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Abstract. We study unsteady elastic diffusion vibrations of a freely supported rectangular isotropic
Kirchhoff-Love plate on an elastic foundation, which is under the action of a distributed transverse load.
A model that describes coupled elastic diffusion processes in multicomponent continuum is used for the
mathematical problem formulation. The longitudinal and transverse vibrations equations of a rectangu-
lar isotropic Kirchhoff-Love plate with diffusion were obtained from the model using the d’Alembert
variational principle.

The problem solution of unsteady elastic diffusion plate vibrations is sought in integral form. The bulk
Green’s functions are the kernels of the integral representations. To find the Green’s functions, we
used the Laplace transform in time and the expansion into double trigonometric Fourier series in spatial
coordinates. Green’s functions in the image domain are represented in the form of rational functions
depends on the Laplace transform parameter. The transition to the original domain is done analytically
through residues and tables of operational calculus. The bulk Green’s functions analytical expressions
are obtained.

Using a two-component continuum, a numerical study of unsteady mechanical and diffusion fields in-
teraction is done for an isotropic plate. The solution is presented in analytical form, as well as in the
form of three-dimensional graphs of the displacement fields and concentration increments on time and
coordinates.

1 INTRODUCTION

A review of modern publications shows that the issues related to the study of the interaction of different
physical nature fields is relevant. In particular, the load-carrying capacity of individual structural ele-
ments such as beams, plates and shells can be influenced by diffusion processes arising from mechanical
loads. These issues are discussed in the articles [1, 2], where the influence of diffusion processes on
the bearing capacity of a shallow transversally isotropic shell is investigated. The publications [3, 4, 5]
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Figure 1: Forces and moments acting upon the plate

are devoted to the study of mechanodiffusion processes in plates. The calculation of an elastic spherical
shells with diffusion is considered in [6].

It should be noted that all these problems are solved in a stationary formulation. The problems statements
of unsteady elastic diffusion vibrations of beams and plates and methods for their solution are absent in
the publications known to date.

This article considers the effects of the interaction of mechanical and diffusion fields in a Kirchhoff-Love
plate on an elastic foundation. A mathematical model of plate elastic diffusion vibrations is obtained
based on variational principles as well as the well-known plate theory relations presented in the works
[7, 8, 9, 10].

2 GENERAL ESPECIFICATIONS

The problem of unsteady elastic diffusion vibrations of a rectangular Kirchhoff-Love plate on an elas-
tic foundation is considered. A diagram of the applied forces and bending moments, as well as the
orientation of the axes of a rectangular Cartesian coordinate system is shown in the figure 1.

Here n = {n1,n2} is a longitudinal load density; m = {m1,m2} is a moment density (bending moment
per unit surface); q is a transverse load density; yq, zq are linear distribution of diffusion volume source.

For the problem formulation, we use the coupled N-component elastic diffusion continuum model in a
rectangular Cartesian coordinate system, which has the next form [11, 12, 13]:

üi =
∂σi j

∂x j
+Fi, η̇

(q) =−
∂J(q)i

∂xi
+Y (q), η

(N+1) =−
N

∑
q=1

η
(q) (q = 1,N

)
. (1)

where σi j and J(q)i are the stress tensor and the diffusion flux vector components respectively, which are
defined as follows

(
anindexq = 1,N

)
:

σi j =Ci jkl
∂uk

∂xl
−

N

∑
q=1

α
(q)
i j η

(q), J(q)i + τqJ̇(q)i =−
N

∑
t=1

D(q)
i j g(qt) ∂η(t)

∂x j
+Λ

(q)
i jkl

∂2uk

∂x j∂xl
. (2)
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Here, the dots denote are time derivatives. All quantities in (1) and (2) are dimensionless. For them the
following notation is used

xi =
x∗i
l
, ui =

u∗i
l
, τ =

ct
l
, Ci jkl =

C∗i jkl

C∗1111
, C2 =

C∗1111

ρ
, α

(q)
i j =

α
∗(q)
i j

C∗1111
, lm =

l∗m
l
,

D(q)
i j =

D∗(q)i j

Cl
, Λ

(q)
i jkl =

m(q)D∗(q)i j α
∗(q)
kl n(q)0

ρRT0Cl
, Fi =

ρlF∗i
C∗1111

, Y (q) =
lY ∗(q)

C
, h =

h∗

l
, τq =

cτ(q)

l
,

(3)

where t is time; x∗i are the rectangular Cartesian coordinates; u∗i are the displacement vector components;
l is the characteristic linear size of the problem; l∗1 , l

∗
2 are the dimensions of the plate; h∗ is the thickness

of the plate; η(q) = n(q)−n(q)0 is the concentration increment of q-th component in the multicomponent
continuum; n(q) and n(q)0 are the actual and initial concentrations; C∗i jkl are elastic constant tensor compo-

nents; ρ is the medium density; α
∗(q)
i j are coefficients characterizing the medium volumetric changes due

to diffusion; D∗(q)i j are the self-diffusion coefficients; R is the universal gas constant; T0 is the medium
temperature; m(q) is the molar mass of q-th component; F∗i and Y (q) are the mechanical and diffusive
bulk perturbations; g(qt) is the Darken thermodynamical factor; τ(q) is the relaxation time of diffusion
perturbations.

To construct equations for the bending of the plate, we turn to the variational formulation of the problem.
According to the d’Alembert variational principle, the relations (1) – (3) can be written in the form [10]

∫
G

(
üi−

∂σi j

∂x j
−Fi

)
δuidG+

N

∑
q=1

∫
G

(
1+ τq

∂

∂τ

)(
η̇
(q)+

∂J(q)i

∂xi
−Y (q)

)
δη

(q)dG+

+
∫∫

Πσ

(σi jn j−Pi)δuidS+
N

∑
q=1

∫∫
ΠJ

(
J(q)i + τqJ̇(q)i − I(q)i

)
niδη

(q)dS = 0.
(4)

Here δui and δη(q) are virtual displacements and concentration increments; Pi and I(q)i are surface dis-
turbances; G is the problem solution domain; ni are components of the outer normal unit vector to ∂G,
∂G = ΠJ

⋃
Πσ.

Further, we assume that:

1. The problem solution domain is rectangular parallelepiped G = D× [−h/2,h/2], where D =
[0, l1]× [0, l2] is a rectangular domain in the plate middle surface x3 = 0, Γ = ∂D is boundary
domain (fig. 1).

2. Plate surface is Π = Π−∪Π+∪Πb, where Π− is the bottom surface corresponding to x3 =−h/2,
Π+ is the top surface corresponding to x3 = h/2, Πb = Π11∪Π21∪Π12∪Π22 is the lateral surface.
Here, lateral surfaces Π1k corresponding to xk = 0, the surfaces Π2k corresponding to xk = lk,
k = 1,2. It is assumed that the bottom/top surface is free of mechanical loads

σi jn j
∣∣
Π−

= σi jn j
∣∣
Π+

= 0. (5)

We will also assume that mass transfer through the bottom/top surface is absent

3



Zemskov V. Andrei, Tarlakovskii V. Dmitry

J(q)i

∣∣∣
Π−

= J(q)i

∣∣∣
Π+

= 0.

3. The plate material is a homogeneous isotropic continuum

Ci jkl = λδi jδkl +µ
(
δikδ jl +δilδ jk

)
, Λ

(q)
ααββ

= Λq, α
(q)
αα = αq, D(q)

αα = Dq.

Here λ and µ are Lame coefficients, δi j are Kronecker symbol. Due to (3) λ+2µ = 1.

4. Transverse deflections are considered small. Then the linearization of the unknown quantities with
respect to the variable x3 will have the form [7, 8, 9, 10]

u1 (x1,x2,x3,τ) = u(x1,x2,τ)− x3χ1 (x1,x2,τ) ,
u2 (x1,x2,τ) = v(x1,x2,τ)− x3χ1 (x1,x2,τ) ,
u3 (x1,x2,τ) = w(x1,x2,τ)+ x3ψ(x1,x2,τ) ,

η(q) = Nq (x1,x2,τ)+ x3Hq (x1,x2,τ) .

(6)

5. We also consider that a straight fiber normal to the middle surface after deformation also remains
straight and normal to the middle surface (the Kirchhoff plate theory). We assume that there are
no deformations along the axis Ox3

ε33 =
∂u3

∂x3
= ψ = 0 ⇒ ψ = 0,


ε13 =

1
2

(
∂u1

∂x3
+

∂u3

∂x1

)
=−χ1 +

∂w
∂x1

= 0

ε23 =
1
2

(
∂u2

∂x3
+

∂u3

∂x2

)
=−χ2 +

∂w
∂x2

= 0
⇒ χk =

∂w
∂xk

, k = 1,2.

Therefore, the equalities (6) are written as follows:

u1 = u− x3
∂w
∂x1

, u2 = v− x3
∂w
∂x2

, u3 = w, η
(q) = Nq + x3Hq. (7)

Then, the components of the stress tensor and the diffusion flux vector will have the form

σ11 =
∂u
∂x1
− x3

∂2w
∂x2

1
+λ

(
∂v
∂x2
− x3

∂2w
∂x2

2

)
−

N

∑
q=1

αq (Nq + x3Hq),

σ22 = λ

(
∂u
∂x1
− x3

∂2w
∂x2

1

)
+

∂v
∂x2
− x3

∂2w
∂x2

2
−

N

∑
q=1

αq (Nq + x3Hq),

σ33 = λ

(
∂u
∂x1
− x3

∂2w
∂x2

1

)
+λ

(
∂v
∂x2
− x3

∂2w
∂x2

2

)
−

N

∑
q=1

αqHq,
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σ12 = µ

(
∂u
∂x2
−2x3

∂2w
∂x1∂x2

+
∂v
∂x1

)
,

σ13 = µ

(
−

∂w
∂x1

+
∂w
∂x1

)
= 0, σ23 = µ

(
−

∂w
∂x2

+
∂w
∂x2

)
= 0,

(8)

J(q)1 + τqJ̇(q)1 =−Dq

(
∂Nq

∂x1
+ x3

∂Hq

∂x1

)
+Λq

(
∂2u
∂x2

1
− x3

∂3w

∂x3
1

)
+Λq

(
∂2v

∂x1∂x2
− x3

∂3w
∂x1∂x2

2

)
,

J(q)2 + τqJ̇(q)2 =−Dq

(
∂Nq

∂x2
+ x3

∂Hq

∂x2

)
+Λq

(
∂2u

∂x1∂x2
− x3

∂3w
∂x2

1∂x2

)
+Λq

(
∂2v
∂x2

2
− x3

∂3w

∂x3
2

)
,

J(q)3 + τqJ̇(q)3 =−DqHq−Λq
∂2w
∂x2

1
−Λq

∂2w
∂x2

2
,
(
q = 1,N

)
.

6. A linear transverse load-deflection relationship is presumed (Winkler Model) [14]

q = q̃− cww, cw =
c∗wl

C∗1111
. (9)

where c∗w is the foundation modulus.

3 The equations of elastic diffusion vibrations of the Kirchhoff-Love plate on an elastic founda-
tion

Substituting the equalities (6) – (9) into the variational equation (4), we obtain the following boundary
value problems:

- plate longitudinal deformations problem

ü =
∂2u
∂x2

1
+µ

∂2u
∂x2

2
+(λ+µ)

∂2v
∂x1∂x2

−
N

∑
q=1

αq
∂Nq

∂x1
+

n1

h
,

v̈ = (λ+µ)
∂2u

∂x1∂x2
+

∂2v
∂x2

2
+µ

∂2v
∂x2

1
−

N

∑
q=1

αq
∂Nq

∂x2
−

n2

h
,

Ṅq + τqN̈q = Dq

(
∂2Nq

∂x2
1
+

∂2Nq

∂x2
2

)
−Λq

(
∂3u

∂x3
1
+

∂3v
∂x2

1∂x2
+

∂3u
∂x1∂x2

2
+

∂3v

∂x3
2

)
+

yq

h
;

- plate deflections problem

∂2ẅ
∂x2

1
+

∂2ẅ
∂x2

2
−

12
h2ẅ =

∂4w
∂x4

2
+

∂4w
∂x4

1
+2

∂4w
∂x2

1∂x2
2
+

12
h3cww+

+
N

∑
q=1

αq

(
∂2Hq

∂x2
2
+

∂2Hq

∂x2
1

)
−

12
h3

(
∂m2

∂x2
+

∂m1

∂x1
+q

)
,

Ḣq + τqḦq = Dq

(
∂2Hq

∂x2
1
+

∂2Hq

∂x2
2

)
+Λq

(
∂4w
∂x4

1
+2

∂4w
∂x2

1∂x2
2
+

∂4w
∂x4

2

)
+

12
h3zq.

(10)
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The unsteady bending mathematical model of a simply supported plate on an elastic foundation under
a distributed load action is described by the equations (10), which are supplemented by zero initial
conditions and boundary conditions, which are also obtained from the variational equation (4)(

∂2w
∂x2

1
+λ

∂2w
∂x2

2
+

N

∑
q=1

αqHq

)∣∣∣∣∣
x1=0

= 0,

(
∂2w
∂x2

1
+λ

∂2w
∂x2

2
+

N

∑
q=1

αqHq

)∣∣∣∣∣
x1=l1

= 0,(
λ

∂2w
∂x2

1
+

∂2w
∂x2

2
+

N

∑
q=1

αqHq

)∣∣∣∣∣
x2=0

= 0,

(
λ

∂2w
∂x2

1
+

∂2w
∂x2

2
+

N

∑
q=1

αqHq

)∣∣∣∣∣
x2=l2

= 0;
(11)

w|x1=0 = 0, w|x1=l1 = 0, w|x2=0 = 0, w|x2=l2 = 0; (12)

Hq
∣∣
x1=0 = 0, Hq

∣∣
x1=l1

= 0, Hq
∣∣
x2=0 = 0, Hq

∣∣
x2=l2

= 0. (13)

4 Solution method

The solutions of the problem (10) – (13) under the action of distributed disturbances F1 (x1,x2,τ) =
−12(q̃+divm)/h3 and Fq+1 (x1,x2,τ) = 12z(q)/h3 are sought in integral form (q = 1,N +1):

w(x1,x2,τ) =
N+1

∑
k=1

∫
τ

0

∫ l1

0

∫ l2

0
G1k (x1,x2,ξ,ζ,τ− t)Fk (ξ,ζ, t)dξdζdt,

Hq (x1,x2,τ) =
N+2

∑
k=1

∫
τ

0

∫ l1

0

∫ l2

0
Gq+1,k (x1,x2,ξ,ζ,τ− t)Fk (ξ,ζ, t)dξdζdt,

(14)

where Gmk are the bulk Greens functions, which satisfy the equations

∂G̈1k

∂x2
1
+

∂G̈1k

∂x2
2
−

12
h2G̈1k =

∂4G1k

∂x4
2

+
∂4G1k

∂x4
1

+2
∂4G1k

∂x2
1∂x2

2
+

12
h3cwG1k+

+
N

∑
q=1

αq

(
∂2Gq+1,k

∂x2
2

+
∂2Gq+1,k

∂x2
1

)
−δ1kδ(x1−ξ)δ(x2−ζ)δ(τ) ,

Ġq+1,k + τqG̈q+1,k = Dq

(
∂2Gq+1,k

∂x2
1

+
∂2Gq+1,k

∂x2
2

)
+Λq

(
∂4G1k

∂x4
1

+2
∂4G1k

∂x2
1∂x2

2
+

∂4G1k

∂x4
2

)
+

+δq+1,kδ(x1−ξ)δ(x2−ζ)δ(τ)

(15)

and homogeneous boundary conditions

(
∂2G1k

∂x2
1

+λ
∂2G1k

∂x2
2

+
N

∑
q=1

αqGq+1,k

)∣∣∣∣∣
x1=0

= 0,

(
∂2G1k

∂x2
1

+λ
∂2G1k

∂x2
2

+
N

∑
q=1

αqGq+1,k

)∣∣∣∣∣
x1=l1

= 0,(
λ

∂2G1k

∂x2
1

+
∂2G1k

∂x2
2

+
N

∑
q=1

αqGq+1,k

)∣∣∣∣∣
x2=0

= 0,

(
λ

∂2G1k

∂x2
1

+
∂2G1k

∂x2
2

+
N

∑
q=1

αqGq+1,k

)∣∣∣∣∣
x2=l2

= 0,

G1k|x1=0 = 0, G1k|x1=l1 = 0, G1k|x2=0 = 0, G1k|x2=l2 = 0, (16)

6
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Gq+1,k
∣∣
x1=0 = 0, Gq+1,k

∣∣
x1=l1

= 0, Gq+1,k
∣∣
x2=0 = 0, Gq+1,k

∣∣
x2=l2

= 0.

To find the Green’s functions Gik the expanding into double trigonometric Fourier series in spatial coordi-
nate and the Laplace transform in time are use. As a result, problem (15), (16) is reduced to the following
system of linear algebraic equations (s is Laplace transform parameter, λn = πn/l1, µm = πm/l2)

k1 (νnm,s)GLss
1k (λn,µm,ξ,ζ,s)−

N

∑
q=1

αqν
2
nmGLss

q+1,k (λn,µm,ξ,ζ,s) =
4

l1l2
δ1k sinµmζsinλnξ,

−Λqν4
nmGLss

1k (λn,µm,ξ,ζ,s)+ kq+1 (νnm,s)GLss
q+1,k (λn,µm,ξ,ζ,s) =

4
l1l2

δq+1,k sinµmζsinλnξ.

(17)

Here

k1 (νnm,s) = s2

(
ν

2
nm +

12
h2

)
+ν

4
nm +

12
h3cw, kq+1 (νnm,s) = s+ τqs2 +Dqν

2
nm, ν

2
nm = λ

2
n +µ2

m,

GLss
ik (λn,µm,ξ,ζ,s) =

4
l1l2

∫ l1

0

∫ l2

0
GL

ik (x1,x2,ξ,ζ,s)sinλnx1 sinµmx2dx2dx1,

GL
ik (x1,x2,ξ,ζ,s) =

∞

∑
n=1

∞

∑
m=1

GLss
ik (λn,µm,ξ,ζ,s)sinλnx1 sinµmx2. (18)

The solution of the system (17) has the form (q, p = 1,N)

GLss
11 (λn,µm,ξ,ζ,s) =

4
l1l2

Π(νnm,s)
P(νnm,s)

sinµmζsinλnξ,

GLss
1,q+1 (λn,µm,ξ,ζ,s) =

4
l1l2

ν2
nmαqΠq (νnm,s)

P(νnm,s)
sinµmζsinλnξ,

GLss
q+1,1 (λn,µm,ξ,ζ,s) =

4
l1l2

Λqν4
nmΠ(νnm,s)

Qq (νnm,s)
sinµmζsinλnξ,

GLss
q+1,p+1 (λn,µm,ξ,ζ,s) =

4
l1l2

[
δqp

kq+1 (νnm,s)
+

Λqν6
nmαpΠp (νnm,s)
Qq (νnm,s)

]
sinµmζsinλnξ,

(19)

where

Π(νnm,s) =
N

∏
j=1

k j+1 (νnm,s) , Π j (νnm,s) =
N

∏
r=1,r 6= j

kr+1 (νnm,s) ,

P(νnm,s) = k1 (νnm,s)Π(νnm,s)−ν6
nm

N

∑
j=1

α jΛ jΠ j (νnm,s) ,

Qq (νnm,s) = kq (νnm,s)P(νnm,s) .
(20)

7
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The originals in equalities (19) are calculated on the base of residues and the tables of operational calculus
(prime denotes derivative with respect to parameter s) [15]

Gss
1k (λn,µm,ξ,ζ,τ) =

4
l1l2

sinµmζsinλnξ

2N+2

∑
l=1

A(l)
1k (νnm,sl (νnm))exp(sl (νnm)τ) ,

Gss
1,q+1 (λn,µm,ξ,ζ,τ) =

4
l1l2

sinµmζsinλnξ

2N+2

∑
l=1

A(l)
q+1,k (νnm,sl (νnm))exp(sl (νnm)τ) ,

Gss
q+1,1 (λn,µm,ξ,ζ,τ) =

4
l1l2

sinµmζsinλnξ

2N+4

∑
l=1

A(l)
q+1,1 (νnm,sl (νnm))exp(sl (νnm)τ) ,

Gss
q+1,p+1 (λn,µm,ξ,ζ,τ) =

4
l1l2

2

∑
l=1

exp(χl (νnm)τ)

k′q+1 (νnm,s)
sinµmζsinλnξ+

+
4

l1l2
sinµmζsinλnξ

2N+4

∑
l=1

A(l)
q+1,p+1 (νnm,sl (νnm))exp(sl (νnm)τ) ,

(21)

where

A(l)
1k (νnm,sl (νnm)) =

Π(νnm,sl (νnm))

P′ (νnm,sl (νnm))
,

A(l)
q+1,k (νnm,sl (νnm)) =

ν2
nmαqΠq (νnm,sl (νnm))

P′ (νnm,sl (νnm))
,

A(l)
q+1,1 (νnm,sl (νnm)) =

Λqν4
nmΠ(νnm,sl (νnm))

Q′q (νnm,sl (νnm))
,

A(l)
q+1,p+1 (νnm,sl (νnm)) =

Λqν6
nmαpΠp (νnm,sl (νnm))

Q′q (νnm,sl (νnm))
.

(22)

In the obtained equalities s j (νnm), j = 1,N +2 are zeros of the polynomial P(νnm,s), χl (νnm) are addi-
tional zeros of the polynomial Qq (νnm,s)

χ1 (νnm) = s2N+3 (νnm) =
−1−

√
1−4τqkq+2 (νnm,0)

2τq
,

χ2 (νnm) = s2N+4 (νnm) =
−1+

√
1−4τqkq+2 (νnm,0)

2τq
.

5 Example

Take calculating the material with the following characteristics (duralumin, λ∗ and µ∗ are Lame coeffi-
cients) [16]:

λ∗ = 6.93 ·1010 N
m2, µ∗ = 2.56 ·1010 N

m2, T0 = 800K , ρ = 2700
kg
m3, h = 10−3m

α
∗(1)
11 = α

∗(1)
22 = 1.55 ·107 J

kg
, α
∗(2)
11 = α

∗(2)
22 = 6.14 ·107 J

kg
,

D∗(1)11 = D∗(1)22 = 7.73 ·10−14 m2

s
,D∗(2)11 = D∗(2)22 = 6.67 ·10−14 m2

s
,

n(1)0 = 0.95, n(2)0 = 0.05, m(1) = 0.027
kg

mol
, m(2) = 0.064

kg
mol

.
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Figure 2: The plate deflections w(x1, l2/2,τ), c∗wl =
1.25 ·107N/m2 Figure 3: The plate deflections w(x1, l2/2,τ), c∗w = 0

We assume that the plate is rectangular l∗1 = 0.01 m, l∗2 = 0.01 m: thickness h∗ = 0.001 m. We set the
load in the form

F1 (x1,x2,τ) =−
12
h3 (q̃+divm) = H (τ)sinπx2, Fq+1 (x1,x2,τ) = 0. (23)

where H (τ) is the Heaviside function.

Calculating the convolutions (14) we get

w(x1,x2,τ) =
2
l1

sin
πx2

l2

∞

∑
n=1

2N+2

∑
l=1

A(l)
11 (νn1,sl (νn1))

[exp(sl (νn1)τ)−1] [1− (−1)n]

λnsl (νn1)
sinλnx1,

Hq (x1,x2,τ) =
2
l1

sin
πx2

l2

∞

∑
n=1

2N+4

∑
l=1

A(l)
q+1,1 (νn1,sl (νn1))

[exp(sl (νn1)τ)−1] [1− (−1)n]

λnsl (νn1)
sinλnx1.

(24)

The calculation results are presented in Figures 2 – 7. Figure 2 shows the plate deflections on an elastic
foundation. Figure 3 shows deflections in the absence of an elastic foundation.

Based on the performed calculations, it can be seen that the unsteady plate bending initiates diffusion
flows in the plate. The Figure 4 shows the linear density of the aluminum concentration increment during
elastic diffusion vibrations of the plate on an elastic foundation. In the Figure 5 is the same, but in the
absence of an elastic foundation.

In Figures 6 – 9 are demonstrate the diffusion field effect on the displacement field.

The Figures 7 and 9 show the case when there is no elastic foundation. It is shown that, starting from a
certain time, the elastic-diffusion vibrations begin to lag behind the elastic vibrations. In the presence of
an elastic foundation, the influence of diffusion effects becomes negligible. The Figures 6, 8 show the
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Figure 4: The concentration increment H1 (x1, l2/2,τ),
c∗wl = 1.25 ·107N/m2

Figure 5: The concentration increment H1 (x1, l2/2,τ),
c∗w = 0

comparative results of elastic and elastic diffusion vibrations for the plate on an elastic foundation c∗wl =
1.25 ·107N/m2. At a sufficiently long time interval τ∼ 1012, the effect of diffusion on the displacement
field was not found.

6 CONCLUSIONS

The unsteady vibrations mathematical model of a rectangular isotropic Kirchhoff-Love plate on an elastic
foundation is constructed. The proposed model considers the effects of the interaction of mechanical and
diffusion fields in continuum. An algorithm for bulk Green’s functions constructing is proposed based
on the use of the Laplace transform and expansions in trigonometric Fourier series.

By the example of plate bending under the action of a distributed mechanical load, the effect of interac-
tion between mechanical and diffusion fields is demonstrated. It is shown that, on the one hand, unsteady
bending initiates the process of mass transfer. On the other hand, diffusion effects the displacement field,
which manifests itself in the form of a delay in mechanodiffusion oscillations with respect to purely me-
chanical ones. However, the presence of an elastic foundation significantly reduces the effect of diffusion
on the displacement field. These results are presented in analytical and graphical forms.
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