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1. Introduction. A posteriori error estimation techniques for the advection-reaction-
diffusion equation were first introduced in the 1980s [27, 33, 31]. These pioneering error
estimates are global in nature, providing bounds of the approximation error in energy-type
norms defined over the entire domain. It was not until the late 1990s when strategies to
compute bounds for linear functional outputs of the solution where developed [19, 18, 26, 4,
10]. These methods, based on duality techniques provide error bounds of local quantities of
interest, outputs here-in.

The strategies providing two-sided bounds of the error in a demanded output rely on
estimating the error in global energy-type norms. The error estimate for the output is ob-
tained combining energy estimates associated to the original problem and to an auxiliary
adjoint problem. In particular, for the non-symmetric advection-diffusion-reaction model
problem, the energy estimates are required for some symmetrized self-adjoint error problems
(diffusion-reaction problems).

For advection dominated problems, the use of stabilized formulations [9] is of outmost
importance. In the present paper we restrict ourselves to standard (non-stabilized) formu-
lations. The use of similar techniques for stabilized methods is going to be presented in a
forthcoming paper.

Any strategy providing energy error estimates for the symmetrized diffusion-reaction
problems may be used to produce estimates for the output. A posteriori error estimates in
global energy norms for the reaction-diffusion equation have been the subject of intense re-
search activity, see for instance [35, 1, 37, 36, 28, 11]. Note, however, that not all the a
posteriori estimates provide strict bounds. For instance, in some cases the expressions that
bound the error involve continuity or interpolation constants which have to be approximated.
Obviously, the cost of guaranteeing strict bounds is in general larger than the cost of the
estimates such that their bounding properties depend on the proper evaluation of unknown
constants.

In the present work, the energy error estimates for the diffusion-reaction problems are
obtained using implicit residual error estimators. These estimators are based on approxi-
mating the error equation by solving local problems. The main ingredients for this kind of
error estimators are the domain decomposition technique and the method to solve the local

∗This work was partially supported by Ministerio de Educación y Ciencia, Grants DPI2007-62395 and BIA2007-
66965 and by Generalitat de Catalunya AGAUR, Grant 2005SGR917.
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error problem. The domain decomposition pertains to the selection of the local subdomains
where the error equation is solved and, eventually, to the local boundary conditions required
to obtain well-posed local problems. Basically, two options are available for the domain
decomposition: 1) the hybrid-flux techniques that use elements as subdomains and require
obtaining equilibrated fluxes around the elements as boundary conditions for the local error
problems and 2) the flux-free techniques where the subdomains are the patches of elements
around every vertex node of the mesh.

The hybrid flux idea [13, 2] is the basis of the classical implicit residual estimates.
Previous to solving the local problems the hybrid fluxes have to be computed using a flux-
equilibration complex algorithm, strongly dependent on the element type and requiring a data
structure that is not natural in a standard finite element code.

The flux-free approach is a promising alternative to standard implicit residual error esti-
mators precluding the necessity of computing equilibrated hybrid fluxes [22, 6, 15, 16]. The
size of the subdomains where the local problems have to be solved is larger than for the hy-
brid flux case, each patch (also called star) containing several elements of the computational
mesh. However, the number of local problems to solve is much lower: recall that in a typical
3D tetrahedral mesh, the ratio elements/vertex nodes is equal to 6. Moreover, the main advan-
tage of these strategies is precisely their flux-free character, that is the boundary conditions
are natural and hence their implementation is straightforward. The domain decomposition is
performed using a partition of unity strategy. The resulting estimates are hence much simpler
from the implementation viewpoint, especially in the 3D cases, and provide upper bounds
of the error (as well as the standard implicit residual estimators with equilibration of hybrid
fluxes).

In the first papers introducing the flux-free idea, the local problems arising from the flux-
free domain decomposition strategy are solved using a finite element mesh inside each local
subdomain. Consequently, the resulting estimates are said to be asymptotic error bounds, that
is with respect to a reference solution associated with a finer reference mesh. This may be
not satisfactory enough, specially if the computational mesh is coarse and the quality of the
reference solution is not guaranteed to be accurate enough. The actual paradigm is to produce
estimates providing bounds with respect to the exact solution, without any further assumption
on a truth reference mesh.

Techniques to obtain exact bounds have been developed in the hybrid flux framework
[29, 30, 21, 39, 23, 24]. The idea is simply solving the local problem using a dual formulation
and to minimize the complementary energy. In the present paper this approach is extended to
the flux-free technique presented in [22]. Thus, exact bounds are recovered without the need
of computing local hybrid fluxes and precluding the annoying implementation of the equili-
bration techniques. In fact, the resulting estimates have similar features as their asymptotic
version, while providing a guaranteed upper bound.

The strategy presented here is also applicable to different flux-free estimates, see for
instance [6, 15, 16]. However, following the ideas presented in [22] the resulting estimates
are much sharper in the asymptotic version and they are therefore preferred to be extended.
This behavior is also observed in [32], where the approach presented in [22] is also compared
to other flux-free techniques in the context of the generalized finite element method.

2. Problem statement. Consider the steady advection-reaction-diffusion equation posed
on a polygonal domain Ω. The boundary ∂Ω is divided into two disjoint parts ΓD and ΓN

such that Γ̄D ∪ Γ̄N = ∂Ω, ΓD ∩ΓN = ∅ and ΓD is a non empty set. The weak solution of the
problem is u ∈ U verifying

a(u, v) = `(v) ∀v ∈ V, (2.1)
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where

a(w, v) :=
∫

Ω

[
ν∇w ·∇v + (α ·∇w)v + σwv

]
dΩ, `(v) :=

∫

Ω

fv dΩ +
∫

ΓN

gv dΓ.

The solution and test spaces are U := {v ∈ H1(Ω), v|ΓD
= uD} and V := {v ∈ H1(Ω),

v|ΓD
= 0} respectively where H1 is the standard Sobolev space of square integrable func-

tions whose first derivative is also square integrable. The data is assumed to be smooth, that
is, f ∈ H−1(Ω), g ∈ H− 1

2 (ΓN), uD ∈ H 1
2 (ΓD), ν ∈ L∞(Ω), σ ∈ L∞(Ω) is a non-negative

real coefficient and the prescribed vector field α ∈ H(div; Ω). Additionally, the nonsym-
metric bilinear form a(·, ·) is assumed to be continuous and coercive in V , and therefore it is
assumed that σ − 1

2∇ · α ≥ 0 in Ω and also that the Dirichlet boundary contains the inflow
boundaries, that is Γ− ⊂ ΓD for Γ− := {x ∈ ∂Ω, α · n < 0}.

The goal of the vast majority of finite element simulations is to determine specific quan-
tities (outputs) which depend on the solution of the partial differential equations governing
the problem. In most cases, moreover, it is crucial to be able to certify the precision of the
approximations of these outputs. Therefore the final goal of most simulations is to provide
upper and lower bounds for the exact value of the quantity of interest, or equivalently, to
provide a range where the exact value of the output lies.

Here, the quantities of interest are restricted to depend linearly on u and to be of the form

`O(u) :=
∫

Ω

fOu dΩ +
∫

ΓN

gOu dΓ, (2.2)

where fO ∈ H−1(Ω) and gO ∈ H− 1
2 (ΓN). The goal is then to provide upper and lower

bounds for s = `O(u), namely,

slb ≤ s ≤ sub,

and at the same time derive an adaptive refinement procedure to be able to improve the accu-
racy of the desired output (i.e. narrow the gap between the bounds sub − slb).

REMARK 1. The form of the output (2.2) includes weighed averages of the solution u
over a region of Ω and weighted averages of u over a curve in a portion of ΓN. However, the
integral of a weighted flux over a portion of ΓD and the integral of the gradient of u times
a weighting function over a region of Ω may also be rewritten in the form (2.2). That is,
equation (2.2) implicitly contains outputs of the form

`O(u) =
∫

ΓD

ωO1 ∇u · n dΓ +
∫

Ω

ωO2 ∇u ·∇χ2 dΩ,

where ωO1 , ωO2 and χ2 are appropriate functions, see reference [30]. This restriction in
the form of the linear-functional output is due to the fact that the present approach aims at
obtaining strict bounds for the quantity of interest – see equation (5.3) in section 5. If only an
approximation or asymptotic bounds are required, the quantity of interest may take a more
general form.

3. Energy reformulation: representation of the output bounds. Most existing tech-
niques to obtain upper and lower bounds for a quantity of interest `O(u) are based on the
fact that bounds for the output may be obtained using available techniques for estimating the
error measured in the energy norm, see for instance [19, 17, 2, 3]. The key point of these
strategies is to recover an alternative representation for the output `O(u) (or in the case of
non-selfadjoint problems for its bounds) in terms of the energy norms of some continuous



4 N. PARÉS, P. DÍEZ AND A. HUERTA

functions. This alternative representation does not directly yield a computable expression
for the bounds of the output because the energy norms appearing in the expression are non-
computable. However, bounds may be easily recovered using existing strategies providing
upper and lower bounds for the error measured in the energy norm.

This section is devoted to describe in detail the representation of bounds for `O(u) in
terms of energy norms for the case of the advection-reaction-diffusion equation which is
non-selfadjoint, see [19]. That is, the key ingredients of the methods to obtain bounds for
s = `O(u) from upper bounds for the energy norm are briefly summarized.

The non-computable expressions for the upper and lower bounds for `O(u) are recovered
in three steps. First, the finite element approximation of u, uh, is computed. This approx-
imation is associated with a finite element mesh of the domain Ω and with a finite element
interpolation space Uh ⊂ U , that is uh ∈ Uh. Second, an adjoint problem associated with
the selected output is introduced, along with its finite element approximation, ψh ∈ Vh ⊂ V .
Finally, the error equations for uh and ψh are modified (symmetrizing the l.h.s.) such that
bounds of s = `O(u) are obtained from linear combinations of the resulting modified errors.

Indeed, let Uh ⊂ U and Vh ⊂ V be the finite element interpolation spaces associated
with a finite element mesh of characteristic size h and degree p for the complete polynomial
base. Then, the bounding procedure may be sketched as:

1. Compute the finite element approximation of the primal problem: find uh ∈ Uh

such that

a(uh, v) = `(v) ∀v ∈ Vh.

2. Introduce the adjoint problem associated with the selected output: find ψ ∈ V such
that

a(v, ψ) = `O(v) ∀v ∈ V,

and compute its finite element approximation: find ψh ∈ Vh such that

a(v, ψh) = `O(v) ∀v ∈ Vh.

3. Recover the bounds for the output in the three following steps:
3.1. Consider the errors in the approximations uh and ψh, e := u − uh ∈ V and

ε := ψ − ψh ∈ V , satisfying the residual equations

a(e, v) = `(v)− a(uh, v) =: RP(v) ∀v ∈ V, (3.1)

and

a(v, ε) = `O(v)− a(v, ψh) =: RD(v) ∀v ∈ V, (3.2)

where RP(·) and RD(·) stand for the weak primal and adjoint residuals associ-
ated with the approximations uh and ψh respectively.

3.2. Introduce the modified symmetric versions of the residual problems: find es

and εs ∈ V such that

as(es, v) = RP(v) ∀v ∈ V, (3.3)

and

as(εs, v) = RD(v) ∀v ∈ V, (3.4)
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where as(·, ·) is the symmetric counterpart of a(·, ·)

as(w, v) =
1
2
(a(w, v) + a(v, w))

=
∫

Ω

[
ν∇w ·∇v + (σ − 1

2
∇ ·α)wv

]
dΩ +

1
2

∫

ΓN

α · nwv dΓ.

(3.5)
3.3. Compute the upper and lower bounds for s as

slb := `O(uh)−1
4
‖κes− 1

κ
εs‖2ub ≤ `O(u) ≤ `O(uh)+

1
4
‖κes+

1
κ

εs‖2ub =: sub,

where ‖·‖ is the energy norm induced by the bilinear form as(·, ·), ‖v‖2 =
as(v, v) = a(v, v), ‖v‖ub represents an upper bound for the value of ‖v‖ and
κ ∈ R is an arbitrary scalar non-zero parameter.

The following theorem shows that the strategy sketched above provides effective bounds
for s.

THEOREM 3.1. Let es and εs ∈ V be such that for any v ∈ V
as(es, v) = RP(v) and as(εs, v) = RD(v).

Then, the following inequality holds for the exact values of es and εs

`O(uh)− 1
4
‖κes − 1

κ
εs‖2 ≤ `O(u) ≤ `O(uh) +

1
4
‖κes +

1
κ

εs‖2,

and therefore, if energy estimates giving upper bounds for ‖κes − 1
κεs‖ are available, one

gets

`O(uh)− 1
4
‖κes − 1

κ
εs‖2ub ≤ `O(u) ≤ `O(uh) +

1
4
‖κes +

1
κ

εs‖2ub. (3.6)

Proof. Taking v = e in (3.2) and using a(e, ψh) = 0 (Galerkin orthogonality) yields the
following error representation

RD(e) = `O(e)− a(e, ψh) = `O(e) = `O(u− uh) = `O(u)− `O(uh). (3.7)

Similarly, taking v = e in equation (3.1) yields

RP(e) = a(e, e) = ‖e‖2. (3.8)

The proof now follows from a simple algebraic manipulation. For any scalar κ 6= 0, we
have that

0 ≤ ‖1
2
(κes ± 1

κ
εs)− κe‖2 =

1
4
‖κes ± 1

κ
εs‖2 + κ2‖e‖2 − κas(κes ± 1

κ
εs, e)

=
1
4
‖κes ± 1

κ
εs‖2 + κ2‖e‖2 − κ2as(es, e)∓ as(εs, e)

=
1
4
‖κes ± 1

κ
εs‖2 + κ2‖e‖2 − κ2RP(e)∓RD(e)

=
1
4
‖κes ± 1

κ
εs‖2 + κ2‖e‖2 − κ2‖e‖2 ∓ (`O(u)− `O(uh))

= ±`O(uh) +
1
4
‖κes ± 1

κ
εs‖2 ∓ `O(u),
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where equations (3.3), (3.4), (3.7) and (3.8) have been used. Consequently,

0 ≤ ‖1
2
(κes ± 1

κ
εs)− κe‖2 = ±`O(uh) +

1
4
‖κes ± 1

κ
εs‖2 ∓ `O(u),

that is

±`O(u) ≤ ±`O(uh) +
1
4
‖κes ± 1

κ
εs‖2.

The proof is concluded by noting that the + sign in the previous equality yields the expression
for the upper bound of `O(u), whereas the − sign yields the expression for the lower bound
of `O(u).

The next section introduces a methodology to obtain strict upper bounds for the energy
norm. This approach is then used to compute ‖κes ± 1/κ εs‖2ub. Note that, in the following,
the subscript ub in the norm is just a notation to denote an upper bound estimate: ‖·‖ub is not
intending to be an alternative norm different than ‖·‖. Thus, for a concrete function v, ‖v‖ub

is an overestimated approximation of ‖v‖.

4. Upper bounds for the energy norm: complementary energy relaxation. Consider
the auxiliary function z ∈ V solution of

as(z, v) = R∗(v) ∀v ∈ V, (4.1)

where R∗(v) = αRP(v) + βRD(v) for α, β ∈ R. Note that for α = 1 and β = 0, R∗(v) =
RP(v) and problem (4.1) is the residual problem for es. Therefore in this case z = es.
Analogously, the choice of α = 0 and β = 1, produces R∗(v) = RD(v) and the residual
problem for εs is recovered yielding z = εs. In particular, α = κ and β = ±1/κ will be used
later to obtain the required upper bounds for ‖κes ± 1/κ εs‖2.

The purpose of this section is to establish a procedure to compute upper bounds of ‖z‖2.
Recently, much effort has been devoted to obtain exact bounds, that is bounds guaranteed
with respect to the exact solution independently of any underlying mesh (see the series of
references [29, 30, 21, 39, 23, 24]). All these strategies recover strict bounds for ‖z‖ using the
standard complementary energy approach. The key idea is to relax the continuous problem
of finding z ∈ V fulfilling equation (4.1). The resulting problem is equivalent to the original
one but expressed in terms of dual unknowns living in larger spaces with less regularity
requirements. Other similar strategies providing bounds, also based on a dual formulation,
have been used by other authors [7, 14, 28, 11, 38, 5].

The relaxed problem consists in obtaining a pair of dual estimates q̂ ∈ [L2(Ω)]2 and
r̂ ∈ L2(Ω) such that
∫

Ω

[
νq̂ ·∇v+(σ− 1

2
∇·α)r̂v

]
dΩ+

1
2

∫

ΓN

α·nr̂v dΓ = as(z, v) = R∗(v) ∀v ∈ V. (4.2)

Any pair of dual estimates q̂ and r̂ verifying the previous equation yield an upper bound for
‖z‖. This is stated in the following theorem. In the remainder, for the sake of a simpler
notation, the coefficient in the reaction term is denoted by σ̃, namely σ̃ = σ − 1

2∇ ·α.
THEOREM 4.1. Let q̂ ∈ [L2(Ω)]2 and r̂ ∈ L2(Ω) fulfill equation (4.2). Then, an upper

bound for the energy norm of the solution z of (4.1) is computed as

‖z‖2 ≤
∫

Ω

[
νq̂ · q̂ + σ̃r̂2

]
dΩ +

1
2

∫

ΓN

α · nr̂2 dΓ. (4.3)
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Proof. The result follows after the following algebraic manipulation

0 ≤
∫

Ω

[
ν(q̂ −∇z) · (q̂ −∇z) + σ̃(r̂ − z)2

]
dΩ +

1
2

∫

ΓN

α · n(r̂ − z)2 dΓ

=
∫

Ω

[
νq̂ · q̂ + σ̃r̂2

]
dΩ +

1
2

∫

ΓN

α · nr̂2 dΓ

+
∫

Ω

[
ν∇z ·∇z + σ̃z2

]
dΩ +

1
2

∫

ΓN

α · nz2 dΓ

−2
(∫

Ω

[
νq̂ ·∇z + σ̃r̂z

]
dΩ +

1
2

∫

ΓN

α · nr̂z dΓ
)

=
∫

Ω

[
νq̂ · q̂ + σ̃r̂2

]
dΩ +

1
2

∫

ΓN

α · nr̂2 dΓ + as(z, z)− 2as(z, z)

=
∫

Ω

[
νq̂ · q̂ + σ̃r̂2

]
dΩ +

1
2

∫

ΓN

α · nr̂2 dΓ− ‖z‖2,

where both equation (4.2) with v = z and the definition of the bilinear form as(·, ·), equation
(3.5) with w = v = z, are used.

REMARK 2. In the frequent case of an incompressible prescribed vector field α, i.e.
∇ · α = 0, if either only Dirichlet boundary conditions are prescribed or α · n|ΓN

= 0,
bounds for ‖z‖ are obtained using the simplified expression

‖z‖2 ≤
∫

Ω

[
νq̂ · q̂ + σr̂2

]
dΩ.

REMARK 3. Note that the relaxed problem (4.2) admits at least a trivial solution q̂ =
∇z ∈ [L2(Ω)]2 and r̂ = z ∈ L2(Ω). In this case, expression (4.3) turns into an equality.
Any other values of q̂ and r̂ fulfilling equation (4.2) yield upper bounds for ‖z‖2. In order to
obtain sharper values for the upper bound, q̂ and r̂ have to be good approximations of ∇z
and z respectively.

Theorem 4.1 allows to compute strict upper bounds for ‖z‖ recovering two globally
equilibrated dual estimates q̂ and r̂, i.e. verifying equation (4.2). However, the essential
feature of the method is that if the fields f , g, fO and gO are piecewise polynomial fields,
it is possible to determine — amongst all the dual estimates q̂ ∈ [L2(Ω)]2 and r̂ ∈ L2(Ω)
verifying equation (4.2) — two piecewise polynomial fields verifying equation (4.2). That is,
for a given suitable interpolation degree q, it is possible to find q̂ ∈ [P̂q(Ω)]2 and r̂ ∈ P̂q(Ω)
verifying equation (4.2) where

P̂q(Ω) := {v ∈ L2(Ω), v|Ωk
∈ Pq(Ωk)}.

Here a triangulation of the computational domain Ω into nel triangles is considered where Ωk

denote a general triangle, k = 1, . . . , nel.
REMARK 4. A proof of the existence of a piecewise polynomial solution q̂ ∈ [P̂q(Ω)]2

and r̂ ∈ P̂q(Ω) of equation (4.2) may be found in [29, 30]. Note that if one chooses r̂ = 0,
the existence of a piecewise polynomial dual estimate q̂ verifying

∫

Ω

νq̂ ·∇v dΩ = R∗(v) ∀v ∈ V.

may be related to the decomposition of the space H(div, Ωk) used in the context of mixed or
hybrid elements, see [25].
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Hence, the computation of strict upper bounds for ‖z‖ is reduced to a discrete problem:
find q̂ ∈ [P̂q(Ω)]2 and r̂ ∈ P̂q(Ω) verifying equation (4.2). At first sight, this problem
is discrete (with finite number of d.o.f.) but global, that is, affecting the whole domain Ω.
Thankfully, proper domain decomposition techniques allow decomposing the global discrete
problem into local problems. That is, the piecewise polynomial fields q̂ and r̂ are to be
computed solving local discrete problems.

In [30], the dual estimates q̂ and r̂ result of solving local independent problems in each
element of the mesh. This requires the use of flux-equilibration techniques (hybrid-flux tech-
niques) to properly set the boundary conditions for the local elementary problems. Following
this approach, first, the equilibrated residual method is used to compute the equilibrated fluxes
at the interelementary edges of the mesh. These fluxes are then used as local boundary con-
ditions to compute the dual estimates q̂ and r̂ in each triangle of the mesh.

The next section presents a new approach to compute the dual estimates q̂ and r̂. The
idea is to avoid the use of flux-equilibration techniques and, instead, use the flux-free esti-
mator proposed in [22]. This domain decomposition technique exploits the partition-of-unity
property to reduce the problems from Ω to subdomains different than elements. The local
problems for the dual estimates q̂ and r̂ are posed over patches of elements. The advantage of
this approach is that the local problems are naturally equilibrated and do not require enforcing
equilibrium.

As mentioned before, the strategy presented here only provides strict bounds for prob-
lems where the input data are piecewise polynomial. However, using the strategies presented
in [34, 12] this restriction on the fields f , g, fO and gO could be removed. This requires to
consider non polynomial representations of q̂ and r̂ in the triangles of the mesh, which is more
complex and less natural to implement. Thus, in order to deal with non polynomial data, the
local polynomial representation of q̂ and r̂ is replaced by the local construction given in [34],
only in those elements where the source term or boundary conditions are non polynomial.

5. Local computation of the dual estimates q̂ and r̂ using a flux-free approach. This
section is devoted to detail the computation of the piecewise polynomial dual estimates q̂
and r̂ using the flux-free approach proposed in [22]. After introducing some notation, the
domain decomposition strategy used to localize the computation of q̂ and r̂ is presented.
The solvability of the local problems is discussed along with the verification that the dual
estimates q̂ and r̂ verify equation (4.2). Finally some computational aspects are discussed.

5.1. Domain decomposition. Let xi i = 1, . . . , nnp denote the vertices of the elements
(triangles) in the computational mesh (thus linked to Uh) and φi denote the corresponding
linear shape functions, which are such that φi(xj) = δij . The support of φi is denoted by ωi

and is called the star centered in/associated with vertex xi. It is important to recall that the
linear shape functions based on the vertices are a partition of unity, namely

nnp∑

i=1

φi = 1. (5.1)

Let also V(ωi) and P̂q(ωi) denote the local restrictions of the spaces V and P̂q(Ω) to the
star ωi. Formally, any function v ∈ V(ωi) or v ∈ P̂q(ωi) is not defined on the whole domain
Ω but only on the star ωi. However, here any v ∈ V(ωi) or v ∈ P̂q(ωi) is naturally extended
to Ω by setting the values outside ωi to zero. Thus, functions in V(ωi) are continuous in ωi

but generally discontinuous across the boundary of the star ωi, whereas functions in P̂q(ωi)
are piecewise polynomial functions in the triangles contained in ωi vanishing on the elements
outside ωi.
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The dual estimates q̂ and r̂ are decomposed as

q̂ =
nnp∑

i=1

q̂i and r̂ =
nnp∑

i=1

r̂i (5.2)

where the local estimates q̂i ∈ [P̂q(ωi)]2 and r̂i ∈ P̂q(ωi), defined inside the star ωi, verify
the local equation

∫

ωi

[
νq̂i ·∇v + σ̃r̂iv

]
dΩ +

1
2

∫

ΓN∩∂ωi

α · nr̂iv dΓ = R∗(φiv) ∀v ∈ V(ωi). (5.3)

REMARK 5. It is tacitly assumed that the problems given in equation (5.3) have at least
one solution. A strictly positive reaction term in the l.h.s., σ̃ > 0, ensures the solvability of
local equation (5.3). For σ̃|ωi = 0, the kernel of the bilinear operator appearing in the l.h.s.
is the one dimensional space of constants, P0(ωi). Then, equation (5.3) is solvable if and
only if the compatibility condition holds, namely

R∗(φic) = cR∗(φi) = 0 ∀c ∈ P0(ωi),

which follows from the orthogonality of the primal and adjoint residuals to the finite element
space Vh (i.e. R∗(v) = 0 ∀v ∈ Vh), since φi ∈ Vh.

THEOREM 5.1. The dual estimates q̂ =
∑nnp

i=1 q̂i and r̂ =
∑nnp

i=1 r̂i, where q̂i and r̂i are
the solutions of the local problem (5.3), fulfill the hypothesis of theorem 4.1 and therefore

‖z‖2 ≤
∫

Ω

[
νq̂ · q̂ + σ̃r̂2

]
dΩ +

1
2

∫

ΓN

α · nr̂2 dΓ.

Proof. The dual estimates q̂ and r̂ verify equation (4.2) and therefore theorem 5.1 is a
straightforward particularization of theorem 4.1. Indeed, let v ∈ V , then using the definition
of the dual estimates, equation (5.2), and the local equations (5.3) — note that if v ∈ V then
v|ωi ∈ V(ωi) — then,

∫

Ω

[
νq̂ ·∇v + σ̃r̂v

]
dΩ +

1
2

∫

ΓN

α · nr̂v dΓ

=
nnp∑

i=1

{∫

ωi

[
νq̂i ·∇v + σ̃r̂iv

]
dΩ +

1
2

∫

ΓN∩∂ωi

α · nr̂iv dΓ
}

=
nnp∑

i=1

R∗(φiv) = R∗(
nnp∑

i=1

φiv) = R∗(v) = as(z, v),

where in the final equalities the linearity of the residual R∗(·), the partition-of-unity property,
equation (5.1), and the definition of z, equation (4.1), have also been used.

5.2. Strong form of the local problems for the dual estimates q̂i and r̂i. This section
is intended to provide a sketch of the computation of the piecewise polynomial dual estimates
q̂i ∈ [P̂q(ωi)]2 and r̂i ∈ P̂q(ωi) solution of (5.3). Actually, for ease of explanation, this sec-
tion provides the strong form of the local error equation (5.3). A more detailed construction
of the dual estimates may be found in [25].

The r.h.s. of equation (5.3), R∗(φiv), is rewritten as

R∗(φiv) =
∫

ωi

f∗i v dΩ +
∫

ΓN∩∂ωi

g∗i v dΓ−
∫

ωi

νq̂i
h ·∇v dΩ, (5.4)
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where the following compact notation is introduced

f∗i = α
[
φif−φiα·∇uh−σφiuh−ν∇uh·∇φi

]
+β

[
φif

O−ψhα·∇φi−σφiψh−ν∇ψh·∇φi

]
,

g∗i = αφig + βφig
O and q̂i

h = αφi∇uh + β(φi∇ψh +
1
ν

φiψhα).

Thus, equation (5.3) is modified into
∫

ωi

[
νq̂i

∗ ·∇v+σ̃r̂iv
]

dΩ+
1
2

∫

ΓN∩∂ωi

α·nr̂iv dΓ =
∫

ωi

f∗i v dΩ+
∫

ΓN∩∂ωi

g∗i v dΓ, (5.5)

introducing the new unknown q̂i
∗ = q̂i + q̂i

h.
The l.h.s. of equation (5.5) is rewritten, applying the divergence theorem, as

∫

ωi

[
−ν∇ · q̂i

∗ + σ̃r̂i
]
v dΩ +

1
2

∫

ΓN∩∂ωi

α · nr̂iv dΓ +
∑

Ωk⊂ωi

∫

∂Ωk

νq̂i
∗ · nv dΓ. (5.6)

Therefore, substituting (5.5) into (5.6), an alternative form of equation (5.3) is: find
q̂i
∗ ∈ [P̂q(ωi)]2 and r̂i ∈ P̂q(ωi) such that
∫

ωi

[
−ν∇ · q̂i

∗ + σ̃r̂i
]
v dΩ +

1
2

∫

ΓN∩∂ωi

α · nr̂iv dΓ +
∑

Ωk⊂ωi

∫

∂Ωk

νq̂i
∗ · nv dΓ

=
∫

ωi

f∗i v dΩ +
∫

ΓN∩∂ωi

g∗i v dΓ for all v ∈ V(ωi)
(5.7)

and recover q̂i = q̂i
∗ − q̂i

h.
The strong form to compute the dual estimates q̂i

∗ ∈ [P̂q(ωi)]2 and r̂i ∈ P̂q(ωi) follows
identifying terms in (5.7),

−ν∇ · q̂i
∗ + σ̃r̂i = f∗i in ωi

νq̂i
∗ · n +

1
2
α · nr̂i = g∗i on γ ∈ ΓN ∩ ∂ωi

νq̂i
∗ · n = 0 on γ ∈ ∂ωi − {ΓN ∪ ΓD}

ν q̂i
∗
∣∣∣
Ωk

· nk + ν q̂i
∗
∣∣∣
Ωl

· nl = 0 on γ ∈ ∂Ωk ∩ ∂Ωl, Ωk,Ωl ⊂ ωi,

where nk and nl are the outward normal to the elements Ωk and Ωl respectively.
REMARK 6. Any collection of pairs q̂i

∗, r̂
i i = 1, · · · , nnp fulfilling these equations

provides global estimates q̂ and r̂ yielding upper bounds of ‖z‖. Nevertheless, the previous
equations do not uniquely determine the dual estimates q̂i

∗ ∈ [P̂q(ωi)]2 and r̂i ∈ P̂q(ωi). The
additional degrees of freedom may be used to minimize the final bounds.

REMARK 7. Given any set of couple q̂i
∗, r̂

i i = 1, · · · , nnp, the upper bound for ‖z‖2 is
∫

Ω

[
νq̂ · q̂ + σ̃r̂2

]
dΩ +

1
2

∫

ΓN

α · nr̂2 dΓ

=
∫

Ω

[
ν
(nnp∑

i=1

q̂i
)
·
(nnp∑

i=1

q̂i
)

+ σ̃
(nnp∑

i=1

r̂i
)2]

dΩ +
1
2

∫

ΓN

α · n
(nnp∑

i=1

r̂i
)2

dΓ,
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thus, the determination of the estimates q̂i
∗, r̂

i minimizing the upper bound requires coupling
all the local problems. Here, the simplest and straightforward criteria to select one of the
multiple pairs q̂i

∗, r̂
i is chosen: the local estimates q̂i

∗, r̂
i are required to minimize the local

norm
∫

ωi

[
νq̂i · q̂i + σ̃(r̂i)2

]
dΩ +

1
2

∫

ΓN∩∂ωi

α · n(r̂i)2 dΓ.

Other alternative choices may be found in [25].

6. Bounds for the quantity of interest s = `O(u): an algorithmic summary. Ac-
cording to theorem 3.1, upper and lower bounds of s = `O(u) are available once upper
bounds of the energy norm ‖z‖ are obtained for the two combinations (α, β) = (κ, 1/κ)
and (α, β) = (κ,−1/κ). The general strategy to obtain these upper bounds is described in
the previous section. Due to the linearity of the problem, obtaining the estimates for the two
values z = κes ± 1/κεs is equivalent to obtain the estimates for z = es and z = εs, that is
for the two combinations (α, β) = (1, 0) and (α, β) = (0, 1).

The main steps of the procedure to compute bounds for `O(u) are the following:
1. Compute the primal and adjoint solutions uh and ψh respectively.
2. For each star ωi (associated with the node xi of the mesh) compute the primal and

adjoint dual estimates q̂i
P , q̂i

D ∈ [P̂q(ωi)]2 and r̂i
P , r̂i

D ∈ P̂q(ωi) such that
∫

ωi

[
νq̂i

P ·∇v + σ̃r̂i
P v

]
dΩ +

1
2

∫

ΓN∩∂ωi

α · nr̂i
P v dΓ = RP(φiv) ∀v ∈ V(ωi),

and
∫

ωi

[
νq̂i

D ·∇v + σ̃r̂i
Dv

]
dΩ +

1
2

∫

ΓN∩∂ωi

α ·nr̂i
Dv dΓ = RD(φiv) ∀v ∈ V(ωi),

minimizing
∫

ωi

[
νq̂i

P · q̂i
P + σ̃(r̂i

P )2
]

dΩ +
1
2

∫

ΓN∩∂ωi

α · n(r̂i
P )2 dΓ

and
∫

ωi

[
νq̂i

D · q̂i
D + σ̃(r̂i

D)2
]

dΩ +
1
2

∫

ΓN∩∂ωi

α · n(r̂i
D)2 dΓ

respectively.
3 Recover the global estimates

q̂P =
nnp∑

i=1

q̂i
P , r̂P =

nnp∑

i=1

r̂i
P and q̂D =

nnp∑

i=1

q̂i
D, r̂D =

nnp∑

i=1

r̂i
D.

4 Compute the three scalar quantities

(ηP )2 :=
nel∑

k=1

ηP
k =

nel∑

k=1

∫

Ωk

[
νq̂P · q̂P + σ̃(r̂P )2

]
dΩ+

1
2

∫

ΓN∩∂Ωk

α ·n(r̂P )2 dΓ,

(ηD)2 :=
nel∑

k=1

ηD
k =

nel∑

k=1

∫

Ωk

[
νq̂D · q̂D + σ̃(r̂D)2

]
dΩ+

1
2

∫

ΓN∩∂Ωk

α ·n(r̂D)2 dΓ,
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ηPD :=
nel∑

k=1

ηPD
k =

nel∑

k=1

∫

Ωk

[
νq̂P · q̂D + σ̃r̂P r̂D

]
dΩ+

1
2

∫

ΓN∩∂Ωk

α ·nr̂P r̂D dΓ.

5. Recover the bounds for the output slb ≤ s ≤ sub as

slb := sh − 1
2
ηP ηD +

1
2
ηPD ≤ s ≤ sh +

1
2
ηP ηD +

1
2
ηPD =: sub, (6.1)

where sh = `O(uh).
REMARK 8. The final expression for the bounds of the output `O(u), see equation (6.1),

is derived by the following rationale. First theorem 3.1 states that in order to obtain bounds
for the error in the output s it is sufficient to obtain upper bounds for the quantities ‖κes ±
1
κεs‖2

ub
, see equation (3.6). In order to compute these upper bounds, the procedure detailed

in section 4 is considered for z = κes ± 1
κεs. Then, from theorem 5.1, the following upper

bounds are obtained:

‖κes ± 1
κ

εs‖2ub =
∫

Ω

[
ν(κq̂P ±

1
κ

q̂D) · (κq̂P ±
1
κ

q̂D) + σ̃(κr̂P ± 1
κ

r̂D)2
]

dΩ

+
1
2

∫

ΓN

α · n(κr̂P ± 1
κ

r̂D)2 dΓ.

Finally the expressions for the bounds are obtained expanding the previous expression, taking
κ2 = ηD/ηP and rearranging terms.

REMARK 9. The local dual problems to determine q̂i
P , q̂i

D ∈ [P̂q(ωi)]2 and r̂i
P , r̂i

D ∈
P̂q(ωi) can be solved in the same manner as the local problems given in equation (5.3) – see
for instance section (5.2) where the strong form of the local problems is given. Also the details
on the implementation of the local problems may be found in [25]. The important point is
that once the finite element approximations uh and ψh have been computed, the exact bounds
for the output can be computed with asymptotically linear cost in the number of vertices of
the finite element discretization. Moreover the local dual subproblems computation may be
parallelized.

7. Numerical examples. In the following, the bound average save := (sub + slb)/2 is
taken as a new approximation of the quantity of interest and the half bound gap ∆ = (sub −
slb)/2 is seen as an error indicator. The relative counterpart of the bound gap ∆rel = ∆/save

is also used in the presentation.
The meshes are adapted to reduce the half bound gap ∆. In the examples a simple

adaptive strategy is used based on the decomposition of ∆ into local positive contributions
from the elements:

∆ =
nel∑

k=1

∆k,

where the element contribution to the bound gap ∆k is

∆k :=
1
4
κ2ηP

k +
1

4κ2
ηD

k .

Note that this decomposition is valid because

∆ =
sub − slb

2
=

1
2
ηP ηD =

1
4
κ2(ηP )2 +

1
4κ2

(ηD)2 =
nel∑

k=1

[1
4
κ2ηP

k +
1

4κ2
ηD

k

]
=

nel∑

k=1

∆k.
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The remeshing strategy consists in subdividing the elements with the larger values of ∆k at
each step of the adaptive procedure.

The behavior of the bounds introduced in the present work is compared with the three
different strategies presented in [22, 19, 30]. The strategy presented in [22] also solves local
problems in subdomains (therefore avoiding the computation of equilibrated fluxes), but the
local problems are solved using a local fine submesh. This yields bounds which are only
guaranteed in the asymptotic regime. The strategy presented in [19] is a classical hybrid flux
method where first the (linear) equilibrated fluxes are computed and then the local elementary
problems are solved using a local fine submesh. Finally the results are compared to the
strategy presented in [30] which also provides strict bounds for the output and differs from
[19] in the solution of the local elementary problems. Instead of using a local submesh, dual
estimates are computed to recover strict bounds for the output.

The bounds computed using the strategies presented in [22], [19] and [30] will be denoted
in the following as asymptotic flux-free bounds, asymptotic equilibrated bounds and strict
equilibrated bounds respectively.

7.1. Example 1: uniformly forced square domain. The pure diffusion equation (ν =
1, σ = 0, α = 0 in (2.1)) is solved in the squared domain Ω = [0, 1] × [0, 1]. A constant
source term f =

√
10 and homogeneous Dirichlet boundary conditions are considered.

The quantity of interest is an average of the solution,

`O(u) =
∫

Ω

√
10 u(x, y) dΩ,

that is fO =
√

10 and gO = 0 in equation (2.2). In this case, the solution ψ of the adjoint
problem coincides with the primal solution, ψ = u. It is well known that in this case, the
finite element approximation of the output is a lower bound for s, `O(uh) ≤ s. The present
methodology, as well as the strategies presented in [22, 30, 19], yields slb = `O(uh).

Linear triangular elements, p = 1, are used for the computation of the primal and adjoint
finite element approximations, and the local dual approximations q̂i ∈ [P̂3(ωi)]2 and r̂i ∈
P̂3(ωi) are piecewise third order polynomials, i.e. q = 3.

The convergence of the bounds is analyzed for a uniform mesh refinement in a series of
structured meshes. The initial mesh is composed of 8 triangular elements (half squares) and
in each refinement step every triangle is divided into four similar triangles. The results are
displayed in tables 7.1 and in figure 7.1. Since for this particular case all the methodologies
yield slb = sh = `O(uh), only the upper bounds are compared. For this problem the exact
solution s = 0.3514425 is known, and the effectiveness of the bounds are computed as

θ∗ =
|s− s∗|
|s| ,

where the symbol ∗ stands for ub, lb or ave. Note that θ measures the quality of the estimator:
the lower values of θ correspond to the sharper estimates. This effectivity index is only
available for this example and the next one (examples 1 and 2) because in the following the
exact solution is not known.

As expected, the upper bounds provided by the asymptotic strategies are lower, and hence
sharper, than the corresponding upper bounds obtained using strict strategies. However, this
is not always a positive feature: for the first three meshes (the coarsest) and for the mesh of
2048 elements the asymptotic upper bound is not an actual upper bound of the exact solution.
Since the asymptotic upper bound estimates are only guaranteed to overestimate the reference
values, for some meshes (not necessarily the coarsest ones) they do underestimate the exact
value s.
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of α. The boundary conditions are of Dirichlet type on the lateral sides, homogeneous on the
right u(1, y) = 0 and set to 1 on the left u(0, y) = 1. The boundary condition on both the
top and bottom are Neumann homogeneous and the source term is f = 0. The degrees of the
interpolation spaces are p = 1 and q = 3.

The quantity of interest is an overall average of the solution, that is

`O(u) =
∫

Ω

u(x, y) dΩ,

which corresponds to fO = 1.
The error estimation strategies and the computation of bounds are performed for a series

of uniformly h-refined meshes for σ = 1 and different values of α. The results are displayed
in table 7.2 and figure 7.2. For all the values of α, the rate of convergence of the bound gap
is found to be equal to the expected one for the error, that is O(h2). It is worth noting that
the bound gap is larger as α increases. For α = 100 the bound gap is 4 orders of magnitude
larger than for α = 0, being the quantity of interest of the same order.

α = 0 α = 1 α = 5 α = 10
s = 0.462117 s = 0.536142 s = 0.755101 s = 0.862436

nel save ∆ save ∆ save ∆ save ∆
8 0.466353 0.005475 0.532597 0.006295 0.73043 0.1079 0.66223 0.5395
32 0.463163 0.001384 0.535319 0.001635 0.75306 0.0285 0.86218 0.1239
128 0.462380 0.000345 0.535939 0.000411 0.75465 0.0078 0.86236 0.0312
512 0.462183 0.000086 0.536092 0.000103 0.75499 0.0018 0.86242 0.0077
2048 0.462134 0.000022 0.536130 0.000026 0.75507 0.0005 0.86243 0.0019
8192 0.462121 0.000005 0.536139 0.000006 0.75509 0.0001 0.86244 0.0005

8 0.462675 0.009420 0.535946 0.010560 0.74147 0.1650 0.58587 0.7827
32 0.462317 0.002347 0.536002 0.002749 0.75425 0.0462 0.86165 0.1938
128 0.462173 0.000586 0.536099 0.000696 0.75491 0.0121 0.86218 0.0514
512 0.462132 0.000146 0.536131 0.000174 0.75505 0.0031 0.86237 0.0131
2048 0.462121 0.000037 0.536139 0.000044 0.75509 0.0008 0.86242 0.0033
8192 0.462118 0.000009 0.536142 0.000011 0.75510 0.0002 0.86243 0.0008

TABLE 7.2
Example 2: results in a series of uniformly h-refined meshes for σ = 1: flux-free (top) and hybrid-flux (bottom).

This increment in the bound gap does not correspond to the actual error increment and
therefore it has to be concluded that the efficiency of the computed error bounds deteriorate
if the advection parameter is large. This very same phenomenon is observed with asymptotic
estimates. The fact of obtaining the exact bounds is not introducing any further degradation
of significant improvement in the influence of the advection parameter in the results.

Tables 7.3 and 7.4 summarize the influence of the Peclet number α on the effectivity of
the bounds in the context of the simple adaptive method with a tolerance of ∆tol = 0.001s
and for σ = 10. Although the method is valid for nonnegative α, the sharpness of the bound
degrades significantly with increasing Peclet number, but the bounding property is retained.
Since we know the exact output for this example, we can calculate the effectiveness of the
bounds as an indicator of the error in the finite element solution using

η =
sub − slb

2|s− sh| =
∆

|s− sh| =
θub + θlb

2θh
.
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[3] I. BABUŠKA AND T. STROUBOULIS, The finite element method and its reliability, Numerical Mathematics
and Scientific Computation, The Clarendon Press Oxford University Press, New York, 2001.

[4] R. BECKER AND R. RANNACHER, An optimal control approach to a posteriori error estimation in finite
element methods, Acta Numer., 10 (2001), pp. 1–102.

[5] D. BRAESS AND J. SCHOBERL, Equilibrated residual error estimator for edge elements, Math. Comp., 77
(2008), pp. 651–672.

[6] C. CARSTENSEN AND S. A. FUNKEN, Fully reliable localized error control in the FEM, SIAM J. Sci.
Comput., 21 (1999/00), pp. 1465–1484 (electronic).
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