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ABSTRACT

In this work a coupled thermo-chemo-mechanical model for the behaviour
of concrete at early ages is proposed. In this second part the formulation
and assessment of the mechanical aspects of the model are presented. The
short and long term mechanical behaviour is modelled via a viscoelastic
damage model which accounts for the aging effects. The short term model
is based on the framework of the Continuum Damage Mechanics Theory.
A novel normalized format of the damage model is proposed, so that the
phenomenon of aging is accounted for in a natural fashion. Long term effects
are included by incorporating a creep model inspired in the Microprestress-
Solidification Theory.
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INTRODUCTION

In the companion paper (Cervera et al. 1998) the formulation and as-
sessment of the thermo-chemical aspects of the proposed model were pre-
sented. This second part presents the full thermo-chemo-mechanical model
which considers many of the relevant features of the mechanical behaviour
of concrete at early ages, in a format suitable for its implementation in
the general framework of the Finite Element Method. Firstly, a thermo-
chemo-mechanical model is proposed to describe the short term behaviour
of concrete at early ages. The reference model is based on the theory of Con-
tinuum Damage Mechanics and it incorporates two separate scalar internal
variables to represent damage both under tension and compression condi-
tions. The damage model is reformulated in a suitable normalized format so
that it can incorporate the phenomenon of aging. Secondly, the proposed
model is extended to include the long term mechanical behaviour. This
is done by incorporating a creep model inspired in the recently proposed
Microprestress-Solidification Theory and coupling it to the aging-damage
model proposed in the first part of the paper. Finally, different available
experimental data sets are used to compare the observed behaviour of con-
ventional and high-performance concrete mixes at early ages with the sim-
ulations obtained using the proposed model.

SHORT TERM MECHANICAL BEHAVIOUR

The mechanical behaviour of concrete, like other geomaterials, is complex
and highly nonlinear, even for moderate stress levels. A reasonable model
should contemplate features such as: (a) large difference in the tensile and
compressive strengths, leading to rather distinct stress-strain curves ob-
tained under tension or compression, (b) stiffness recovery upon load sign
reversal, that is, passing from tension to compression, or viceversa, (c)
strength enhancement under 2D or 3D stress states, when compared to
uniaxial tests, (d) plastic deformation after unloading, (e) rate sensitivity,
etc. The available literature includes models based on the theories of hy-
poelasticity, hyperelasticity, plasticity, fracture mechanics, plastic-fracture,
or continuum damage, to name only some of the more popular ones. The
present work will make use of a continuum damage model to characterize
the mechanical behaviour of concrete. The Continuum Damage Theory was
firstly intoduced by Kachanov (1958) in the context of creep-related prob-
lems, but it has afterwards been accepted as a valid alternative to deal with
complex material behaviour. It is nowadays used for materials so different
as metals, ceramics, rock and concrete, and within a wide range of applica-
tions (creep, fatigue, progressive failure, etc.). The reason for its popularity
is as much the intrinsic simplicity and versatility of the approach, as well
as its consistency, based on the theory of thermodynamics of irreversible
processes.

Among the different possibilities that such a framework offers (Lemaitre
and Chaboche 1978; Lemaitre 1984; Chaboche 1988a,b; Simé and Ju
1987a,b; Mazars and Pijaudier-Cabot 1989), this work will make use of
an isotropic damage model, with only two scalar internal variables to mon-
itor the local damage under tension and compression, respectively. This



will provide a simple constitutive model which, nevertheless, is able to cap-
ture the overall non-linear behaviour of concrete including strain-softening
response and stiffness degradation and regradation under multiple stress
reversals. Furthermore, the model can be implemented in a strain—driven
form which leads to an almost closed—form algorithm to integrate the stress
tensor in time. This is a most valuable feature for a model intended to be
used in large scale computations. The damage model presented here is an
extension of the one described in Cervera et al. (1995, 1996) and Faria et al.
(1998), extended to account for temperature effects and the phenomenon of
aging. For simplicity, only the rate independent format of the model will
be considered, and no plastic deformations will be included.

Effective Stresses

The Continuum Damage Mechanics Theory (CDMT) is based on the defi-
nition of the effective stress concept, which is introduced in connection with
the hypothesis of strain equivalence (Lemaitre and Chaboche 1978): the
strain associated with a damaged state under the applied stress o is equiv-
alent to the strain associated with its undamaged state under the effective
stress 3. In the present work the (second order) effective stress tensor &
will assume the following hyper-elastic form:

T (€eyk) = D(K) : €e (1)

where €, is the (second order) elastic strain tensor, D (k) is the usual (fourth
order) linear—elastic constitutive tensor and (:) denotes the tensorial prod-
uct contracted on two indices.

As our aim is to use a scalar damage model with separated internal
damage variables for tensile and compressive stress contributions, a split of
the effective stress tensor into tensile and compressive components is needed.
In order to identify clearly contributions with respect to each one of these
independent effective stress tensors, (+) and (-) indices will be extensively
used, referring to tensile and compressive entities, respectively. In this work,
the stress split will be performed as in Cervera et al. (1995, 1996) and Faria
et al. (1998):

3
gt = <o>= )Y <7;>p;®p;
j=1
3
T = >0<= ) >0;<p;®p; (2)
i=j

where 7; denotes the j-th principal stress value from tensor @, p; repre-
sents the unit vector associated with its respective principal direction and
the symbol ® denotes the tensorial product. The symbols < . > are the
Macaulay brackets (< z >= z, ifz > 0,< z >= 0, if z < 0) and symbols
>.<aresuchthat >z <=1z, ifz<0,>2z <=0, ifz > 0.

Free Energy and Constitutive Equation

In this Section we will consider the short term mechanical behaviour of
concrete. The denomination “short term” is used in relation to the time



scale in which the hydration and aging phenomena take place, that is, the
mechanical loading process will be considered as instantaneous (compared
to the chemical and aging phenomena, see Part I). This means that, without
loss of generality, the mechanical model can be defined assuming that the
aging degree has a fixed value, K = K. In consequence, all the related
mechanical properties are also considered at fixed values: f~(k), f (&),
E(R), G}"(Fo) and G} (k). Therefore, the free energy and the constitutive
equation will not be considered explicitely dependent on the hydration and
aging degrees, ¢ and k. Also, and consequently, all terms depending on
their time derivatives, § and £, will be neglected in the definition of the
mechanical dissipation. An extended model, applicable to the modelling of
long term mechanical behaviour (under sustained loading) will be described
in the next Section.

Let us define the elastic free energies associated with the tensile and
compressive effective stresses in the form

WE = W) = %Ei:D_lzﬁ (3)
where the superindex (+) may mean tension or compression, as convenient.
Some algebra is needed to show that W > 0. Let us also introduce two
internal-like variables, d™ and d~, the damage indices under tension and
compression, respectively, whose definition and evolution in terms of the real
internal variables will be given later. Extending the concepts introduced in
Faria et al. (1998), the mechanical free energy term for the damage model
is defined by combining these elements in the form:

U = W(ee,d",d)
= W'(€e,d") + W (€¢,d™)
= (1-d"W(ee) + (1 —d7)W, (ee) (4)
From this, and provided that 0 < d*,d~ < 1, it can be shown that W > 0
(Faria et al. 1998).

The constitutive equation for the damage model is obtained using Cole-
man’s method as:

o= 0,9 =(1-d)e"+(1—-d )5~ (5)
The mechanical dissipation can be expressed as
Dpech = WiHdY + W;d™ >0 (6)

provided that the damage indices increase monotonically, d'+, d- >0.

Characterization of Damage

In order to clearly define concepts such as loading, unloading, or reloading
for general 3D stress states, a scalar positive quantity, termed as normal-
ized equivalent stress, will be defined. This will permit the comparison
of different 3D stress states, even for different degrees of hydration. With
such a definition, distinct tridimensional stress states can be mapped to a
single normalized equivalent unidimensional stress test, which makes their
quantitative comparison possible.



As a consequence of the stress split, two separate equivalent effective
stress norms are necessary: a normalized equivalent effective tensile norm
7+, and a normalized equivalent effective compressive norm 7-. In the
present work they will assume the following form:

o+ 7\
™t = [(f?) 1 O (f?)] = f% [a%: Cc* :5]1/2 (7)

where two non-dimensional fourth order metric tensors C* have been in-
troduced. Tensors C* do not depend on the aging degree. The role of these
tensors is to define the shape of the damage bounding surfaces in a normal-
ized effective stress space, as it will be explained below. Note that the two
metric tensors can be different for the tensile and compressive norms, C"
and C~, respectively.

The normalizing factors fF (&) are introduced in Eq. (7) to account for
the dependency of the mechanical strengths on the aging degree. From
the physical point of view, they represent the values of the tensile f2r and
compressive f; uniaxial stresses that define the onset of damage under
uniaxial tension and compression, respectively. These values can be taken
as proportional to the corresponding peak strengths f¥ defined by the aging
model (see Part I) as f, (k) = A\; f~(R) and ff (&) = M fT(R), respectively.

With the above definitions for the equivalent effective stresses, two sep-
arated damage criteria, g™ and g™, are introduced for tension and compres-
sion, respectively:

g () =rF —rE < (8)

Variables 7 and 7~ are normalized internal strain-like variables which can
be interpreted as current damage thresholds, in the sense that their values
control the size of the (monotonically) expanding damage surfaces. Due to
its normalized nature, the initial values are unitary, 7‘3 =7, =1.

This means that the damage criteria are defined in a normalized effec-
tive stress space (or in a normalized strain space). The shape of the two
damage bounding surfaces in the normalized effective stress space does not
depend on the aging degree. This is a very attractive feature of the present
normalized format for the damage model. In fact, the shape of the damage
criteria is defined by the metric tensors C*. These tensors must be isotropic
and positive definite, in the form:

C* = (1+9H) I -9*1®1 with 0<+*<1 (9)

where I is the fourth order unit tensor, 1 is the second order unit tensor and
4% is a parameter related to the equibiaxial tensile/compressive strengths.

Calling p* to the ratio between the biaxial and uniaxial strengths, it is

n 1

(T 1o

Figure 1 shows a 2D representation of the damage criteria for two pos-
sible selections of these tensors: (a) v =0, C* =T represents a rounded
Rankine-type of criterion with p* = 1/1/2 = 0.707, while (b) v* = 0.622
represents a much more realistic criterion for concrete with pt =115 A
third possibility is to use (c) 7= =v, Ct =D ! = (D/E)~1, which rep-
resents criteria related to the (normalized) tensile and compressive elastic



Figure 1: Two different damage criteria.

free energies, but leads to a quite small pt = 0.767. Note that options (a)
and (c) are identical if the effect of Poisson’s ratio is disregarded.

The damage bounding surfaces defined in the normalized effective stress
space by Eq. (8) can also be defined in the real effective stress space in the
form

g= (1%,7%) = [ g* (r5,0%) =% =7 <0 (11)

where 7% and #% are unscaled versions of 7% and ¥, respectively,
2 — —11/2 .
#r=[gt:C0*: 7] / and 7t =frrt (12)

Therefore, it is clear that the scaling factors f*(x) play the role of aging
(chemical) hardening parameters, as they define the mapping of the damage
bounding surfaces to the current effective stress space, and thus, the growth
of their size as a result of the aging process. Since f; and f; are not
necessarily proportional (see Aging Model in Part I), the damage surfaces
for different hardening degrees are not necessarily homothetical.

Figure 2 shows a 2D representation of the mapping of the damage criteria
from (a) the normalized effective stress space to (b) the real effective stress
space, in terms of the aging degree.

(b)

Figure 2: Mapping from the (a) normalized to the (b) real stress space.



Evolution of Damage

The evolution (expansion) of the damage bounding surfaces in the normal-
ized space for loading, unloading and reloading conditions is controled by
the Kuhn-Tucker relations and the damage consistency condition, which can
be written as

>0 gt<0 gt =
gt = 0 (13)

leading, in view of Eq. (8), to the loading condition 7+ = 7%, This, in turn,
leads to the explicit definition of the current values of the internal variables
in the form

r¥ = max [réc, max(Ti)] (14)

Note that Eq. (14) allows to compute the current values for ¥ in terms of
the current values of 7+, which in turn, depend explicitly on the current
strains, temperature and degree of aging (see Egs. (1) and (7)). For a given
degree of aging, an increase of the elastic strains (and, consequently, effective
stresses) would lead to an expansion of the bounding surfaces due to the
evolution (increase) of damage. Alternatively, for a given state of strain
and corresponding r* values, an increase in the aging degree would lead to
an expansion of the bounding surfaces without evolution of damage (this is
called chemical hardening).

Finally, the damage indices d* and d~ are explicitly defined in terms
of the corresponding current values of the damage thresholds, so that they
are monotonically increasing functions such that 0 < d*(r¥) < 1. Let us
drop the superindex (=£) in the following for the sake of brevity, and let us
introduce the values 7. = 1/\. = f(R)/fe(E), establishing the size of the
bounding damage surface for the onset of damage and 7, > r¢, establishing
the size of the bounding damage surface at peak strength. These two values
define the strain-hardening part of the uniaxial stress-strain curve for the
material. Note that necessarily r, > r, > 79 = 1. For the limit case
Tp = re = 1o = 1 the material would exhibit softening immediately after the
onset of damage, which is an option often used for tension strain-softening.

In this work, we will use the functions

2
r, ([T—1
d(r) = Ay —Tﬁ (Tp = 1) rg<r<rT, (15)
_ 1_Te 1 /r —Tp) <
dir) = 1 - exp B, ( m Ty BT (16)

where the constants A; and B, are defined as

Ty —Te

A, = -2
d . (17)
1r 1 EG —
By = z2e—L4F
d 2 r, I* f2 + d (18)

where By = A, (rg—3rp+2) / 67¢ (r,—1)2. In Eq. (18) the fracture energies
(under tension and compression) of the material G and the characteristic



length [* have been introduced to ensure mesh-size objective results (Oliver
1989).

Note that the dependence of the fracture energies on the aging degree
defined by the aging model (see Part I) imply that the fraction EG i f 2 ig
be independent of x, so that E’Gf/f2 = Eoonoo/fgo, where the subscript
(00) means values at the end of the hydration process. This means that the
parametre B, is independent of the aging degree.

Note also, that for the limit case ro = r, = rp, Egs. (17) and (18)
yield A; =0and By =1/2— EG f/ I* f2, a well-known result for exponential
softening (Cervera et al. 1995, 1996).

Figure 3(a) shows a schematic representation of a uniaxial stress vs.
strain curve, which explains the role of parameters r. and r,. Figure 3(b)
shows the evolution of the stress vs strain curves for different increasing
aging degrees.
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Figure 3: Uniaxial stress-strain curves.

Thermal and Chemical Coupling

In order to account for thermo-mechanical and chemo-mechanical effects,
the (second order) elastic strain tensor €, is redefined as:

€e(e,T,¢8) =€ — [ar (T — Tref) + ] 1 (19)

where € is the (second order) total strain tensor, ar and ag are the thermal
and chemical volumetric change coefficients, respectively, and 1 is a (second
order) unit tensor. The reference temperature 7)., 7 can be taken as equal
to the temperature reached at the end of the setting phase (when & = £,;),
so that the thermal stressing initiates then.

With this redefinition, the above given expressions for the effective
stresses, Eq. (1), the mechanical part of the free energy, Eq. (4), the consti-
tutive equation, (Eq. (5), and the mechanical dissipation, Eq. (6), remain
identical.

LONG TERM MECHANICAL BEHAVIOUR

The mechanical model introduced in the previous Section is able to de-
scribe the short term mechanical behaviour of concrete at early ages. In



this Section the inclusion of the long term behaviour, or behaviour under
sustained loading, will be addressed. The basic idea is to use a viscoelastic
aging model, able to reproduce the creep and relaxation phenomena typical
of long term behaviour of concrete. This must be coupled to the damage
model described above, also considering the relevant thermal and chemical
effects.

As in the long term behaviour the time scale in which the loading takes
place is comparable to that in which the hydration and aging processes
occur, both the hydration and aging degrees will be explicitely considered
in the definition of the model.

Solidification Theory

In classical viscoelasticity, the mechanical behaviour is characterized by the
relaxation function or the compliance function and the constitutive rela-
tionships are formulated in the form of Volterra integral equations (Bazant
1988). This approach is clearly unsuitable for numerical computations be-
cause of its memory and CPU time requirements.

Following previous work regarding the long term behaviour of concrete
(Cervera et al. 1992), and the recommendations of Carol and Bazant (1993),
we will consider the relaxation function of concrete expanded into a Dirich-
let series, and retain only a finite number of terms, say N. This achieves
a double goal: first, the constitutive laws for the viscoelastic material can
be written in terms of a finite number of internal variables, and only these
need to be stored from one time step to the next, thus providing huge com-
putational advantages compared to the hereditary integral equations; and
secondly, the resulting rheological model can be interpreted as a generalized
Maxwell chain, where a number of springs and dashpots are arranged in
parallel. Alternatively, the compliance function of concrete can be consid-
ered and expanded in a Dirichlet series. This leads to a generalized Kelvin
chain with a series arrangement (see Bazant and Prasannan 1989; Carol and
Bazant 1993; Bazant et al. 1997).

Although both approaches are completely equivalent (if a large enough
number of terms is considered in the Dirichlet series), the first one leads to
first order differential equations to be solved for the evolution of the internal
variables, while the second approach leads to second order differential equa-
tions. Therefore, the Maxwell chain model is preferred here, with the elastic
moduli, E%, and the dashpot viscosities, 7%, of the i = 1,..., N Maxwell el-
ements of the chain as material parameters. It is also helpful to consider
the elastic moduli, E?, and the relaxation times of the dashpots, defined as
7t = o' /B, as an alternative characterization of the chain. It is convenient
to take 71 = oo in the series expansion, so that E! can be considered as the
asymptotic elastic modulus of concrete.

Figure 4 shows a schematic representation of the rheological model used
for long term behaviour, in the form of a Maxwell chain. In the framework
of aging models the general case of such a rheological model would consist
of independently varying elastic moduli and dashpot viscosities. However,
it is usual to restrict the model to the consideration of proportional vary-
ing elastic moduli and constant relaxation times. This greatly reduces the
complexity and mathematical difficulties of determining the material pa-



rameters, as well as preventing the controversial topic of the divergence of
the creep curves for different ages at loading (Carol and Bazant 1993).

In the following we will assume that during the aging process all the
elastic moduli vary proportionally to the aging function defined by the aging
model, E*(k) = Ag(k) Ei, (where E!_ are values at the end of the hydration
process, and E,, = }:fil El), and that the relaxation times, 7¢, remain
constant. It was shown in Carol and Bazant (1993) that this is equivalent
to the model arising from Solidification Theory (Bazant and Prasannan
1989) with a non-aging Maxwell chain for the basic constituent. The total
stress sustained by the Maxwell chain is easily computed as

N .
o= Z ot (20)
=1

Choosing the stress in each Maxwell element of the chain, ¢, as inter-
nal variables, it was shown there that the first order differential equations
governing the evolution of these variables are

i

where tensor entities are used as the multidimensional counterparts of the
scalar ones used for uniaxial models; € is the total strain tensor and the
non-dimensional tensor D = (1/E)D has been used.

The basic assumption in the derivation of Eq. (21) and behind Solidi-
fication Theory is that when new layers of material solidify, they join the
previously existing in a parallel coupling. We have identified the nondimen-
sional solidified fraction function v(¢) introduced in Bazant (1977) with the
elastic modulus aging function Ag(k) introduced in the aging model.

Micro-prestress Theory

The proposed model (and the underlying Solidification Theory) cannot be
the final solution of the long term aging because the duration of creep for

G ’ _3»
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Figure 4: Rheological model for long term behaviour.
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a fixed load decreases significantly with an increasing age at loading even
after many years, while the hydration degree essentially stops before one
year of age. This experimental evidence was considered in the Solidification
Theory (Bazant and Prasannan 1989) by including a flow element with a
time dependent viscosity connected in series to an aging Kelvin chain. In
Bazant et al. (1997b) a more fundamental approach is followed to justify
the physical existence of such flow term. A physical model is formulated to
obtain the viscosity of the flow dashpot as a function of the tensile micro-
prestress carried by the bonds and bridges crossing the gel pores in the
hardened cement gel. The long term creep is assumed to originate from
viscous shear slips between the opposite walls of micropores in which the
bonds that transmit the micro-prestress break and reform. Let o, be the
value of the micro-prestress and 7, be the value of the viscosity of the
corresponding flow term.

Let o0 and 7,0 be their initial values. Let us assume that the viscosity
is inversally proportional to the micro-prestress, so that

e (22)
00 UM
where p is a variable that can be regarded as the normalized value of the
micro-prestress. Note that initially x(¢ = 0) = 1. A nonlinear differential
equation defining the evolution of y in terms of the relative humidity, A,

and its variation, h, may be written as (Bazant et al. 1997b)

. h
[+ cuo pQ = —cy ;A (23)

where c,0 and c,; are material properties. If humidity effects are not con-
sidered (sealed specimens, basic creep), Eq. (23) reduces to

b= —cuo /1‘2 (24)

which can be integrated in time to obtain the evolution of the normalized
micro-prestress: .
u(t) = T ont (25)

Then the viscosity can be computed as 7, = n,0/p. Note that as time
increases, the micro-prestress decreases, and so the viscosity of the flow
term increases. Eventually, the micro-prestress will vanish, the viscosity
will reach tend to infinity and the flow term will become inactive.

Although in the mentioned references the flow element was connected in
series to a Kelvin chain with aging elastic moduli, the same behaviour can
be obtained with a generalized Maxwell chain with aging elastic moduli. To
this end let us define the relaxation time of the flow term as

=M Mwo/B o Ty
E AEEoo >\E,UJ

where 7,0 = nuo/Eo is a material property. Now, Eq. (21) has to be
modified to include the effect of the nonlinear flow term:

T (26)

. 1 1 . . —
&+ ( +—) o' = E(k)Dé for i=1,..,N (27)
Ty

s
Note that the effect of the flow term is completely defined with two ad-

ditional material properties: Tu0 and c,o. The first one defines the initial
value of the viscosity, and the second one governs its rate of evolution.
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Viscous strains

In the following, we will select the viscous strains in each Maxwell element,
e*, rather than the stress, o, as internal variables. The relationship between
them is

o' = E{(k)D : (e — € (28)

Substitution of Eq. (28) into Eq. (27) leads to the obtention of the
evolution law for the viscous strains

g (1 1 1 L1 ; o
EZ:(;—FE-F;;)(E—Ez):—”A_—i(E—E) for Z—‘:l,...,N (29)

with 74(k) = Ag/ )\E representing the aging effect on the elastic modulus.
Note that even if 7¢ and 7, are sufficiently large, there would be some
viscous straining as long as the aging progresses and the elastic modulus
varies ()\ g # 0). As time increases, the rate of hydration decreases, and so
the viscosity due to aging increases. Eventually, 7,(t = 00) = co and the
model would revert to a standard Maxwell viscoelastic arrangement.

Eq. (29) represents the evolution law for the viscous strains. Details on
the numerical integration of Eq. (29) are given in Cervera and al. (1992)
and Galindo (1993).

Thermodynamic Framework

In the long term behaviour of concrete both the hydration and aging degrees,
¢ and k, play a significant role, and consequently, they will be explicitely
considered in the definition of the free energy of the model and in the state
equations. Also, the corresponding terms depending on their time deriva-
tives will be considered in the expression of the mechanical dissipation.

Let us define the elastic free energy associated to each element in the
Maxwell chain in the form

Wi = Wi(eer)

1 2 7 T\ 1
= = (Ei (k) D)o
- %sé:(Ei(n)ﬁ):si (30)

where the elastic strain tensor is defined as €} = & — €', for each Maxwell
element.

The total free energy associated to the Maxwell chain is obtained by
adding the contributions of the elements

N
W, = Welel, k) = Y Wi(el, k) (31)
=1

Using Coleman’s method, the total stress can be obtained from this
expression as

N N
o= 0e,We =0 0 W, = ZEZ Z (32)

=1

12



Note that the introduced viscous strains e’ are the thermodynamical
forces conjugated to the stresses in the chain elements o* (ot = —0g: W,).

Also, the mechanical dissipation for the Maxwell chain can be computed
as

N
2 2 1 -
Diech = El (;-I-E-FT—G)WQ >0 (33)
i=

where 71, Ty, Tq and W! have already been defined.

Aging Viscoelasticity and Damage

Finally, let us consider the coupling of the viscoelastic model described above
with the aging damage model described in Section , as well as including the
relevant thermal and chemical couplings.

The basic hypothesis is that the stress sustained by the Maxwell chain
is the effective (undamaged) stress, rather than the total stress. This idea
is based on the CDMT concept that it is the effective stress the one acting
on the effective (undamaged) solid concrete, while the total stress acts on
the whole (damaged) solid.

Let us begin by defining the effective stresses and the elastic strains for
one element of the Maxwell chain analogously to Egs. (1) and (19):

& (ei,5) = B(x) D : ¢} (34)

with _ . .
€.(e,e"\T\§) =e —er — ¢ — €° (35)

where the thermal, e7 = ar (T — Tr¢f) 1, and chemical, e, = a¢{ 1, vol-
umetric strains affect all the elements in the same way, but the (second
order) viscous strain tensor, €°, is different for each Maxwell element. This
means that the elastic strains and the effective stresses in the different chain
elements will be neither proportional, nor co-rotational. Let us also define
the stress split for each element, as

3
7t =) <o;>pi@p, and T =7 -7 (36)
j=1

where 63- denotes the j-th principal stress value from tensor &, pz- repre-
sents the unit vector associated with its respective principal direction and
the symbol ® denotes the tensorial product. The symbols < . > are the
Macaulay brackets.

Let us define the elastic free energy associated with the tensile and
compressive effective stresses for each element in the form

we* Wit (el k) =

W = Wi(el,k) = = : (E(k)D)!: 7 (37)

Some algebra is needed to show that Wi+, Wi~ > 0 (see Faria et al.
1998 for details). The total elastic free energy associated to the Maxwell
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chain is obtained by adding the contributions of the elements

We = We(Ei, K;) .
= W;(eéah") + We_(si,ah")
N N
= ) Wit(eer) + ) W (et k) (38)
=1 i=1
~ Introducing the damage indices under tension and compression d* and
d~, respectively, the mechanical free energy term is defined by combining
previously defined items in the form:

W = W(e,k,d",d)
= WT(el,k,d",d™) + W (e, k,d",d")
1 —dN) W (el k) + (1—d7) W, (€L, k) (39)

Note that this term is very similar to that in Eq. (4), and it already includes
the thermo-mechanical and chemo-mechanical couplings through Egs. (34)
and (35). It can be shown that W > 0.

The free energy for the complete thermo-chemo-mechanical model can
be expressed in terms of two external variables, the strain tensor € and the
temperature T, the N viscous strain tensors ¢*, the two damage indices, d*
and d~, and the hydration and aging degrees £ and k, in the form:

U = U(e,k,dh,d)
= Wi(et,k,d",d7) + V(T) + L(T,€) + H(¢) (40)
where the thermal V(T'), the chemical H(¢) and the coupling thermo-chem-
ical L(T,¢) terms were described in the hydration model.
The state equations for the thermo-chemo-mechanical model are ob-

tained from Eq. (40) using Coleman’s method. The expression for the en-
tropy and the chemical affinity are:

S=-0r¥ = 7 [OT~T)-Q(E)] (a1)
0

Ago
kf Eoo

where the coupling terms —0rW in Eq. (41) and —0¢L, —0;W in Eq. (42)

have been neglected because they can only be significant for very specific

applications, with concrete subjected to high temperature and/or pressure.
The stresses are obtained as:

Ag = -0V = ke ( + f) (3 (42)

g = age\y = 856W+ + aeeW_

= (1-d%) iﬁ” + (1-d7) i?i_
i=1 i=1

= (1-dH)et+(1-d)7" (43)

so that the same final form as in Eq. (5) is obtained for the damage model.

The definition of the damage surfaces and the evolution of the damage
indices and thresholds can be done in terms of the total tensile and compres-
sive parts of the effective stress, @+ and @, as explained in the previous
Section.
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The total dissipation can be splitted into its chemical and mechanical
parts, D = Dchem + Dmechs with

Dehem = A{f >0 (44)
No2oo2 1y, 4ot .

Duech = 3 (5+—+—) W' + Wi+ Wod™ 20 (45)
i_1 T TN Ta

provided that the elastic modulus and the damage indices increase mono-
tonically, 7,,d*,d= > 0.

NUMERICAL SIMULATIONS

This Section presents an assessment of the thermo-chemo-mechanical model
described above. All the problems presented are solved advancing step-by-
step in time. Solution of the purely chemo-mechanical problems consists of,
for each time step, solving the mechanical equilibrium equation, together
with the differential equation governing the chemical process (see Part I).
Solution of the coupled thermo-chemo-mechanical problems consists of, for
each time step, solving firstly the thermal equation, together with the dif-
ferential equation governing the chemical process; and secondly, solving the
mechanical problem, using the computed temperature and hydration degree
fields (Prato et al. 1997).

Short term mechanical model

This Subsection is devoted to compare available experimental data with
numerical predictions obtained using the thermo-chemo-mechanical model
proposed above. The objective is to demonstrate that the model can ad-
equately reproduce the evolution of the mechanical properties of concrete
at early ages and predict the experimental stress versus strain reponse at
different stages of the hydration process. Both isothermal and adiabatic
conditions are considered.

The experimental tests were carried out at McGill University, Montreal,
Canada (Khan et al. 1995). The samples were concrete cylinders, 100 x 200
mm., cast in special plastic cylinder molds designed to enable demolding at
very early ages without disturbing the concrete. Details on the composi-
tion and properties of the concrete used are listed in Khan et al. (1995).
Different concrete mixes were used in the experimental program in order to
test low, medium and high strength concretes. We will consider two mixes:
an ordinary Portland concrete, here referred to as C-30, and a high-strenth
concrete, here referred to as C-100 (i.e. the approximate 28-days concrete
strengths in MPa.). C-30 is a Type 10 cement concrete mix, without super-
plasticizer addition. C-100 used a Type 10 blended cement containing 9 %
of silica fume and a high dosage of superplasticizer. Table 1 presents the
numerical values that have been used for the numerical simulation of the
tests. Note that the same material properties have been used to simulate the
hydration process under adiabatic and isothermal curing conditions. This
is intended to show the capability of the model to simulate properly the
influence of temperature in the hydration and aging phenomena.

15



[ Properties I C-30 l C-100 J

w/c 0.50 0.25
s/c 0.00 0.09
C [J/m*°C] | 2.07 x 10% | 2.43 x 10°
kr [J/mhs°C] 5207 6420
Ty [°C) 21 21
oo 0.75 0.58
ke/neo [1/hs] | 1.4x10° | 4.0 x 10°
n 7.5 6.0
Ago/ke 1.0x107* | 1.0 x 1071
E,/R[°K] 4000 4000
Qe [J/m®] | 1.58 x 10® | 2.72 x 10°
gset 0.2 0.2
Ay 1.82 4.24
By 0.40 0.49
fo [MPa) 34.5 109
Tr[°C) 100 100
Tref [°C] 21 21
nr 0.42 0.0
Ew [GPd] 29.6 46.4
ro 2.76 2.72
g 4.74 3.74

Table 1: Material Properties for Short Term Mechanical Simulations.

Adiabatic Tests

For these tests a computer controlled temperature-matched curing technique
was developed so that adiabatic conditions could be simulated. Details on
the experimental set up can be obtained from Khan et al. (1995, 1998).

Figures 5 and 6 show results for the tests conducted on the C-30 and
C-100 mixes, respectively. Figure 5(a) shows the comparison between the
evolution of the temperature rise obtained from the model and that ob-
tained in the experiment for the first 36 hours. The dots represent the
experimental values, the solid line is the prediction by the model. Unfor-
tunately, experimental temperatures beyond the first 24 hours can not be
considered realistic, as a certain drop is reported. This is not possible in
an adiabatic test, especially as a maintained increase in the compressive
strength is measured until the seventh day of age. The fact can be related
to heat losses due to conduction or other experimental fault. Even though,
the agreement between the numerical and experimental results is good.

Figure 5(b) shows the evolution of the compressive strength with the
hydration degree (adiabatic test). The solid line represents the results ob-
tained from the simulation, while the black dots represent experimental
values. The experimental values of the hydration degree are obtained from
the experimental temperature rise versus time curve in the form indicated
in Part I of the paper. A remarkable agreement is obtained over the whole
time span of the experiment.

Figure 5(c) shows stress-strain curves for uniaxial compression tests car-
ried out at different ages of the concrete. Only those curves obtained for
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Figure 5: Results for C-30 concrete.

hydration degrees £ > 0.4 have been selected for comparison. For lower
values of the hydration degree the free water content in the mix is still
high, and the experimental stress-strain curves exhibit a marked viscous
character. The agreement between the computed and experimental results
is remarkable, both in the prediction of the aging effect (corresponding to
the evolution of the compressive strength and the elastic modulus) and in
the description of the nonlinear part of the stress-strain curves. This shows
how the proposed damage model agrees with the experimental behaviour.
Only results up to peak strength are shown, as the behaviour during the
strain-softening part of the curve would be dependent on the localization
pattern in the samples, which is not reported from the experiments.
Figures 6(a), (b) and (c) show analogous results for the adiabatic tests
performed with the C-100 concrete mix. As before, only those curves ob-
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Figure 6: Results for C-100 concrete.

tained for hydration degrees £ > 0.4 have been selected for comparison.
Good overall agreement is achieved. Note how the model is able to repro-
duce the displayed retardation of hydration (more than 12 hours) due to
the high dosage of superplasticizers used for this mix.

Isothermal Tests

The samples used in the isothermal tests were cured under sealed conditions
achieved by wrapping the cylinders with polyfilm. The curing conditions are
such that the temperature rise due to the hydration heat is not significant.
This implies that the tests are carried out in (quasi) isothermal conditions.

Again, figures 5 and 6 show results for the tests conducted on the C-30
and C-100 mixes, respectively. Figure 5(d) shows stress-strain curves for
uniaxial compression tests carried out at different ages of the concrete. The
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agreement between the computed and experimental results is remarkable,
both in the prediction of the aging effect (corresponding to the evolution of
the compressive strength and the elastic modulus) and in the description of
the nonlinear part of the curve. Figure 6(d) show analogous results for the
isothermal tests performed with the C-100 concrete mix.

Figure 5(e) shows the evolution of the compressive strength with time,
both for the adiabatic and isothermal tests. Note that even the same mate-
rial properties have been used for the simulation of the hydration and aging
phenomena, quite different results are obtained, depending on the curing
conditions. Concrete gains strength more rapidly when subjected to adia-
batic curing. On the other hand, the ultimate compressive strength attained
under isothermal curing is 31 % higher than under adiabatic curing. Fig-
ure 5(f) shows the evolution of the elastic modulus with time, both for the
adiabatic and isothermal tests. The observed evolution trend is very similar
to the evolution of the compressive strength. Note that both the evolution
of the compressive strength and the elastic modulus is very well captured
by the proposed aging model. Figures 6(e) and (f) show analogous results
for the adiabatic and isothermal tests performed with the C-100 concrete
mix. Note that the effect of the curing temperature on the ultimate com-
pressive strength is much smaller for high-performance concretes than for
conventional concretes.

Results presented in this Subsection show the ability of the proposed
model to capture the overall short term thermo-chemo-mechanical be-
haviour of concrete at early ages.

Long term mechanical model

This Subsection is devoted to compare available experimental data with nu-
merical predictions obtained using the long term chemo-mechanical model
proposed above. The objective is to demostrate that the model can ad-
equately reproduce the evolution of the mechanical properties of concrete
at early ages and predict the experimental strain versus time reponse for
sustained loading applied at different stages of the aging process. Drying
effects have not been considered in this work; thus, only basic creep experi-
ments will be considered here for comparison. The experimental set ups for
these experiments try to enforce isothermal conditions to exclude the influ-
ence of temperature from the observed creep phenomena. Therefore, all the
simulations in this Subsection are conducted in isothermal conditions.

Bryant and Vadhanavikkit Tests

This Set consists of tests conducted by Bryant and Vadhanavikkit (1987),
and also reported in Bazant et al. (1997a). They refer to w/c = 0.47 con-
crete, the cement used being Ordinary Portland Cement without additives.
Square prisms os sides 150 mm. and length 600 mm. were subjected to an
axial compressive stress of 7 MPa. for five different ages at loading, t = 8,
14, 28, 84 and 182 days, and sustained until about 2,000 days of age.

The material properties used for the numerical simulation are listed in
Table 2. Note that only 2 Maxwell elements are used in the simulation,
while the results reported in Bazant et al. (1997a) used 10 Kelvin units. It
is convenient to take 7! = 00, so that E! can be considered as the asymptotic
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Elasticity Modulus [GPa]

| Properties | B&V | Laplante OPC ‘ Laplante HPC ‘
w/c 0.47 0.50 0.30
s/c 0.00 0.00 0.10
oo 0.75 0.75 0.75
ke /neo [1/hs] | 1.50 x 101° | 1.0(1.2) x 106 | 1.0(1.3) x 106
7 10.0 7.5(6.0) 7.5(6.0)
Ago/ke 03x107% | 1.0x 107 1.0 x 107®
E,/R[°K] 6900 4000 4000
Eset 0.2 0.1 0.1
Ay 3.92 2.56 2.56
By 0.14 0.37 0.37
f> [M Pal] 20 47.5(35.2) 95.3(79.0)
Ey [GPa] 38.3 44.1(38.5) 53.8(49.4)
N 2 2 2
E': E? 31 3:1 81
7! [hs] 00 00 00
72 [hs] 15 15 75(15)
7,0 [R3] 600 700 1000
cuo [1/hs] | 5.0x 1073 6.0 x 1073 2.0 x 1072

Table 2: Material Properties for Long Term Mechanical Simulations.

elastic modulus of concrete. A relation E' : E? = 3 : 1 has been used for
the two elastic moduli in the chain. Note also that only the values for 7,
and cyo are needed for the simulation of the evolution of the micro-prestress
at all ages.

Figure 7(a) shows the evolution of the elastic modulus with time; the

dots represent the experimental values, and the solid line is the prediction
by the model. Figure 7(b) shows the evolution of the total strain with time
for loading at different ages. The overall agreement of the model predictions
with the experimental results is good.
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Figure 7: Long Term Mechanical Simulations. B & V Tests.
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Laplante’s Monotonic Tests

This Set consists of tests carried out at the Ecole Nationale des Ponts et
Chaussées, Paris, France and reported in Laplante (1993). The specimens
were cylinders of diameter 160 mm. and length 100 mm. Two different
concrete mixes were tested. The first was a w/c = 0.5 Ordinary Portland
Concrete without additives. The second was a w/c = 0.3 High Performance
Concrete with silica fume and superplasticizers. The material properties
used for the numerical simulation are listed in Table 2, in the columns
labelled Laplante OPC and Laplante HPC, respectively. Again, only 2
Maxwell elements are used in the simulation.

Figures 8(a) and 8(b) show the comparison between the experiments
and the model simulation for the evolution of the compressive strength and
elastic modulus, respectively, for both mixes.

The specimens were subjected to an axial compressive stress of 30 %
the compressive strength at the age of loading. Figure 8(e) shows strain
versus time curves for OPC loaded at different ages, ¢ = 18 hours, 1, 3, 7
and 28 days. Figure 8(f) shows strain versus time curves for HPC loaded at
different ages, ¢t = 21, 24 hours, 3, 7 and 28 days. Note that the experimental
methodology used in these tests is different from the ones presented above.
On one hand, the applied load is increased with the age at loading; on the
other, tests were conducted at very early ages, less that 1 day. Nevertheless,

the agreement between the experiments and the model simulation is notably
good.
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Figure 8: Monotonic Loading Simulation. Laplante’s Tests.
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Figure 9: Cyclic Loading Simulation. Laplante’s Tests.

Laplante’s Cyclic Tests

This Set consists of tests carried out at the Ecole Nationale des Ponts et
Chaussées, Paris, France and reported in Laplante (1993). The specimens
were cylinders of diameter 300 mm. and length 120 mm. Two different
concrete mixes were tested. The first was a w/c = 0.5 Ordinary Portland
Concrete without additives. The second was a w/c = 0.3 High Performance
Concrete with silica fume and superplastifiers.

The material properties used for the numerical simulation are listed in
Table 2, in the columns labelled Laplante OPC and Laplante HPC, respec-
tively. Note that the concret mixes used for the cyclic tests are different
from the ones used for the static tests. When they differ, the values used
for the numerical simulation of the cyclic tests are indicated in parenthesis.
Again, only 2 Maxwell elements are used in the simulation.
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Figures 9(a) and 9(b) show the comparison between the experiments
and the model simulation for the evolution of the compressive strength and
elastic modulus, respectively, for both mixes.

The specimens were subjected to a cyclic axial compressive stress that
varied according to Figures 9(c) (for the Ordinary Portland Concrete) and
9(d) (for the High Performance Concrete). Figures 9(e) and 9(f) shows
strain versus time curves for both concrete mixes. The dots and dash lines
represent the experimental results, while the solid lines represent the nu-
merical simulation. The agreement between the experiments and the model
simulation is notably good. The model is capable of adequately reproduc-
ing the experimentally observed loading and unloading jumps as well as the
in—between creep behaviour.

CONCLUSIONS

This paper describes a thermo-chemo-mechanical model which accounts for
many of the features observed in the behaviour of concrete at early ages. A
consistent thermodynamic framework is provided for these irreversible pro-
cesses. Expressions for the free energy are provided from which the state
equations are derived. Positive dissipation is guaranteed in all situations.
The short term mechanical behaviour is based on the Continuum Damage
Mechanics Theory. The novel normalized format proposed for the damage
model is found to be particularly attractive, as it accomodates in a nat-
ural fashion the phenomenon of aging (with both the elastic moduli and
the strength depending on the aging degree). The long term mechanical
behaviour is based on the recently proposed Microprestress-Solidification
Theory. The model is well suited for its implementation in a finite ele-
ment devised for thermo-mechanical analysis, and its strain-driven format
allows to aim to large scale computations. The capabilities and potentiality
of the model are shown by performing numerical simulations of adiabatic
and isothermal tests in concrete samples. The qualitative and quantitative
agreement between the model results and the available experimental data
is remarkably good in all situations.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

A4, By = Material properties for hard-softening behaviour;
A¢, Ao = Chemical affinity, Initial chemical affinity;
A¢ = Normalized chemical affinity;

C = Heat capacity per unit volume;
C* = Tensile/compressive metric (fourth order) tensors;
D,D = Constitutive (fourth order) tensor; Normalized idem
d* = Compressive/tensile damage;
Dehemns Dmech = Chemical dissipation, Mechanical dissipation;
E,Ey = Elastic modulus, Final elastic modulus;
E' = Elastic Modulus for Maxwell element i;
f*, fL = Tensile/compressive strength, Final values;
f£ = Elastic limit in uniaxial tests (tension/compression);
g*,g* = Damage criteria, Normalized damage criteria;
G}t = Tensile/compressive fracture energy;

K,G = Bulk and shear moduli;
[* = Characteristic length;

L = Thermo-mechanical contribution to the free energy;
p; = Unit vector associated with principal direction j;
Q¢ = Latent heat per unit of hydration degree;
7+ r* = Damage tensile/compress. thresholds,

Normalized damage tensile/compress. thres.;

r¥ = Normalized elastic tensile/compress. thresholds;
r;,t = Normalized peak values for tensile/compress. thres.;
S = Entropy;
s/c = Silica fume/cement mass ratio;
T,Ty = Temperature, Initial temperature;
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ng = Final temperature reached in an adiabatic test;
Tref = Reference temperature;
V= Thermal contribution to the free energy;
v = Solidified fraction;
W,We = Mechanical contribution to the free energy,
Elastic mech. contribution to the free energy;

Wt wEr = Tensile/compress. mech. part of the free energy,
Elastic tens./compr. mech. part of the free energy;
Wit = Elastic tensile/compress. mech. contribution to the
free energy of a Maxwell element;
w/c = Water/cement mass ratio;
ar,a¢ = Thermal and chemical expansion coefficients;
€,€e = Strain tensor, Elastic strain tensor;
el,e! = Elastic, Viscous strain tensor for Maxwell element i
er,€¢ = Thermal strain tensor, Chemical strain tensor;
MusTMuo = Viscosity of the flow term; Initial viscosity;
4* = Parameter to define the metric tensors;
k = Aging degree;
Ar = Elastic modulus aging function;
)\% = Tensile/compressive strength aging functions;
MY = Elastic threshold aging functions;
= Normalized micro-prestress;
v = Poisson’s ratio;
¥ = Free energy;
p* = Ratio biaxial/uniaxial strengths;
0,0 = Stress tensor, Effective stress tensor;
o = Principal effective stress value j;
OuyOpo = Micro-prestress; Initial micro-prestress;
7' = Relaxation time for Maxwell element i;
Tu, Tuo = Relaxation time associated to flow term, Initial value;
§,600 = Hydration degree, Final hydration degree;
1 = Unit (second order) tensor;

I = Unit (fourth order) tensor;

) = Time derivative or rate;

) = Tensorial product;

():() = Doubly contracted tensorial product; and
> = Macaulay brackets.

26



