊂ [H1(Ωs)]
N . Let Nf and Ns be the dimension of

the approximation spaces Vh and WH respectively, we consider

Vh = span {φI}Nf
I=1, WH = span {ψI}

Ns/N
I=1 , WH = span {ψI}Ns

I=1,

the associated Lagrange basis functions. Using these notations, we introduce the mass and
stiffness matrices∣∣∣∣∣∣∣∣

Mf =
(∫

Ωf

1
ρfc2

φI φJ dΩ
)Nf

I,J=1
, Ms =

(∫
Ωs

ρsψI ·ψJ dΩ
)Ns

I,J=1
,

Kf =
(∫

Ωf

1
ρf
∇φI ·∇φJ dΩ

)Nf

I,J=1
, Ks =

(∫
Ωs

σ(ψI) : ε(ψJ) dΩ
)Ns

I,J=1
.

For the mortar unknowns, we consider the approximation space built from the trace of the scalar
volume space WH . More precisely, we define

XH = span {ξℓ}NΓ
ℓ=1 ⊂ L2(Γ), ∀ℓ = 1, · · · , NΓ, ∃! I ∈ {1, · · · ,Ns/N}, ξℓ = ψI |Γ− ◦ ϕη−,

and NΓ the number of nodes on Γ−. With these basis functions, we define the coupling matrices
(from mortar to volume unknowns) and the surface mass matrix

Cf =
(∫

Γ
φI+ ξℓ dΓ

)Nf ,NΓ

I,ℓ=1
, Cs =

(∫
Γ
ψI− · n ξℓ dΓ

)Ns,NΓ

I,ℓ=1
, MΓ =

(∫
Γ
ξℓ ξmdΓ

)NΓ

ℓ,m=1
.

3.2 Time discretization and stability condition

Let us consider ∆t > 0 a given time step – satisfying a specific stability condition discussed

later on – and n ∈ N any step index. We consider
−→
ϕ n ∈ RNf the vector of components of the
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discrete velocity potential in the basis of Vh at time tn = n∆t. In the same manner we define
−→u n ∈ RNs ,

−→
λ n

f ∈ RNΓ and
−→
λ n

s ∈ RNΓ the vector of degrees of freedom in the basis of the
relevant approximation space. With these notations, for the time discretization, we apply an
explicit second order time-scheme centered at tn for the volume propagators, and a second order
time-scheme centered at tn+1/2 for the transmission conditions, namely∣∣∣∣∣∣∣∣∣∣∣

1
∆t2

Mf

(−→
ϕ n+1 − 2

−→
ϕ n +

−→
ϕ n−1

)
+Kf

−→
ϕ n + 1

2∆tCf

(−→
λ n+1

f −
−→
λ n−1

f

)
=

−→
f ,

1
∆t2

Ms

(−→u n+1 − 2−→u n +−→u n−1
)
+Ks

−→u n − 1
2∆tCs

(−→
λ n+1

s −
−→
λ n−1

s

)
= 0,

ηm
2∆tMΓ

(−→
λ n+1

f −
−→
λ n

f

)
+ ηm

2∆tC
⊺
s

(−→u n+1 −−→u n
)
= 1

2C
⊺
f

(−→
ϕ n+1 +

−→
ϕ n

)
− 1

2MΓ

(−→
λ n+1

s +
−→
λ n

s

)
,

ηs
2∆tC

⊺
f

(−→
ϕ n+1 −

−→
ϕ n

)
+ ηs

2∆tMΓ

(−→
λ n+1

s −
−→
λ n

s

)
= 1

2MΓ

(−→
λ n+1

f +
−→
λ n

f

)
− 1

2C
⊺
s

(−→u n+1 +−→u n
)
.

(9)

In the first line of (9), the values of the right-hand are simply given by the L2 – inner product
of the source function f with the basis functions of Vh.

Without carrying a complete analysis of the stability for (9), one can expect – since the
dynamics satisfied by the mortar unknowns is discretized by an implicit scheme – to be able to
derive the following stability condition

∆t ≤ min

 2√
r(M−1

f Kf)
,

2√
r(M−1

s Ks)

 , (10)

where r(·) is the spectral radius of a matrix. Note that the two terms in the right hand side of the
previous inequality are the stability conditions of the fully discrete fluid and solid propagators
taken independently. In other words, if this condition would be sufficient to insure stability,
it would mean that the time step is independent on both the coating layer thickness and the
corresponding effective parameters.

4 NUMERICAL ILLUSTRATIONS

To illustrate the efficiency of our approach we consider a simple 2D case, where the fluid
domain is composed of water and the solid domain is composed of a steel material, i.e.

ρf = 1.0 g · cm−3, c = 1.5mm · µs−1, ρs = 8.0 g · cm−3, λ = 144GPa, µ = 72GPa.

The source term is a line source in the fluid with a central frequency of 1.0MHz. The size of
the domains are chosen to be proportionate to the pressure wavelengths, in particular the fluid
domain is the square 25λfP × 25λfP , while the solid domain is the rectangle 25λfP × 25λsP . The
thickness of the coating layer is set to be η = λf

P/10 and the material of the layer is twice as stiff
as the solid domain, i.e.

ρ′ = ρs, λ
′ = 2λ, µ′ = 2µ,

from which we can derive the effective transmission coefficients using (6). Concerning the dis-
cretization parameter we use spectral elements of order five with three elements per λfP in the
fluid domain. For the solid domain we consider both cases of conform discretization (where
we impose the same discretization as the fluid domain) and non-conform discretization where
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Figure 2: Illustration and snapshots of the solutions obtained by three different approaches: (i)
meshed coating layer with conform interface (i.e. reference); (ii) ETC with conform interface;
(iii) ETC with non-conform interface. Red dots represent the position of the observation points.

the order is still five but we set three elements per λsP . We carry out numerical simulations by
computing the upper bound on the time step provided in (10).

In Figure 2 we represent this configuration in addition with two snapshots where we compare:
the reference simulation with conform interface and a meshed coating layer, a simulation using
ETC with a conform interface and finally a simulation using ETC with a non-conform interface.
In these snapshots we can see a very good agreement when comparing reflected pressure wave
in the fluid and bulk waves in the solid (both pressure and transverse waves). We observe
some discrepancies for the surface waves. These discrepancies appear even in the conform case,
implying that the ETC cannot adequately capture these contributions.

To better validate the proposed numerical scheme we propose in Figure 3 to extract over
time the solution at two observation points. As depicted in Figure 2, we position a first point
near the interface and a second point far from the interface, in the solid domain. Even though
the time step for each discretization is different, we observe a very good agreement between the
three numerical solutions, with once again some discrepancies at the observation point located
near the interface.

In Figure 4 we propose a graphic representation of the performances of the three different
schemes. Comparing the reference with the simulation using ETC with a conform interface we
observe an identical cost per iteration, as expected, but a significant improvement on the time
step, also expected since the thin coating layer is not meshed. Finally, comparing the reference
with the simulation using ETC with a non-conform interface we observe an important gain in
both cost per iteration and time step, leading to an overall speedup of approximately ×15 for a
fixed global time window.
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Figure 3: Comparing the time variation of the solution of the reference, ETC with conform
interface and ETC with non-conform interface at the observation points P0 (left) and P1 (right).

Figure 4: Comparing performances of the reference, ETC with conform interface and ETC with
non-conform interface. The cost per iteration is divided by 1.52 and the time step is multiplied
by 9.96, leading to an overall speedup of ×15.
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5 CONCLUSIONS AND PERSPECTIVES

In this communication we have presented a way to incorporate effective transmission condi-
tions between a fluid wave propagator and a solid wave propagator using the mortar element
method. This can typically be used to efficiently represent a thin layer between the fluid and
solid domains. By using an implicit time scheme, the numerical illustrations suggest that the
CFL condition of the presented numerical scheme becomes (compared to standard explicit dis-
cretization) independent of the thin layer thickness and the effective parameters. Additionnaly,
relying on the flexibility of the mortar element method we are able to incorporate non-conform
space discretizations between the fluid mesh and the solid mesh. Combining these two assets,
we are able to obtain significant performance gains on relevant numerical simulations compared
to a reference approach based on a standard fully explicit scheme with a meshed coating layer.

From a theoretical point of view, the natural perspective of this work is to be able to prove
that the CFL condition is independent of the effective parameters. From a more numerical
angle, we should investigate how the proposed numerical scheme performs on 3D cases or cases
with curved interfaces.
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