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RESUMEN

Se revisan brevemente las estrategias empleadas usualmente para resolver las ecuaciones
acopladas del problema de la consolidacién de suelos saturados. Luego se introduce un
nuevo esquema basado en la solucion particionada del conjunto de ecuaciones acopladas y
se desarrollan los criterios de convergencia y estabilidad necesarios.

SUMMARY

Commonly used solution strategies of the coupled set of equations governing consolidation
of saturated soil are briefly reviewed. Then a new procedure based on the partitioned solution
of the coupled set of equations is introduced and the necessary stability and convergence criteria
are derived.

INTRODUCCION

Las primeras aplicaciones del método de elementos finitos al andlisis de
consolidacién de suelos elasticos isotérmicos aparecieron hacia el final de la década de
los sesenta'®*. Desde entonces el tema ha suscitado mucho interés y se han conseguido
considerables progresos en los procedimientos de solucién y en la complejidad de los
problemas resueltos. Descripciones de la literatura del tema mads recientes pueden
encontrarse en las referencias [3] y [4]. Enfocamos aqui nuestro interés en los
procedimientos de solucién de las ecuaciones acopladas que manejan el problema. Este
interés estd justificado por el hecho de que los analisis de consolidacién que siguen las
lineas de la teoria de Biot®, implican un nimero de grados de libertad por nodo que
generalmente es la suma de los grados de libertad de los dos campos interactuantes
(campos de desplazamiento y flujo), y més atin, a menudo conducen a largas historias
en el tiempo. Asi, es importante disponer de esquemas de solucién eficientes para el
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analisis de problemas de ingenieria real que a menudo son no lineales y exigen una
extensién a problemas tridimensionales.

Recientemente Park y Felippa® han propuesto un esquema de solucién particionada
para el anilisis de interaccién entre dos o méds campos. Este procedimiento se ha
adaptado con éxito para el andlisis de consolidacién no isotérmica*’. Mediante la
introduccién de una particion se descompone el problema en una parte de consolidacién
(campos de desplazamiento y flujo) y otra térmica (campo de temperaturas), puede
conseguirse una destacable eficiencia computacional®. Aqui investigamos la posibilidad
de extender méas ain la particién, es decir, descomponer el problema de consolidacién
en dos campos separados. La posible existencia del campo de temperaturas no complica
la situacidn, ya que el acoplamiento entre este campo y los de presién y desplazamientos
es débil®. Podemos asi enfocar nuestra atencién solamente en la consolidacién
isotérmica. El proceso resultante también resulta atractivo para el anilisis de
consolidacién isotérmica por si misma, especialmente si se emplean microcomputadores.
Es importante recordar que descomponer no significa desacoplar las ecuaciones, sino
que consiste en procesar los vectores de estado del problema acoplado mediante médulos
separados, llamados analizadores de campo. Estos analizadores de campo se sincronizan
para operar de manera secuencial o paralela®. En lo que sigue se emplea el esquema
secuencial ya que es el més apropiado para ordenadores pequefios

Antes de tratar con la solucién particionada se establecen simplemente las
ecuaciones del problema y se revisan los esquemas de solucién mas comunes para
destacar sus diferencias.

ECUACIONES DISCRETAS DEL PROBLEMA

Las ecuaciones que describen el problema de la consolidacién isotérmica pueden
obtenerse ya sea imponiendo la nulidad de las derivadas de Gateaux de un
principio variacional conveniente!®, bien mediante el empleo del principio de trabajos
virtuales*'®, o mediante una formulacién de residuos ponderados*''. La teoria
subyacente se basa o bien en la teoria del continuo de mezclas o en la teoria del continuo
de materiales con microestructura?*?,

Las ecuaciones que describen el problema se establecen simplemente aqui, como se
han obtenido en la referencia [14], luego de discretizar el espacio mediante elementos

finitos.

M 0] [u 0 o u K -Q u| _ [Ful

o ol [t le sl B+ 6 RIBI=[R] o
donde u y p son los valores nodales de las variables basicas, es decir el vector
desplazamientos del esqueleto sélido y el vector de presiones de poros del fluido
saturado, H y M son las matrices de rigidez y masa usuales de un problema
de equilibrio desacoplado en mecénica de sélidos y S y H son las matrices de
capacitanciay conductividad que corresponden a un problema de filtracién desacoplado.
" Generalmente estas matrices son simétricas, definidas y positivas, atn si K resulta no
simétrica en el caso de plasticidad no asociada.
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Finalmente Q es la matriz de interaccién entre los dos campos. La expresién
detallada de estos dos campos puede encontrarse en la literatura'*. Para los desarrollos
posteriores la ecuacién (1) se escribe en una forma mds concisa como

A% + Bx + Cx = F (2)

El significado de las matrices y vectores anteriores surge inmediatamente de la
inspeccién de la ecuacién (1).

En este trabajo la matriz de masa se desprecia y el sistema de ecuaciones (2) resulta
simplemente:

Bx + Cx = F (3)

Para resolver el problema de valores iniciales, deben transformarse las ecuaciones
diferenciales (3) en un sistema algebraico discreto mediante la integracién en el tiempo.
Los esquemas temporales adoptados por diversos autores se revisan en la referencia {3].

Aqui utilizamos un esquema temporal de dos niveles (6-standard) y el sistema (3)
resulta:

[B 4+ 0AtC| x,41 = [B—(1-0)AtC] x,, + FAt (4)

.
(& svonm) o] =[O0 s AR (] + (] @

donde At indica el incremento de tiempo, U, 41, Pnt1, Y Un ¥ Pr son los desplazamientos
y presiones calculados en los pasos de tiempo n + 1 y n respectivamente, f es un
parametro libre que controla la estabilidad y la precisién del esquema. Generalmente
se supone 0 < § < 1.

El lector puede verificar ficilmente que en nuestro caso el acoplamiento entre los
dos campos ocurre solamente en el transitivo y desaparece cuando se alcanza el estado
estacionario.

PROCEDIMIENTOS DE SOLUCION

Diversos autores han abordado la solucién directa de la ecuacién (3), o de
ecuaciones similares’*!!. Esta técnica proporciona ambas variables al mismo tiempo y
no requiere operaciones matriciales adicionales, una vez definidas las matrices.

Smith** y Krause'®, reducen el nimero de grados de libertad en el caso lineal,
mediante la eliminacién o bien de la presién de fluido p, o del desplazamiento del suelo
u. La primera técnica ha sido denominada método de los desplazamientos por Krause'®
y la segunda método de las presiones. En cada instante sélo se conoce la historia de
una variable. Si se ha determinado el campo de desplazamientos, el campo de presiones
se calcula mediante diferenciacién numérica, con la consiguiente pérdida de exactitud.
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En el método de las presiones, donde el nimero de grados de libertad se reduce a
un minimo, los desplazamientos se obtienen mediante la solucién de las ecuaciones de
equilibrio. En el método de las presiones las matrices no son dispersas.

El esquema de solucién particionada, que se tratara a continuacién, mantiene la
ventaja de tratar con matrices mas pequenas sin perder su caracteristica de banda.
M4s atin, provee la historia temporal para ambas variables de estado.

Comenzamos con la ecuacién (4). La matriz D = (B + §AtC) del primer miembro
de la ecuacién (4) se descompone segiin

D = D' + D*F (6)
donde
r _ [K8@ 0 B _ 0 -0Q
D" = 0 S+o0AtH| ° b™ = QT o (7)

La ecuacién (6) se sustituye ahora cn la ecuacién (4) y DZx™*! se transfiera al

segundo miembro, donde x"*? se sustituye mediante un predictor x3*! adecuado.

PREDICTORES

Hay una gran variedad de predictores de la solucién en el instante n + 1. Dos de
los mas empleados son:

xn-H — (1_+_7)xn_7xn+1 (8)

M= (1o y)xt (8)
con 0 < 7 < 1. A menudo se hace y = § o 7 = 0. En el ultimo caso el predictor viene
dado por la iltima solucién conocida x™. La expresién general de los predictores puede
escribirse segun:

X

xpth = Y e (10)
J

donde el predictor se expresa como una funcién de la solucién anterior. Formas tipicas
de la ecuacién (10) pueden obtenerse de las férmulas de integracién numérica segin:

1
xg-}-l — __xn—2 _+_ _xn
2 2 (106)
xn+1 _ léxn—‘l _ _§_xn—3 + égxn——?. _ ég_xn—l + _Elgxn
- | 31 31 31 31

Otras formas del predictor incluyen también la primera derivada temporal de la
variable de estado x y son de la forma general

xptt = Z(ajx"_j + Atbjx'i_j) (1

J
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Estas son comunes en problemas con derivadas temporales de segundo orden®. Los
valores de las derivadas pueden obtenerse de la ecuacién (3). Esto requiere sin embargo
que se conozca B!, Io que no es tan atractivo en nuestro caso. En lo que sigue
empleamos predictores dados por la ecuacién (9).

SOLUCION ESCALONADA

Mediante la adopcién de la ecuacién (9) y descomponiendo la matriz D como en
la ecuacién (7), podemos escribir el sistema siguiente

% svonat] L] = V7% s-aVoam) [ *

lom] oo o R [l - o S G]

que pueden reescribirse como

"0 svonm) o] = 1" S s-aoam) (o] ¢

*lam] - le 0 0] 03

Este esquema escalonado comienza resolviendo la primera ecuacién del sistema (3)
con v = 0 (tltima solucién), luego se resuelve la segunda ecuacién con u,4; ya calculado
y con el vector actual del parametro 7.

A continuacidn el esquema es iterativo y continda hasta que la solucidn converge.

Dado que el acoplamiento de los dos campos es normalmente fuerte, al menos
en materiales como suelos, se necesitan iteraciones dentro de cada paso de tiempo
para lograr convergencia. Los requisitos de convergencia dan un limite inferior para el
tamafio del paso de tiempo como se verd en el préoximo apartado.

Las iteraciones no son una desventaja primordial, ya que en muchos problemas
practicos algin grado de no linealidad estd presente. Tales no linealidades requieren
generalmente iteraciones en dos esquemas temporales. No se requieren operaciones
matriciales adicionales excepto las necesarias para la descomposicién del primer
miembro de la ecuacién (12).
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ANALISIS DE LA CONVERGENCIA

Se investiga ahora la convergencia de las iteraciones dentro de cada caso de tiempo
para el caso lineal.

a = 0K; b =(0-1)K;

d = 40Q; e = (S+06AtH);
f=19Q"; g=(5-(1-0)AtH);
h = —(y6-1)Q

Las ecuaciones (13) resultan

au:lv.‘;.11 = bu, + hp, + dp:,.H + Fu

s+1

(14)
€Pny1 — fu, + gpn — fu:H-l + Fp

donde s indica la iteracién.
Remarcando los términos implicados en la iteracién, la ecuacién (14) puede
escribirse simplemente como

au’tl = dp;,; + W(u,,p»)

n+1 (15)
eprii = —fuly; + R(un,pn)
y sustituyendo u;,,; = u;’jrl1 de la primera ecuacién enla segunda
u:;ill = a_l[dp;’1+1 + W] (16)
ep;iy = —fa”l[dp;, + W] + R
Considerando la segunda ecuacién, podemos escribir
ep,t; = —fa7'pl; + G (17)
donde
G=-faa'W+R (18)
o
pii1 = [~eMfaldlpryy + G = Jppp + G (19)
donde J = (—e_ifa‘ld) es la matriz iterativa del sistema.
Puede mostrarse'® que el método iterativo converge si
(@] <1 p(D)] < 1 (20)

donde p(J) es el el mayor autovalor de J. '
Despreciando la compresibilidad de los gramos del sélido y la del fluido (S = 0),
que usualmente resulta aceptable para suelos, la matriz de iteracién resulta
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3 = —(6AtH)yQT(0K) " (16Q) =
_ _72 -1ATyr -1 (21)
22
y la ecuacidén (20) se reduce a
72 1Ty -1
AP EIQTKTQ) < 1 (22)

Debido al hecho que en nuestro caso J es real y simétrico, para los valores de 6 y
7 elegidos, puede conseguirse la convergencia del proceso iterativo sdlo si se cumple

2
At > 77;0(1*1'1QTK_1Q) (23)
lo que representa un limite inferior para el tamaiio del incremento de tiempo. Cuan
restrictiva resulta esta condicién depende de los autovalores de la matriz H-!QTK~1Q
resultando asi una funcién de las propiedades del material, permeabilidades y datos
geométricos.

ANALISIS DE ESTABILIDAD

La estabilidad numérica de las ecuaciones particionadas no sélo depende de la
férmula de integracién sino también de la descomposicién y de la expresién del
predictor®. Como ejemplo se examina la estabilidad numérica de las ecuaciones (3),
reescritas segin (13). Para ello se busca una solucién no trivial del tipo

Xni1 = AXp, (24)

para el caso de respuesta libre, es decir cuando todos los términos de carga son nulos
en la ecuacién (1). El pardmetro v es el coeficiente de amplificacién de la solucién. La
sustitucién de la ecuacién (24) en la (13) proporciona la ecuacién caracteristica

PMx, = 0 (25)
donde

P(A) = [DT+4D® +(1-7)D® - B+ (1 - §)AtC] (26)

Una solucién no trivial de la (25) requiere

detP(A) = 0 (27)

Para la investigacion de la ecuacién (25) es conveniente introducir la transformacién
1

A= 2 (28)

1-2
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que transforma el circulo de estabilidad [A| < 1 sobre el semiplano definido por
Re(z) < 0'. La ecuacién (27) puede asi reescribirse como

det{[-AtC + 2(D” + yD®)]z + AtC} = 0 (29)
Desarrollando el determinante la ecuacién (29) queda
azz + bz 4+ c =0 (30)

Si las matrices a, b y ¢ son definidas positivas, el polinomio (30) no tiene raices
reales positivas (Teorema de Routh).
La condicién de matriz definida positiva para a, b y ¢, puede asegurarse imponiendo

0 >

(31)

y > o v=20 (32)

gl,__‘wln—l

EJEMPLOS NUMERICOS

La efectividad del procedimiento de solucién particionado propuesto se demuestra
mediante dos ejemplos simples tomados de la literatura

Ejemplo 1?°

En la Figura 1 se muestra una columna de suelo sujeta a cargas superficiales ¢,
que varian con el tiempo (Figura 2). Las condiciones de contorno y las propiedades del
material se muestran en la misma figura.

01,0 0,4,0
1 3
» 4 T
8 Permeabilidad (direccién z) K;: = 1 m/seg
Permeabilidad (direccién y) Ky : = 1m/seg
S Médulo de Elasticidad E: = 1KN/m?
o,13,3 0,16, Coeficiente de Poisson v: = 0
13 10,0 Médulo volumétrico del fluido Kj : = .1-108 KN/m2
S | Porosidad por. : = 0.3
18
D q
,0,7 0,0,8
21 23

~ 10

Figura 1. Ejemplo 1: Malla y datos.
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b oad KN/m?

Time t(sec.)

10

Figura 2. Funcién de carga.

Para garantizar la convergencia (p(J) < 1), el tamafio del paso de tiempo se a
elegido igual a 90 segundos. Nétese que éste es un incremento de tiempo aceptable en

problemas de consolidacidn. . . .,
Los resultados numéricos se ilustran en las Figuras 3 y 4 en funcién de los

desplazamientos y presién nodal respectivamente.

pii S
i s

T IR ey 25
00 |I|§§““!“:‘.‘{""f"‘mwmlm|“““ RSl [P S
‘\i\ 3;|“< -0 ol IR | e o
BNl L - e g
Py -2 ouerl
2o ool
o _

7 7

Figura 3. Desplazamientos Nodales. Figura 4. Presiones nodales.

Ejemplo 2%

En la Figura 5 se muestra un plano de suelo semi-infinito, sujeto a la misma carga
superficial que en el ejemplo 1. Las caracteristicas del suelo se indican en dicha Figura
y también en este caso el tamafio del paso de tiempo debe ser 90 seg.

Igual que en el ejemplo anterior los desplazamientos y las presiones nodales se
muestran en las Figuras 6 y 7 respectivamente.

Los mismos resultados numeéricos de los dos casos previos se han obtenido con un
procedimiento global ensayado en varios casos.
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MmN
01,0 4,50 8,9,0 12,13,0 0,16,0
1 5 3 )
) 4
19
DO,LLO 42,43,0 q
0,49,6 52,93,7 33 0,64,10 4'0
i
47
N q
0,0,16 0,0,17 0,0,18 0,0,19 0,0,20
57 61 65
- 4,0 |
Permeabilidad (direccién z) K = 0.001 m/seg
Permeabilidad (direccién y) K, : = 0.001 m/seg
Médulo de Elasticidad E : = 300 KN/m?
Coeficiente de Poisson v : = 0.2
Médulo volumétrico del fluido Ky : = .1.10° KN/m?
Porosidad por. : = 0.3

Figura 5. Ejemplo 2: Malla y datos.

Figura 6. Desplazamientos nodales.

Figura 7. Presiones nodales.

CONCLUSIONES

Las conclusiones de los anélisis de convergencia y estabilidad no deberian cambiar
en el caso de descomponer las ecuaciones del problema de la consolidacién no isotérmica
en tres campos individuales. Esto es asi porque el acoplamiento entre la temperatura
y los otros dos campos es débil y asi no resulta necesario iterar dentro del intervalo de
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tiempo*®. El producto entre la temperatura y las matrices relevantes del acoplamiento
aparece en el término independiente, que no se actualiza en la iteracién y no afecta a
la matriz de iteracién'®.

Se ha mostrado que el esquema particionado permite operar sobre matrices mas
pequeiias que en el calculo directo, y ademds mantiene la estructura en banda de las
matrices. Este procedimiento también proporciona simultdneamente las variables de -
estado. El limite inferior al tamaiio del incremento temporal que surge de los requisitos
de convergencia del procedimiento iterativo constituye sin embargo un inconveniente.
Este limite inferior es especialmente alto para el caso de suelos rigidos, como surge de
inspeccionar su estructura.

Una vez que se ha calculado el mayor autovalor p(J) de la matriz iterativa el
tamafio del incremento de tiempo puede elegirse para satisfacer la ecuacién (23). Si el
incremento de tiempo resulta demasiado grande deben aplicarse otros procedimientos.
Sin embargo en muchos problemas de ingenieria la solucién no es necesaria para periodos
de tiempo pequefios, y asi el procedimiento particionado presentado en este trabajo
puede aplicarse eficientemente para resolver el sistema de ecuaciones acopladas que
describe el problema.
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