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1 INTRODUCTION 

1.1 Additive Manufacturing 

Complex, lightweight, and customized metal parts can be produced by additive 

manufacturing (AM). The base material can be fine metallic powder, as in powder bed fusion 

– laser beam/ metal (PBF-LB/M), or a wire feedstock, as in wire arc additive manufacturing 

(WAAM). The latter is an important fabrication process for large-scale components [1]. A wide 

range of materials can be manufactured [2]. However, residual stress will form during the build-

up of metal components [2]  and lead to critical defects, such as distortion and cracking [3]. 

Especially in large-scale components, distortion is a main concern for WAAM [1]. 

1.2 Inherent Strain Simulations 

The research field of the prediction of stress and distortion in AM metal components splits 

into the research that improves the modeling of the simulations and the increase in 

computational efficiency [4]. One result of the aim for highly efficient AM simulations is the 

inherent strain method [5], in which the inherent strain method from welding was adapted to 

the AM process [6]. 

The inherent strain 𝜀∗ is the resulting strain remaining in the part after the relaxation of a test 

volume [7]. Therefore, it can be described as 

where 𝜀 is the total strain and 𝜀𝑒𝑙 the elastic strain. The inherent strain 𝜀∗ is inserted layer-

wise into the part, and the elastoplastic equilibrium is solved in each layer using the finite 

element method (FEM) [8]. 

Values for the inherent strain can be either calculated by calibration based on experimental 

displacement measurements or small-scale conventional thermomechanical process 

simulations [5,9].  

The computational effort is reduced by transferring the complex thermomechanical problem 

to a mechanical problem. 

𝜀∗ = 𝜀 − 𝜀𝑒𝑙, (1) 

http://www.isemp.de/
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Initially developed for PBF-LB/M, the inherent strain simulation was also successfully 

deployed for WAAM simulations by reactivating previous deposition material within the 

penetration depth of the melt pool. An adaptive increment-wise insertion of the inherent strain 

value is used to guarantee convergence. If the current increment does not converge, the inherent 

strain values of that increment are divided by two and solved in two steps. This process is self-

repeating. The described method, material data, and calibrated values are taken from [10], and 

the results are used to train neural networks to predict the displacement within the next layer.  

1.3 Newton-Raphson Iterations 

The Newton-Raphson method (NR) is used for finding an approximation of the root of a 

real-valued function 𝑓(𝑥) = 0. The tangent of the function is calculated in a point 𝑥𝑖 in each 

iteration. The root of the tangent is then used as the next point 𝑥𝑖+1. When the conditions of the 

convergence theorem of the NR are satisfied, a test solution being sufficiently close to the 

searched solution, the convergence rate is quadratic [11,12].   

In inherent strain simulations, a new layer is activated without any displacement in the top 

node layer. The resulting strain is called a reference strain and is inserted in the element [13]. 

Hence, elements of the new layer activate in a stress-free state, despite having a strain from 

displacements in the previous active nodes and no displacements in the new nodes. The NR is 

necessary to solve the elastic-plastic equilibrium when the inherent strain is inserted in the new 

layer. The displacement field is searched, which solves the equilibrium. The NR starts with an 

initial displacement field as a test solution, which is the current displacement field from the 

stress-free activation. By improving the test solution, the iteration in the NR will be reduced.   

Most simulations of WAAM specimens will show a self-similarity in the displacement field 

between each layer. Thus, a potential human observer could predict a better test solution than 

the displacement field from the stress-free activation after only seeing the displacement fields 

of a few layers. 

The potential human observer uses an intuitive regression with a small training data set. This 

work substitutes the human observer and uses multivariate regression to estimate the three-

dimensional displacement in each node of the FEM by training a neural network. 

1.4 Neural Networks 

Neural networks (NN) can perform the task of classification and regression for even complex 

problems [14]. In AM, the classification is used for pore detection from process monitoring 

data [15]. The regression capabilities can be used to predict the distortion of AM parts [16–18]. 

However, published results were limited in the geometrical variety of the specimens. Data 

generation and geometrical bias can be complex challenges for applying neural networks in 

AM.  

Another possible application for NN in AM is improving the computational efficiency of 

process simulations. Not explicitly stated for AM, a NN was used in the material model of FEM 

simulations [19]. Elastic-plastic problems were solved with a recurrent NN inside a Monte-

Carlo-Simulation, overcoming the high computational cost of such [20]. 

In this work, the NN is used to predict the displacement field of a new layer in an inherent 

strain simulation. The training data are the solved equilibriums of previous layers. 
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2 METHODS 

2.1 Newton-Raphson-Procedure 

The NR is commonly used when solving the nonlinear problem of finding the elastic-plastic 

force equilibrium.  

For equilibrium, the displacement vector 𝑢 must be found, balancing internal 𝑓𝑖𝑛𝑡 and 

external forces 𝑓𝑒𝑥𝑡. Thus, the problem can be described as finding the root of the residuum 

The internal force 𝑓𝑖𝑛𝑡 depends on displacement. An initial guess is necessary to find the 

displacement field 𝑢𝑙+1 of the next layer 𝑙 in an inherent strain simulation. The initial 

displacement field is the displacement field of the equilibrium of the previous layer: 

The updates during each Newton iteration 𝑗 consist of calculating the tangent stiffness matrix 

𝐾𝑇, solving the linear equation  

and updating the displacement  

The new displacement results in a new residuum (Eq. (2)), leading to a new iteration of the 

Newton-Raphson until the residuum is sufficiently small. The procedure is taken from [21]. 

The convergence theorem of the NR is satisfied if the initial guess 𝑢𝑙+1
0  is sufficiently close 

to the searched solution 𝑢𝑙+1 [12,22]. As an initial guess 𝑢𝑙+1
0 = 𝑢𝑙

  is assumed in inherent strain 

simulation. If the influence of one layer is small, then 𝑢𝑙+1
0  is close to 𝑢𝑙

 . However, for other 

additive manufacturing processes, this assumption might fail. In WAAM, a weld track can be 

placed on the side of a thin wall structure, leading to a significant change in the displacement 

field.  

By improving the initial guess 𝑢𝑙+1
0   convergence is ensured, and the number of iterations of 

the NR is reduced.  

2.2 Neural Network 

The neural network is built using the library OpenNN [23]. The architecture is a feed-

forward neural network consisting of a scaling layer, followed by a perceptron layer of twenty 

neurons, another one with twenty, a third with nine, a last one with three, and an unscaling layer 

to the displacement output 𝑢. Figure 1 shows the architecture. A hyperbolic tangent is used as 

a gain function for all perceptron layers except the last one using a linear gain function. All 

perceptron layers have a bias node. 

𝑟 ≔ 𝑓𝑖𝑛𝑡(𝑢𝑙+1
 ) − 𝑓𝑒𝑥𝑡. (2) 

𝑢𝑙+1
0 ≔ 𝑢𝑙 .  (3) 

𝐾𝑇𝛿𝑢𝑗 = −𝑟𝑗−1, (4) 

𝑢𝑙+1
𝑗

= 𝑢𝑙+1
𝑗−1

+ 𝛿𝑢𝑗 . (5) 
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Figure 1: Neural Network Architecture. 

 

The input has 17 inputs in total with values on different scales from 10−3 up to 106. 

Therefore, a scaling layer is necessary. The scaling is done by using the maximum and 

minimum values of the training data for each input. The scaled input value 𝜂 is given by 

when 𝑥𝑖 is the input value of a training set 𝑖. The same method applies to the unscaling layer.  

However, it might not be necessary because all outputs are displacement values and do not have 

values in different scales like the input.  

 

2.3 Training and Validation Set 

The training method is an adaptive momentum estimation optimization reducing the 𝐿2-

norm [24]. Training data is taken from the elastic-plastic equilibriums from an inherent strain 

simulation calculated using the FEM. Each node provides one training set with the following 

input: the displacement from the last layer 𝑢𝑖
𝑙−1; 𝑖 ∈ {𝑥, 𝑦, 𝑧}, the local stiffness matrix of the 

node with itself 𝐾𝑛𝑛
𝑙 , the von-Mises-stress 𝜎𝑣𝑀

𝑙−1, a distance 𝑑𝑚
𝑙  to the mass point of the currently 

activated layer, a distance to the closest Dirichlet boundary condition 𝑑𝑏𝑝
𝑙 , the components of 

the inherent strain tensor 𝜀𝑥𝑥
∗ , 𝜀𝑦𝑦

∗ , 𝜀𝑧𝑧
∗  for the current layer 𝑙, the six components (Voigt 

  
  
  
 
  
  
 

 
 
  
  
  
 
  
  
 

              
         

𝜂𝑖 =
𝑥𝑖 − min(𝑥)

max(𝑥) − min(𝑥)
, (6) 
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notation) of the product of reference strain and inherent strain, called sum strain 𝜀𝑠𝑢𝑚 
𝑙 =  𝜀 

∗𝑙 +
𝜀𝑟𝑒𝑓

𝑙 , and a boolean if the node is part of the current layer 𝑙. 

The output of the neural network is the three-dimensional displacement 𝑢: 𝑢𝑥
𝑙 , 𝑢𝑦

𝑙 , and 𝑢𝑧
𝑙 . 

The specimen's complete inherent strain simulations were done according to [10] to generate 

the training and validation data sets. The training and validation are performed after the entire 

simulation is completed. The input of the training data is taken from the last layer 𝑙 − 1, and 

from the current layer 𝑙 the information that does not require solving the elastic-plastic 

equilibrium. The output of the training data is the displacement field 𝑢𝑖
𝑙 of the current layer. 

The validation data uses the information of the current layer 𝑙 and the next layer 𝑙 + 1. Thus, 

the ability of the trained network is tested to predict the displacement field of the activation of 

the new layer 𝑙 + 1. 

2.4 Geometries 

In this work, two very different geometries were chosen. The first is a cylindric specimen 

(Figure 2a). All sides of the substrate were clamped to inhibit deformation in the substrate. 

Displacement is mainly present in the printed geometry itself.  

The second specimen is a 13-layer high wall on a substrate clamped one-sided (Figure 2b). 

This specimen has an entirely different displacement behavior compared to the cylindric 

specimen. Primarily, the substrate will deform instead of the additively manufactured part. The 

similarity between each layer is loosely given, but the displacement will increase with each 

subsequent layer in the substrate.   

 

Figure 2: Displacement calculated by the Inherent strain simulation [10] for a cylinder specimen (a) with 

Fixation condition beneath the substrate and a wall (b) on substrate clamped on one side (Fixation). 

3 RESULTS & DISCUSSION 

The number of iterations in the NR is shown in Figure 3. Each point corresponds to one NR 

iteration, which is not equivalent to the number of calculated layers. The adaptive insertion of 

inherent strains can lead to multiple NR in a single layer. The total number of iterations 

necessary to compute the displacement field of the cylindric geometry (Figure 2a) was 631. 

This number leads to an average of 4.6 iterations per layer. Therefore, the calculation time can 
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be reduced if the goal of the NN-based displacement prediction, reducing the NR iterations to 

one, is achieved.  

 

Figure 3: Needed Newton-Raphson iterations to calculate the elastic-plastic equilibrium in an inherent strain 

simulation of a wire arc additively manufactured cylinder. 

The training of the network shown in Figure 1 was done using the adaptive momentum 

estimation optimization [24]. The Training Error over each epoch (complete learning cycle for 

all FEM nodes) is given in Figure 4 for three layers. Layers 20 and 30 have a minimum in which 

the training does not converge. An "early-stop"-method [25] could be utilized to optimize the 

NN. Overfitting could potentially be happening, depending on the definition. The NN needs to 

predict the displacement in the next layer and is not designed to give general displacement 

predictions (for now). Thus, overfitting is not a concern, and for easy implementation, training 

was done for up to 10000 epochs.  

 

Figure 4: Training error or L2 error over the epochs of the training of a neural network for predicting the 

node displacement in layers 10, 20, and 30. 

The training errors of layer 10 and layer 20 have some noise before converging, and the error 

of layer 30 has not. Additionally, the limit of the training error reduces and is reached earlier 
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with increasing layer number. Both effects are a result of an increased training set size. More 

layers lead to more FEM nodes and larger sample sizes for each layer. Thus, the training speed 

does not increase, which could be concluded from the minima reached for fewer epochs with 

increasing layer number. Instead, the training time increases drastically. For that reason, only 

the first 40 layers were used. 

It seems sufficient for a NN to have the sum strain as input data, which is the entity distorting 

the elastic-plastic equilibrium. The input nodes for the inherent strain, which are part of the sum 

strain, were dropped during training. Therefore, it is to assume that only data directly impacting 

the linear equation of the NR (Eq. (4)) should be used as input. The plastic strain will be 

investigated in future architectures. 

The predicted displacement field is mapped to a three-dimensional structure using a 

Delaunay filter in the software Paraview (Figure 5a). In comparison, the FEM result for the 

same layer is shown in Figure 5b. The transition from the substrate to the printed structure in 

Figure 5a is an artifact from the filter. Visually, there is little to no difference between the 

predicted results and the results solving the elastic-plastic equilibrium using the FEM. 

 

Figure 5: Comparison of a neural network prediction (a) and an elastic-plastic finite element simulation (b). 

The x-displacement is displayed on the color map. The node data of the neural network was transformed into a 

surface plot by a Delaunay filter.  

Figure 6 displays the predicted displacement values over the target values of the FEM for a 

single layer. The values of the NN prediction are shown. Figure 6a shows these values for all 

nodes and Figure 6b only for the nodes of the new layer. For an optimal prediction, the points 

must align with a gradient of 1. The results of the NN follow this line with a slight deviation. 

For comparison, the standard method is plotted as well, where the displacement field of the last 

layer is used as a test displacement for the current layer. The prediction of the NN is overall 

better than the standard method, especially for the FEM nodes in the new layer. The linear 

regression slopes for the first 40 layers are shown in Figure 7a/b. The average slope over all 

nodes is 1.00 ± 0.05 for the NN prediction and 0.88 ± 0.08 for the standard method. A strong 

potential of the NN to be used to predict the test solution in the NR is indicated by the average 

slope values.   

Significant improvements are primarily located in the new layer FEM nodes, where the slope 

was increased from 0.75 ± 0.06 to 0.97 ± 0.08. The prediction of the NN can even lead to 

errors when applied to all nodes, which can be seen in Figure 6a. The displacement values 

smaller than −0.5 mm practically do not change, whereby the NN predicts small changes. For 

each FEM node, the effect of subsequent layers decreases until new layers have nearly no 
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influence on the displacement field in that node. The NN prediction, as imperfect as a NN 

regression is, will slightly alter the displacement. Therefore, the NN should only be used to 

predict displacements close to the current layer to avoid such effects or introduce a cut-off value 

when the new displacement is set to zero. 

 

Figure 6: Comparison of test solutions of the elastic-plastic Newton-Raphson iteration in an inherent strain 

simulation for wire arc additive manufacturing of a cylinder specimen. Standard method is the displacement field 

of the last layer (red), and NN is a prediction for the displacement based on a neural network. (a) shows the 

results for the x -displacement for all nodes and (b) for the nodes in the new layer. 

The simulation results of the second specimen have the most considerable displacement in 

the substrate material instead of the new layer. The cylindric specimen has a self-similarity of 

the displacement field between each layer. In contrast, the displacement in the wall with a one-

sided clamped substrate will increase over all 13 layers. The slopes of linear regression for this 

specimen are shown in Figure 7c/d. The average slope is still around 1 with 1.01 ± 0.13, but 

the high standard deviation is over 10 %. Primarily the first layers seem to scatter around the 

slope of 1, and no noticeable improvement to the standard method can be seen. However, after 

the eighth layer, the NN outperforms the standard method. When the NN learns from the last 

layer what the change in the displacement field of the substrate plate is, it will overestimate the 

displacement for the new layer. After the eighth layer, the displacement change in the substrate 

gets smaller, which can also be seen by the slope of the standard method for all nodes getting 

closer to 1 (Figure 7c). It follows that the prediction in the newly added layer is more critical 

than the displacement prediction in the substrate material. In conclusion, training on multiple 

equilibria for different layers or instead of training a new NN updating the existing NN from 

the last layer should be considered.   
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Figure 7: Comparison of a neural network-based prediction of the elastic-plastic equilibrium and using the 

displacement field of the equilibrium of the last layer in an additive manufacturing inherent strain simulation. 

Slopes of linear regression taken from the test solution over the calculated equilibrium of the next layer for all 

nodes (a)/(c) and for only new layer nodes (b)/(d). (a)/(b) for a cylindric specimen, and (c)/(d) for a wall on a 

substrate clamped on one side.  

4 CONCLUSION & OUTLOOK 

In this work, a NN framework has been presented, which can predict the displacement field 

of the next layer of an additive manufacturing process using the simulated displacement of 

previous layers. The NN prediction matches the FEM results with high accuracy, especially for 

the new layer nodes. The work contributes to the field of additive manufacturing simulation by 

proposing a novel and efficient way of using machine learning. The NN can capture the 

complex nonlinear relationship between geometry and displacement.  

However, this work also shows some limitations. Only two thin-walled specimens were 

considered for testing the NN. It is unclear how well the model can handle more complex 

structures with more bulk material. Secondly, only one NN architecture and training method 

was investigated. Possibly, other architectures and training algorithms can lead to better results. 

Future work will focus on implementing the NN prediction in inherent strain simulations to 

improve the calculation time. Different training methods must be investigated, the training set 

size has to be limited, and the trained NN should be updated. Else, the potential benefit of 

reducing NR iteration will be time-wise compensated by training of the NN. Another critical 
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point in the future is a limit test of the model: Can it be used to skip the NR in some layers 

altogether? Can the NN be designed to work process-wise and not specimen-wise?  

The main takeaway message of this work is that NN can be a powerful tool for AM 

simulation with the potential to reduce computational time in the future significantly. 
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