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RESUMEN 

Se revisan brevemente las estrategias empleadas usualmente para resolver las ecuaciones 
acopladas del problema de la consolidación de suelos saturados. Luego se introduce un 
nuevo esquema basado en la solucion particionada del conjunto de ecuaciones acopladas y 
se desarrollan los criterios de convergencia y estabilidad necesarios. 

SUMMARY 

Commonly used solution strategies of the coupled set of equations governing consolidation 
of saturated soil are briefly reviewed. Then a new procedure based on the partitioned solution 
of the coupled set of equations is introduced and the necessary stability and convergence criteria 
are derived. 

INTRODUCCION 

Las primeras aplicaciones del método de elementos finitos al análisis de 
consolidación de suelos elásticos isotérmicos aparecieron hacia el final de la década de 
los sesenta'12. Desde entonces el tema ha suscitado mucho interés y se han conseguido 
considerables progresos en los procedimientos de solución y en la complejidad de los 
problemas resueltos. Descripciones de la literatura del tema más recientes pueden 
encontrarse en las referencias [3] y [4]. Enfocamos aquí nuestro interés en los 
procedimientos de solución de las ecuaciones acopladas que manejan el problema. Este 
interés está justificado por el hecho de que los análisis de consolidación que siguen las 
líneas de la teoría de Biot5, implican un número de grados de libertad por nodo que 
generalmente es la suma de los grados de libertad de los dos campos interactuantes 
(campos de desplazamiento y flujo), y más aún, a menudo conducen a largas historias 
en el tiempo. Así, es importante disponer de esquemas de solución eficientes para el 
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análisis de problemas de ingeniería real que a menudo son no lineales y exigen una 
extensión a problemas tridimensionales . 

Recientemente Park y Felippa6 han propuesto un esquema de solución particionada 
para el análisis de interacción entre dos o más campos. Este procedimiento se ha 
adaptado con éxito para el análisis de consolidación no isotérmica4J. Mediante l a  
introducción de una partición se descompone el problema en una parte de consolidación 
(campos de desplazamiento y flujo) y otra térmica (campo de temperaturas), puede 
conseguirse una destacable eficiencia computaciona18. Aquí investigamos la posibilidad 
de extender más aún la partición, es decir, descomponer el problema de consolidación 
en dos campos separados. La posible existencia del campo de temperaturas no complica 
la situación, ya que el acoplamiento entre este campo y los de presión y desplazamientos 
es débil8. Podemos así enfocar nuestra atención solamente en la consolidación 
isotérmica. El proceso resultante también resulta atractivo para el análisis de 
consolidación isotérmica por si misma, especialmente si se emplean rnicrocomputadores. 
Es importante recordar que descomponer no significa desacoplar las ecuaciones, sino 
que consiste en procesar los vectores de estado del problema acoplado mediante módulos 
separados, llamados analizadores de campo. Estos analizadores de campo se sincronizan 
para operar de manera secuencia1 o paralela6. En lo que sigue se emplea el esquema 
secuencial ya que es el más apropiado paia ordenadores pequeños 

Antes de tratar con la solución particionada se establecen simplemente las 
ecuaciones del problema y se revisan los esquemas de solución más comunes para 
destacar sus diferencias. 

ECUACIONES DISCRETAS DEL PROBLEMA 

Las ecuaciones que describen el problema de la consolidación isotérmica pueden 
obtenerse ya sea imponiendo la nulidad de las derivadas de Gateaux de un 
principio variacional conveniente113, bien mediante el empleo del principio de trabajos 
virtuales4J0, o mediante. una formulación de residuos ponderados4~". La teoría 
subyacente se basa o bien en la teoría del continuo de mezclas o en la teoría del continuo 
de materiales con microestruct~ra '~~'~.  

Las ecuaciones que describen el problema se establecen simplemente aquí, como se 
han obtenido en la referencia [14], luego de discretizar el espacio mediante elementos 
finitos. 

donde u y p son, los valores nodales de las variables básicas, ,es decir el vector 
desplazamientos del esqueleto sólido y el vector de presiones de poros del fluido 
saturado, H y M son las matrices de rigidez y masa usuales de un problema 
de equilibrio desacoplado en mecánica de sólidos y S y H son las matrices de 
capacit ancia y conductividad que corresponden a un problema de filtración desacoplado. 
Generalmente estas matrices son simétricas, definidas y positivas, aún si K resulta no 
simétrica en el caso de plasticidad no asociada. 
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Finalmente Q es la matriz de interacción entre los dos campos. La expresión 
detallada de,estos dos campos puede encontrarse en la literatura". Para los desarrollos 
posteriores la ecuación (1) se escribe en una forma más concisa como 

El significado de las matrices y vectores anteriores surge inmediatamente de la 
inspección de la ecuación (1) .  

En este trabajo la matriz de masa se desprecia y el sistema de ecuaciones (2) resulta 
simplemente: 

Para resolver el problema de valores iniciales, deben transformarse las ecuaciones 
diferenciales (3) en un sistema algebraico discreto mediante la integración en el tiempo. 
Los esquemas temporales adoptados por diversos autores se revisan en la referencia (31. 

Aquí utilizamos un esquema temporal de dos niveles (e-standard) y el sistema (3) 
resulta: 

donde At indica el incremento de tiempo, u,+l, p,+l, y u, y p, son los desplazamientos 
y presiones calculados en los pasos de tiempo n + 1 y n respectivamente, 0 es un 
parámetro libre que controla la estabilidad y la precisión del esquema. Generalmente 
se supone O < 0 < 1. 

El lector puede verificar fácilmente que en nuestro caso el acoplamiento entre los 
dos campos ocurre solamente en el transitivo y desaparece cuando se alcanza el estado 
estacionario. 

PROCEDIMIENTOS DE SOLUCION 

Diversos autores han abordado la solución directa de la ecuación (3) ,  o de 
ecuaciones ~imilares'.~.ll. Esta técnica proporciona ambas variables al mismo tiempo y 
no requiere operaciones matriciales adicionales, una vez definidas las matrices. 

Smith15 y Krauselo, reducen el número de grados de libertad en el caso lineal, 
mediante la eliminación o bien de la presión de fluido p ,  o del desplazamiento del suelo 
u.  La primera técnica ha sido denominada método de los desplazamientos por Krauselo 
y la segunda método de las presiones. En cada instante sólo se conoce la historia de 
una variable. Si se ha determinado el campo de desplazamientos, el campo de presiones 
se calcula mediante diferenciación numérica, con la consiguiente pérdida de exactitud. 
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En el método de las presiones, donde el número de grados de libertad se reduce a 
un mínimo, los desplazamientos se obtienen mediante la solución de las ecuaciones de 
equilibrio. En el método de las presiones las matrices no son dispersas. 

El esquema de solución particionada, que se tratará a continuación, mantiene la 
ventaja de tratar con matrices más pequeñas sin perder su característica de banda. 
Más aún, provee la historia temporal para ambas variables de estado. 

Comenzamos con la ecuación (4). La matriz D = (B + BAtC)  del primer miembro 
de la ecuación (4) se descompone según 

donde 

La ecuación (6) se sustituye ahora cn la ecuación (4) y D~x"+' se transfiera al 
segundo miembro, donde xn+l se sustituye mediante un predictor xi+' adecuado. 

P R E D I C T O R E S  

Hay una gran variedad de predictores de la solución en el instante n + 1. Dos de 
los más empleados son: 

con O < 7 < 1. A menudo se hace 7 = 0 o y = O. En el Último caso el predictor viene 
dado por la Última solución conocida xn. La expresión general de los predictores puede 
escribirse según: 

donde el predictor se expresa como una función de la solución anterior. Formas típicas 
de la ecuación (10) pueden obtenerse de las fórmulas de integración numérica según: 

Otras formas del predictor incluyen también la primera derivada temporal de la 
variable de estado x y son de la forma geneial 



ANALISIS DE CONSOLIDACION ACOPLADOS EN MEDIOS POROSOS 5 9 

Estas son comunes en problemas con derivadas temporales de segundo orden6. Los 
valores de las derivadas pueden obtenerse de la ecuación (3). Esto requiere sin embargo 
que se conozca B-', lo que no es tan atractivo en nuestro caso. En lo que sigue 
empleamos predictores dados por la ecuación (9). 

SOLUCION ESCALONADA 

Mediante la adopción de la ecuación (9) y descomponiendo la matriz D como en 
la ecuación (7), podemos escribir el sistema siguiente 

que pueden reescribirse como 

Este esquema escalonado comienza resolviendo la primera ecuación del sistema (3) 
con y = O (última solución), luego se resuelve la segunda ecuación con h+l ya calculado 
y con el vector actual del parámetro y.  

A continuación el esquema es iterativo y continúa hasta que la solución converge. 
Dado que el acoplamiento de los dos campos es normalmente fuerte, al menos 

en materiales como suelos, se necesitan iteraciones dentro de cada paso de tiempo 
para lograr convergencia. Los requisitos de convergencia dan un límite inferior para el 
tamaño del paso de tiempo como se verá en el próximo apartado. 

Las iteraciones no son una desventaja primordial, ya que en muchos problemas 
prácticos algún grado de no linealidad está presente. Tales no linealidades requieren 
generalmente iteraciones en dos esquemas temporales. No se requieren operaciones 
matriciales adicionales excepto las necesarias para la descomposición del' primer 
miembro de la ecuación (12). 
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ANALISIS DE LA CONVERGENCIA 

Se investiga ahora la convergencia de las iteraciones dentro de cada caso de tiempo 
para el caso lineal. 

Las ecuaciones (13) resultan 

"+' = bu, + hp, + dp:+, + F, 
ep:$ = fu, + gp, - fui+, + F p  

(14) 

donde s indica la iteración. 
Remarcando los términos implicados en la iteración, la ecuación (14) puede 

escribirse simplemente como 

y sustituyendo u:+, = u 2  de la primera ecuación en'la segunda 

Considerando la segunda ecuación, podemos escribir 

d + l  - + G ePn+i - 

donde 

donde J = (-e-' fa-ld) es la matriz iterativa del sistema. 
Puede mostrarsels que el método iterativo converge si 

donde p(J) es el el mayor autovalor de J .  
Despreciando la compresibilidad de los gramos del sólido y la del fluido (S = O), 

que usualmente resulta aceptable para suelos, la matriz de iteración resulta 
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y la ecuación (20) se reduce a 

Debido al hecho que en nuestro caso J es real y simétrico, para los valores de 6 y 
7 elegidos, puede conseguirse la convergencia del proceso iterativo sólo si se cumple 

lo que representa un límite inferior para el tamaño del incremento de tiempo. Cuan 
restrictiva resulta esta condición depende de los autovalores de la matriz H-'QTK-'Q 
resultando así una función de las propiedades del material, permeabilidades y datos 
geométricos. 

ANALISIS D E  ESTABILIDAD 

La estabilidad numérica de las ecuaciones particionadas no sólo depende de la 
fórmula de integración sino también de la descomposición y de la expresión del 
predictor6. Como ejemplo se examina la estabilidad numérica de las ecuaciones (3), 
reescritas según (13). Para ello se busca una solución no trivial del tipo 

para el caso de respuesta libre, es decir cuando todos los términos de carga son nulos 
en la ecuación (1). El parámetro y es el coeficiente de amplificación de la solución. La 
sustitución de la ecuación (24) en la (13) proporciona la ecuación característica 

P(X)xn = o 
donde 

P(X) = [DT + yDE + (1 - 7)DE - B + (1 - B)AtC] (26) 

Una solución no trivial de la (25) requiere 

detP(X) = O (27) 

Para la investigación de la ecuación (25) es conveniente introducir la transformación 
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que transforma el círculo de estabilidad ) A )  5 1 sobre el semiplano deñnido por 
Re(z) 5 O". La ecuación (27) puede así reescribirse como 

Desarrollando el determinante la ecuación (29) queda 

Si las matrices a, b y c son definidas positivas, el polinomio (30) no tiene raices 
reales positivas (Teorema de Routh). 

La condición de matriz definida positiva para a ,  b y c, puede asegurarse imponiendo 

EJEMPLOS NUMERICOS 

La efectividad del procedimiento de solución particionado propuesto se demuestra 
mediante dos ejemplos simples tomados de la literatura 

Ejemplo lZ0 

En la Figura 1 se muestra una columna de suelo sujeta a cargas superficiales q,  
que varían con el tiempo (Figura 2). Las condiciones de contorno y las propiedades del 
material se muestran en la misma figura. 

m 
0.1,O O. 4,O 

Permeabilidad (dirección x) K, : = 1 m/seg 
Permeabilidad (dirección y) Ky : = 1 m/seg 
Módulo de Elasticidad E : = 1 KN/m2 
Coeficiente de Poisson u :  = O 
Módulo voluiiiétrico del fluido Kf : = .1.106 KN/m2 
Porosidad por. : = 0.3 

21 2 3 

-1 t=- 1,o 

Figura 1. Ejeiiiplo 1: Malla y datos. 
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' ~ o a d  K N / ~ ~  

1.0 

Time t (sec ) 
-- 

10 

Figura 2. Función de carga. 

Para garantizar la convergencia (p(J) 5 l), el tamaño del paso de tiempo se a 
elegido igual a 90 segundos. Nótese que éste es un incremento de tiempo aceptable en 
problemas de consolidación. 

Los resultados numéricos se ilustran en las Figuras 3 y 4 en función de los 
desplazamientos y presión nodal respectivamente. 

Figura 3. Desplazamientos Nodales. Figura 4. Presiones nodales. 

Ejemplo 2'l 

En la Figura 5 se muestra un plano de suelo semi-infinito, sujeto a la misma carga 
superficial que en el ejemplo 1. Las características del suelo se indican en dicha Figura 
y también en este caso el tamaño del paso de tiempo debe ser 90 seg. 

Igual que en el ejemplo anterior los desplazamientos y las presiones nodales se 
muestran en las Figuras 6 y 7 respectivamente. 

Los mismos resultados numéricos de los dos casos previos se han obtenido con un 
procedimiento global ensayado en varios casos. 
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Permeabilidad (dirección x) K,  : = 0.001 m/seg 
Permeabilidad (dirección y) Ky : = 0.001 m/seg 
Módulo de Elasticidad E : = 300 KN/m2 
Coeficiente de Poisson v : = 0.2 
Módulo volumétrico del fluido Kf : = . l e l o 6  KN/m2 
Porosidad por. : = 0.3 

Figura 5. Ejeiiiplo 2: Malla y datos. 

Figura 6. Desplazamientos nodales. Figura 7. Presiones nodales. 

CONCLUSIONES 

Las conclusiones de  los análisis de convergencia y estabilidad n o  deberían cambiar 
en  el  caso de  descomponer las ecuaciones del problema de la consolidación n o  isotérmica 
e n  t res  campos individuales. Es to  es así porque el acoplamiento entre  la temperatura 
y los otros dos campos es débil y así no  resulta necesario i terar  dentro del intervalo de 
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El producto entre la temperatura y las matrices relevantes del acoplamiento 
aparece en el término independiente, que no se actualiza en la iteración y no afecta a 
la matriz de iteraciónlg . 

Se ha mostrado que el esquema particionado permite operar sobre matrices más 
pequeñas que en el cálculo directo, y además mantiene la estructura en banda de las 
matrices. Este procedimiento también proporciona simultáneamente las variables de 
estado. El límite inferior al tamaño del incremento temporal que surge de los requisitos 
de convergencia del procedimiento iterativo constituye sin embargo un inconveniente. 
Este límite inferior es especialmente alto para el caso de suelos rígidos, como surge de 
inspeccionar su estructura. 

Una vez que se ha calculado el mayor autovalor p(J) de la matriz iterativa el 
tamaño del incremento de tiempo puede elegirse para satisfacer la ecuación (23). Si el 
incremento de tiempo resulta demasiado grande deben aplicarse otros procedimientos. 
Sin embargo en muchos problemas de ingeniería la solución no es necesaria para períodos 
de tiempo pequeños, y así el procedimiento particionado presentado en este trabajo 
puede aplicarse eficientemente para resolver el sistema de ecuaciones acopladas que 
describe el problema. 
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