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Abstract. This article reviews known approaches to determining the uncertainty of predictive 
models: probabilistic analytical, probabilistic simulation and fuzzy. The main elements 
determining the specificity of a given approach are shown. The advantages and disadvantages 
are compared. Finally, the application guidelines are listed. 

 
 
1 INTRODUCTION 

Modern civilization, by exploiting natural resources, has led biological and climatic 
ecosystems to the edge of catastrophic collapse. This path of civilization development is no 
longer possible, hence the implementation of methods and technologies of sustainable 
development is required. However, they require the use of new materials and processes of 
much greater complexity than those used so far. The development of new materials and 
technologies for their production is increasingly a planned design activity and less and less a 
random discovery.  

In the field of materials science, this involves the intensive use of automated analytical 
lines that systematically search for possible combinations of the characteristics of raw 
materials and determine the properties of the obtained product materials, e.g. metallic glass [1, 
2]. The bottom-up approach uses microstructure modeling and aggregation to examine the 
features and properties at the macroscale level e.g. bio-tissues [3, 4] or metallic foams [5, 6]. 
Due to the fact that it is impossible to predict in advance what macroscopic features will result 
from setting the microscale features, the creation of utility predictive models is most often 
performed using the inverse problem technique [7, 8] using data-driven [9-11] parametric 
[12], semiparametric [13, 14] or non-parametric models [14]. 
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In the field of technological process engineering, analytical tools related to the automation 
of production lines and the presence of numerous measuring sensors, which is commonly 
known as Industry 4.0, are increasingly used [15, 16]. This leads to the creation of very large 
databases collecting huge amounts of information [17]. These datasets are characterized by 
both a large number of records and a large dimensionality, that is, the number of measured 
process characteristics recorded in these records. Internal feedback loops occurring in these 
processes cause their optimization and control to be highly nonlinear, and thus require the use 
of special techniques of building predictive models. This requires the use of either the well-
known DOE techniques [18, 19], often embedded in more general methodological 
approaches, such as Six Sigma [20], or newer non-parametric machine learning methods [21, 
22]. 

In both areas, in materials science and technological processes, it is most often necessary to 
reduce the dimensionality of the data and identify the dominant factors influencing the 
interesting features. This is typically done by factor analysis [23] or principal component 
analysis [24], which is a variation of linear discriminant analysis [25]. In more complex cases, 
a much more difficult nonlinear discriminant analysis [25] is used. 

Merely obtaining a predictive model, whether parametric or nonparametric, is not enough. 
The predictive model positioning the mean value, but not defining the uncertainty of the 
result, has little industrial or research utility, hence it is very important to determine the 
uncertainty of the prediction. 

In industrial and research practice, the most common is to determine the uncertainty of 
prediction by specifying the confidence interval with a predetermined confidence level [26], 
usually 95%. The prediction uncertainty formulated in this way is used quantitatively, 
although practitioners do not think about the very idea of this quantity at all: whether it is 
formulated in terms of the frequency [27], Bayesian [28] or propensity approach [29]. The 
formal mathematical apparatus is identical in all variants – Kolmogorov's formalism [30] – 
differences appear at the stage of formulating issues and interpreting the results. The most 
common approach is to use the Bayesian approach, even if it is not explicitly expressed, 
because the probabilities of single or low-frequency events are calculated, and the calculated 
value is treated as a subjective assessment of belief that the event will occur. From a purely 
practical point of view, uncertainty estimates are computed either from asymptotic analytical 
estimates or from numerical Monte Carlo simulations. 

An alternative approach to uncertainty assessment and used much less frequently is the 
fuzzy assessment, the idea of which comes from L. Zadeh [31, 32]. This approach is based on 
an assessment of membership, which is largely subjectively assessed in a manner similar to 
the Bayesian belief. It is not, however, the field of Borel sets and the algebra of fuzzy 
operations is different, in addition with a rather arbitrary selection of pairs of functions that 
perform the sum and product of fuzzy assessments. Buckley [33] proposed a specific 
approach linking statistics to fuzzy membership: the fuzzy membership becomes the 
confidence level of the appropriate interval [34]. The fuzzy approach was intensively adapted 
to the needs of building regression models [35-37], recently [38] with specific intuitionistic 
approach [39]. Grzegorzewski worked intensively on the problem of real fuzzy numbers [40], 
especially in the trapezoidal approach [41], and then developed a complete approach to the 
issue of decision-making [42] building an ontology and taxonomy that allowed to consider 
various variants of the location of fuzzy evaluation elements. 
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2 COMPARISON OF THE APPROACHES 

2.1 Probabilistic analytical-based uncertainty 

The initial step is to identify the source data set, postulate the form of the predictive model, 
and then make an assumption about the characteristics of the random term [26]: its location in 
the model and the type of probability distribution. In addition, dataset preprocessing functions 
often appear, which aim either to obtain the desired statistical features e.g. normality, 
homogeneity, linearity or to meet the physical constraints by the predictive model: predicted 
values are non-negative or limited on both sides. 

Due to such numerous assumptions, limitations and distortions, a simple composition is 
usually applied: a linear model (with respect to unknown parameters), a non-biased random 
term with the assumed normal distribution and the least squares criterion. Most of the 
uncertainty estimates, significance tests and identification methods are designed specifically 
for such a simple predictive model. 

The advantages of these approaches are that they are well documented, widely available in 
the literature, and the procedures are incorporated into most popular computational programs 
and computational libraries. 

A large disadvantage of these approaches is the numerous assumptions made, which are 
rarely taken into account and verified during application. Another rarely considered element 
of these approaches is the fact that most of them do not have exact mathematical forms and, 
contrary to popular belief,  they are only rough asymptotic estimates. 

2.2 Probabilistic simulation-based uncertainty 

The first step is to identify the source dataset, postulate the form of the predictive model 
and locate the random term that meets the i.i.d. (independent and identically distributed) 
assumption [43-45]. The next step is to use the resampling procedure multiple times to obtain 
bootstrap samples to build a substitute for samples from a large population. This approach 
avoids making assumptions about a specific form of the probability distribution, and thus the 
obtained results are less biased. 

This approach can be widely used, especially for large and huge datasets or in the absence 
of information or poor information on the type of distribution. This allows for the estimation 
of the uncertainty of both the parameters of the predictive model and the values it provides, 
both in the discrete factor approach [46] and the continuous response surface [47]. The 
simulation approach also allows for effective uncertainty assessment in the case of both the 
analysis of variance ANOVA [48, 49] and the principal component analysis PCA [50], 
although it requires a significant reconstruction of the calculation scheme. 

The advantage of this approach is that there are no risky and questionable assumptions 
about the specific form of the random distribution. The adoption of the data-driven approach 
significantly improves the quality and accuracy of prediction. 

There are two disadvantages to this approach. The first is the need to precisely locate the 
random term in the model structure and ensure that it meets the i.i.d. conditions. Failure to do 
so leads to worthless results. The second is the requirement to provide large computing 
power, both in terms of data processing speed and memory resources. 
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2.3 Fuzzy-based uncertainty 

Contrary to the probabilistic approach, there is practically no distinction between the 
analytical and simulation approaches. The computational complexity and arbitrariness of the 
selection of T-S norms (product-sum operators) make analytical considerations very general, 
and any applications quickly come down to numerical simulations. 

Grzegorzewski [42] proposed the directions of generalizations for the classical theory of 
statistical hypothesis verification. He defined three elements that can be treated in a fuzzy 
manner: data (e.g., three measurements of about 5, about 6, and between 9 and 10), 
hypotheses (e.g., a mean of about 10), and requirements (e.g., a significance level of about 
0.05). This triplet may be mixed in any manner between strict and fuzzy description. In 
practice, due to both computational and purely conceptual difficulties, the most common are 
variants in which only one element of the triplet is fuzzy. 

In the case of prediction, the problem comes down to determining a predictive model for a 
set of fuzzy data, and then determining the fuzzy uncertainty for the predicted values. The use 
of polynomial models identified on the basis of the least squares method is well recognized 
[35-37]. In recent years, fuzzy prediction using logistic regression, i.e. in relation to 
categorical values and latent explanatory variables, has also started to gain popularity [51, 
52]. 

The advantage of this approach is the adaptation of imprecise and incomplete data 
descriptions [53]. This allows to avoid substantively questionable situations when poorly 
justified data imputation is made only to fill the required minimum input dataset of the 
analytical procedure. 

The disadvantages of this approach are the need to very skilfully design the calculation 
scheme and the conceptually correct interpretation of the results. 

12 CONCLUSIONS 

The above considerations lead to the conclusion that there are three basic criteria for 
selecting a convenient approach for estimating prediction uncertainty: normality of 
distribution, completeness of data, precision of data description.  

Imprecise data should be analyzed using the fuzzy approach. Precisely described and 
complete data with high confidence in meeting normality should be analyzed using 
a probabilistic analytical approach. For all other cases, the appropriate approach is to use 
a probabilistic numerical simulation. 

The above considerations may be useful as guidelines for analyzes in scientific or 
industrial applications, including when examining the properties of the surface layer [54], 
corrosion resistance [55, 56] or analyzing incomplete or uncertain structural data [57, 58]. It 
may also be very useful in predicting the properties of living organisms [59, 60], for which 
the description is often incomplete, uncertain and dominated by individual traits. It is similar 
in the case of prediction of the occurrence of defects or failures [61, 62], when the history of 
events is uncertain and incomplete [63] or the physical model of the phenomena is only rough 
[64, 65] or disturbed by uncontrolled or weakly controlled factors [66]. 
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