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Abstract. In order to enhance safety assessments of Sodium Fast Reactors (SFR), some scenarios in-
volving transient Fluid-Structure Interactions (FSI) are investigated using numerical simulation tools.
SFRs are indeed quite sensible to mechanical deformations regarding their nuclear power (see [1] for
more details). The originality of the scenario presented in the paper is to consider sufficient large me-
chanical interactions involving a large pressure decrease in the fluid domain. This decrease leads to
vaporization of the fluid and then to a different impact on the structures. By means of the open-source
software Code Saturne developed by EDF [2], this scenario is investigated in 2D using a 3-equation
model derived from the Navier-Stokes equations while an harmonic model is applied for the mechanical
structures. The code coupling is managed using the Newmark algorithm for the mechanical part and a
damped fixed point algorithm in order to get a converged coupled FSI problem.

1 INTRODUCTION

In the framework of the Generation IV International Forum [3] gathering countries involved in the devel-
opment of the future nuclear reactors, various scenarios are investigated using the numerical simulation
tool in order to demonstrate their reliability. Some of those scenarios include complex phenomena by
coupling different physics. One of this kind of scenarios concern the impact of mechanical deformations
of the core which may have an impact on the safety of the reactor core.

In order to perform the numerical simulation of such phenomena, a correct code coupling framework has
to be established in order to avoid numerical instabilities and numerical diffusion / dissipation.

Hence, this paper aims at specifying the algorithms used within the Finite Volume code Code Saturne
(v6.0.1) in order to simulate the fluid-structure interaction involving inter-wrapper flows and hexagonal
structures. This case corresponds to a strong coupling due to the thin hydraulic inter-wrapper domain.
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Figure 1: 3D view of a SFR core Figure 2: Cross-sectional view of the Phénix reactor
core

2 PRESENTATION OF THE CONTEXT OF THE STUDY

2.1 SFR core design

SFR cores are made of slender hexagonal structures which are highly packed. They are composed with
fuel sub-assemblies exchanging the extracted thermal power with circulating liquid sodium (see the
mock-up depicted in Figure 1).

Within the French design, these fuel assemblies are fixed at the bottom and can potentially move. The
space between them is filled with stagnant liquid sodium as long as the structures are not moving. The
sketch in Figure 2 represents then a geometrical modelling of such a core.

If such cores are subjected to mechanical excitations (see [4]), complex FSI phenomenon may appear
due to liquid sodium recirculation in the inter-wrapper region.

2.2 Methodology: a reference case

In case of mechanical excitation, the assemblies may move inwards or outwards involving a flow re-
circulation as depicted in Figure 3. Consequently, the flow recirculation induces a pressure field in the
hydraulic region.

3 HYDRAULIC PHENOMENOLOGY

3.1 Presentation of the local scale

In order to find an law for this field, we consider the simplified case composed with top-bottom plates as
depicted in Figure 4.
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Figure 3: First ring of assemblies in steady state (left) and excited state (right)
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Figure 4: Fluid in steady state (left) and movement induced by moving boundaries (right)

3.2 Mathematical framework

In order to model the fluid part, we use the classical Navier-Stokes equations. In order to take into
account the movement of the top/bottom boundaries, the ALE (Arbitrary Lagrangian-Euler) technique
is used (see for example [5] for the mathematical details of the method). As a consequence, the grid
velocity uw is included in Equation (1).

With respect to Figure 4, the following notations are used in order to identify the domain where the
Navier-Stokes are solved and where the boundary conditions are set:

Ω(t)
def
= [−L/2,L/2]× [−h(t)/2,h(t)/2]

∂Ω1(t)
def
=

{
(x,y) ∈ R2, |x|= L

2

}
, t ∈ R+

∂Ω2(t)
def
=

{
(x,y) ∈ R2, |y|= h(t)

2

}
, t ∈ R+

∂Ω
−
2 (t) = ∂Ω2(t)∩{y < 0}

∂Ω
+
2 (t) = ∂Ω2(t)∩{y > 0}
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According to these notations, the local hydraulic problem is set as follows:

∇.u = 0 in Ω(t) (1)

∂tu+[(u−uw) .∇]u = −1
ρ

∇P+ν∆u in Ω(t)

P|∂Ω1 = P∞

u|
∂Ω
−
2

= ξ
−

u|
∂Ω

+
2

= ξ
+

Depending on the movement of the top/bottom boundaries, Ω(t) changes its volume. It induces a mass
conservation depending on time in the volume Vx(t) which is graphically represented in Figure 5.
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Vxy

Figure 5: Illustration of the mass conservation law within a hydraulic channel

3.3 Establishing a mutual influence between hydraulics and mechanics

Regarding the previous subsection, a movement of the boundaries, corresponding to the displacement
of the structures, involves a change in the pressure field. An analytical pressure field can be then found
assuming a velocity pattern which respects the mass conservation property in Vx(t):∫

∂Vx(t)
u.dS = 0 (2)

Then, we get an equality for the averaged streamwise velocity (with ux
def
= ux.ex):

< ux >
def
=

1
h(t)

∫
h(t)

ux dy =−h′(t)
h(t)

x (3)

This relationship allows us to find an expression for the averaged pressure over the spanwise direction y
designated as < P(x,y, t) >. The details of the resolution can be found in [6].

< P(x,y, t) >= P∞ +
ρ

2h

[(
h′′− h′2

h

)
−An

h′2

h

][
x2−

(
L
2

)2
]
+ (4)

αρνβ

22+β(3−β)

[
h−3|h′|1−βh′

][
|x|(3−β)−

(
L
2

)3−β
]
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with An ∈ R+ a factor close to 1 depending on the velocity profile and (α,β) a couple of parameters
chosen for the friction law represented in the Equation 5:

∫
h(t)

ν∆uxdy =− 1
2Dh

f |< ux > |< ux >, f = α(Rex)
β (5)

with Dh depicting the hydraulic diameter and Rex the Reynolds number based on the mean velocity
< ux >.

This analytical expression applied at the local scale (Figure 4) has shown good agreements with numeri-
cal simulation results from different CFD codes (see [6]).
In addition, it can be shown that the pressure law in Eq. 4 can be easily extended to the radial channel
such as I0 or I2 (see Figure 13) by adapting changes in the boundary conditions.

3.4 Pressure evolution with mechanical forcing

Using Equation (6), pressure evolution at a local scale depending on the a priori known excitation h(t)
can be investigated. We choose to consider an excitation corresponding to a free harmonic system in
order to evaluate its effects on the pressure field in the fluid part.

h(t) = hn (1+acos(ωt)) (6)

with hn the nominal spacing between the structures, a
de f
=

hmax−hmin

hmax +hmin
the expansion factor and ω the

pulsation of the movement. It can be seen in Figure 6 and Figure 7 that, for a fixed frequency value, the
convective term plays a different role depending on the factor a. As a result, the effect of the fluid forces
on the structures is different whether the amplitude of the displacement is relatively small or not.
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Figure 6: Pressure evolution with a = 0.05
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Figure 7: Pressure evolution with a = 0.5
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Figure 8: Isovalues of the minimum pressure in the domain ( f ,amin)

By including Eq. (6) in (4), we get that the minimum pressure is only due to the second derivative h′′.
Figure 8 show the graphical illustration of the conditions on the minimum spacing hmin or frequency of
the displacement f in order to reach a minimum pressure.

Moreover, the length of the channel L plays a role in the quantification of the pressure decrease.

3.5 Pressure evolution and Cavitation

When the value of < P > corresponds to the saturation pressure Psat , a specific modelling has to be used
in order to take into account the co-existing vapour and liquid phases. A mixture 3-equation model is
used. In our case, we use the Merkle’s model (see [7]):

∇ ·um︸ ︷︷ ︸
mass balance

= Γv︸︷︷︸
exchange term

(
1
ρv
− 1

ρl

)
(7)

∂tρmum︸ ︷︷ ︸
unsteadiness

+(um−uw) ·∇(ρmum)︸ ︷︷ ︸
convection

= −∇P︸ ︷︷ ︸
driving source

+ µ∆um︸ ︷︷ ︸
f riction

∂tα︸︷︷︸
unsteadiness

+[−uw ·∇(u)+∇ · (αu)]︸ ︷︷ ︸
transport

=
Γv

ρv

with um the mixture velocity, ρm the mixture density, α the void fraction and Γv =
.

m+
+

.
m− such as:

.
m+

= −ρl min(P−Psat ,0)α(1−α)

t∞Psat
(8)

.
m− = −ρv max(P−Psat ,0)α(1−α)

t∞Psat
(9)

with t∞ = 1 ms.
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Let us consider the channel case depicted in Figure 4. The application within a refined mesh of such
a model compared to the case without cavitation is shown in Figures 9 and 10. The pressure remains
constant at P = Psat where the void fraction field is not negligible.
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Figure 9: Pressure evolution over (Ox)
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Figure 10: Pressure versus time at the center of the
hydraulic channel

3.6 Multi-1D modelling

Despite complex phenomena occurring in the hydraulic part in case of mechanical excitation, it would be
too costly regarding time and computing resources to consider a refined mesh over the whole hydraulic
domain such as depicted in Figure 11. As a consequence, a multi-1D model has been considered in order
to reduce the cost of the calculations (Figure 12). Within this modelling, only mass conservation, regular
and singular pressure drop are considered.

The details of the equations using the multi-1D modelling can be seen in [1].

4 FLUID-STRUCTURE INTERACTION

4.1 FSI modelling

The general formulation for a damped mass-spring system is considered in order to model the mechanical
part as follows (here in tensor notation):

Mi
..
Xi +Ci

.
Xi +Ki Xi = ∑

j
FFl→St |∂I j (10)

with the I j the hydraulic channels in connection with the assembly Ai such as depicted in the 3D sketch
of Figure 13.

The mechanical part is modelled using a simple harmonic equation in 2D. Then:
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Figure 11: Refined mesh of the hydraulic domain Figure 12: Multi-1D mesh of the hydraulic domain
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Figure 13: Hydraulic channels surrounding the assemblies

Mi = diag(mi) (11)

Ci = diag(ci)

Ki = diag(ki)

Xi = t(xi,yi,0) (12)

The fluid forces are assimilated to the pressure forces, neglecting the shear stress effects:

FFl→St |∂Ii =−
∫

∂Ii

P(x, t)uSt→Fldx (13)
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Non-linear effects from the fluid part are then introduced. When the displacement is relatively small,
only added mass effect from the fluid part is observable. But in case of large displacement, the effects
from the fluid part cannot be reduced to added mass effects.

4.2 Algorithm of the FSI code coupling

The mechanical and hydraulic parts are solved by two different solvers. Here, the mechanical damping
is not considered and then ci = 0 for any i. Taking into account Eqs. (11) and (12), the fluid-structure
problem for each assembly number i is discretized as follows:

mi
..
xi

n+1
+ki xi

n+1= f̃i
n+1 (14)

The Newmark algorithm is applied for the time-marching using the mean-acceleration scheme:

xn+1 = xn +∆t
.
xn +∆t2 [(1−2β)

..
xn +2β

..
xn+1

]
.
xn+1 =

.
xn +∆t

[
(1− γ)

..
xn +γ

..
xn+1

]
f̃n+1 = Φ( fn) (15)

with β = 1
4 ,γ = 1

2 . f̃n+1 is an estimation of fn+1 at time n.

The nature of the transient phenomenon makes this direct code coupling unstable. As a consequence, a
damped fixed point algorithm is used in order to ensure the convergence of the coupled problem, with λ

empirically determined when the calculation converges for a given time step ∆t:

• k: sub-iteration index, n: time index

•
tn

•
tn+1

•
pn+1

k

•
pn+1

k+1

•
xn+1

k •
xn+1

k+1

while ε < tol

k← k+1

• Ms
..
xn+1

k+1 +Cs
.
xn+1

k+1 +Ks xn+1
k+1 = (1−λ)Fn+1

k +λFn+1
k+1

• Initial condition: |x0|> |xeq|
• Initial prediction: xn+1

1 = xn +∆t
.
xn

Newmark’s algorithm:

 xn+1 = xn +∆t
.
xn +∆t2 [(1−2β)

..
xn +2β

..
xn+1

]
.
xn+1=

.
xn +∆t

[
(1− γ)

..
xn +γ

..
xn+1

]
Mean acceleration scheme:

β = 1
4 , γ = 1

2

(unconditionally stable, O(∆t2))

5 SOME RESULTS

In this section, some computational results of the code coupling algorithm using the multi-1D modelling
are presented. The assemblies are initially out of their equilibrium position with a = 3/4.

5.1 Results of the code coupling within 1 ring

Here, a configuration with one ring of assemblies is considered. It is a first step in order to see the differ-
ences on the displacement field of the assemblies with or without cavitation modelling. The frequency
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is chosen so that the minimum pressure in the domain reaches the value of Psat in order to have a simu-
lation case with cavitation and FSI code coupling. In this context, Figures 14 and 15 show respectively
the effects of cavitation on the pressure fields and void fraction field.

Figure 14: Pressure field Figure 15: Void fraction field

In comparison with a simulation without cavitation modelling, the pressure can not be lower than the sat-
uration pressure. As a consequence, the restoring forces in the two cases differ from another (see Figure
16). Complete re-condensation of the vapour phase occur short before t = 0.002s and is observable from
the change in the variation of the displacement field. After this event, the displacement field cannot be
taken into account due to instabilities affecting the pressure field.
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Figure 16: Comparison of the displacements without or with cavitation modelling
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5.2 Results of the code coupling within 11 rings

Here, 11 rings are considered in order to represent the real case of a SFR core. In this case, the second
eigen-frequency of the assemblies is taken ( f = 20 Hz). The pressure fields with or without cavitation
modelling are shown in Figures 17 and 18. Vaporization of the fluid occurs next to the center of the core.

Figure 17: Pressure field with 1-phase modelling Figure 18: Pressure field with 2-phase modelling

With the same manner as in the previous case with 1 ring of assemblies, the restoring force on the
assemblies with cavitation differs from the one without cavitation modelling as depicted in Figure 19.
The end of the displacement curve corresponds to the same numerical instability affecting the pressure
field which has been previously mentioned in the case with 1 ring.
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Figure 19: Comparison of the assembly displacements without or with cavitation modelling (first ring)
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6 CONCLUSIONS

SFR cores are quite sensible to mechanical deformations and such scenarios may lead to cavitation in the
liquid region separating the assemblies. In order to assess such cases, an numerical algorithm coupling
two-phase flow and structures within a 2D geometrical representation of a core has been presented.

The algorithm coupling cavitating inter-wrapper liquid sodium and structures makes it possible to predict
the impact on the displacement field of the assemblies compared to the case without cavitation modelling.

Nevertheless, the presented numerical algorithm has to be enhanced in order to avoid numerical instabil-
ities when the vapour phases completely disappear.

Moreover, a more detailed analysis concerning the numerical dissipation induced by the FSI numerical
algorithm (not presented here) has to be led.

As a perspective, the study has to be extended to 3D geometries since the movement of the assemblies
also induces a flow recirculation at the top of the core. This flow entering into the inter-wrapper region
may then have an additional influence on the FSI.
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