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Abstract

In this work, a non-ideal system based on the Mathieu-Van der Pol System is modeled considering its parameters as uncertain,
which makes it closer to reality.

Numerical simulations are presented demonstrating that the system has a chaotic behavior with three positive Lyapunov

exponents. Given such unstable and unpredictable behavior, the linear optimal control design is proposed to reduce the chaotic

movement of this system to a fixed point. The simulation results show that the identification by Linear Optimal Control is very

effective.

Keywords: Non-Ideal System, Uncertain Parameters, Optimal Linear Control

Introduction

Humanity is going through a very fast technological revolution, which makes well established companies
and start-ups strive daily to invest in the search for introducing new, customizable, autonomous and more
efficient products in the work market. For such purposes, mechanical engineering contributes with projects
of advanced technological products, such as the manufacturing of electric and autonomous vehicles in the
automotive sector. Therefore, with a simple software update, costs related to maintenance for changing oil,
filters and other parts of cars powered by internal combustion engines, will be replaced.

The challenge of creating a new product requires developing projects that are straightforward concerning
the objectives to be achieved and all stages to be completed, from their beginning, development, until their
end. During the execution phase of a mechanical project, the probability of mistakes happening is high,
leading to undesirable effects, that is, negative effects, or even chaotic ones. Considering this, managing the
risks effectively may decrease the occurrence of a chaotic event that hinders the development of a project.
Formally speaking, a chaotic event, or simply chaos, represents the irregularity of a dynamical system. Its
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essential characteristics are: sensitivity to initial conditions, which means that its evolution in time may
be altered by small perturbations, and unpredictability, which implies that it is impossible to predict the
posterior evolution of the system, even knowing its state during a long-time interval.

A priori, it is possible to state that a chaotic response can be understood based on a series of contraction-
expansion-bending transformations, and among the tools applied to characterize chaos, the Lyapunov expo-
nents stand out, which are one of the invariants of the system, and may be used even for evaluating other
invariants [1].

Due to the possibility of a chaotic event happening during the development of projects, the alternative
is to seek to mitigate this disorder state, that is, to manage the chaos that is inherent to the system,
checking the weaknesses that unexpectedly arise, so as not to harm the production stage. Nowadays, Chaos
Engineering contributes to carrying out experiments in the infrastructure and pointing out the weaknesses
related to the system before they arise. This empirical verification process leads to invulnerable systems,
and provides reliability for a complex system to operate under turbulent situations during the operational
process of production. In 1990, Grebogi, Edward Ott and James Yorke demonstrated the possibility of
controlling chaos [2]. Ever since then, controlling chaotic systems has been of great interest in mechanical
engineering, and implies in designing state feedback control laws which stabilize the chaotic system around
the instable equilibrium points. Many control techniques may be used to control a system, and each of them
presents peculiarities and different results, especially in practice. To stabilize chaotic systems, in many works
feedback linear control was used[10][11] [18]. In the present paper, we apply the Optimal Linear Control
(OLC) methodology, proposed by Rafikov and Balthazar [18], which ensures the application of linear control
to nonlinear systems. Among the main characteristics of Optimal Linear Control, we highlight the use of
the state-space representation model, the obtaining of optimal control signals through the Algebraic Ricatti
Equation (ARE), and the objective function, parameterized by the matrices Q and R to weigh the state and
control vectors, respectively [18].

This work aims at proposing a new numerical model for the Mathieu-Van der Pol system coupled to a source
with a rotative unbalance [4][5][6][7] and considering uncertain parameters; afterwards, a control technique
is applied to stabilize the whole proposed system.

Nowadays, the applications in mechanical engineering require that the systems operate with optimal pa-
rameters under certain operation conditions, which demonstrates the need for developing realistic numerical
models which consider uncertainties in the parameters and inputs of the system properly. In mechanical
engineering, the uncertainties have been considered in several areas, such as structure dynamics [13], rotor
dynamics [14], robot manipulators [15], among others. In the process of modeling dynamical systems, un-
certainties may be considered based on a probabilistic approach, through predefined intervals, or even the
possibility theory [16].

Mathematical Model

The Mathieu-Van der Pol autonomous system is a model with four state variables and three positive
Lyaponuv exponents, proposed by Shih-Yu et al.[3]. It is a hyper-chaotic system that was modeled via
linear coupling of the non-linear and non-autonomous systems of Mathieu and Van der Pol [3], whose equa-
tions of motion are as follows::

ẋ1 = x2

ẋ2 = −(a+ bx3)x1 − (a+ bx3)x31 − cx2 + dx3

ẋ3 = x4

ẋ4 = −ex3 + f(1− x23)x4 + gx1 (1)
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where x1, x2, x3 and x4 are the four states of the system and a, b, c, d, e, f and g are the parameters of the
Mathieu-Van der Pol System [3][24].

The next section deals with non-ideal excitations, as well as presents a proposal for a new model called
Non-Ideal Mathieu-Van der Pol System.

Non-ideal System

A system is said to be ideal when the excitation does not influence the response of the system, ie, the ideal
excitation has an ideal power source [8][9][10][11][12]. On the other hand, when the excitation is influenced
by the response of the system, the excitation is said to be non-ideal [19]. A non-ideal excitation can be
modeled as shown in Fig 1 [4][11].

Figure 1: Non-ideal power source [11]

This representation on the based in Kononenko model and can be mathematically modeled according to
equations 2 where m1 is a DC motor mass, m0 is unbalanced mass, l is the dumping, k is the rigidity, r is
the eccentricity distance from the unbalanced mass to the torque source, (I+m0r

2) is the moment of inertia
of the unbalanced mass, and the state variables are X representation for the beam tip position and ϕ for
the unbalanced mass angular position. The net torque is a function of the angular velocity ϕ̇ and described
as for S(ϕ̇) = a− bϕ̇ [6][11][17], where a is the net torque applied by the DC motor and b is the resistive net
torque constant.

(m1 +m0)Ẍ + lẊ + kX = m0r(ϕ̇
2cosϕ+ ϕ̈senϕ))

(I +m0r
2)ϕ̈−m0rẌsenϕ = s(ϕ̇) (2)

The first characteristic of a non-ideal system is that it presents an equation that describes the interaction
of the energy source with the ideal dynamic system, and the second characteristic is that the dynamics of
a non-ideal system approaches the ideal case as the supplied power increases. For the present work the
adimensional non-ideal mathematical model configuration [6][9] of the non-ideal power source is given by
equations 3

ẍ1 = −(a+ bx2)x1 − (a+ bx2)x31 − cẋ1 + dx2 + µ(ż2cosz + z̈senz)

ẍ2 = ex2 + f(1− x22)ẋ2 + gx1

z̈ = εẍ1senz + α− βż (3)
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The angular position z is the non-ideal excitation response, α, β are motor torque constants, ε is the distance
from the unbalanced mass to the rotation center of the DC motor and µ is related to the moment of inertia
of the system. All parameters are dimensionless positive constants. The term µ(ż2cosz + z̈senz) is due to
the interaction between the dynamical system and an energy source, for example, a DC motor with limited
power supply. µ(ż2cosz + z̈senz) is responsible for the Non-idealization of the system. The parameter α is
the applied torque constant and depends on the initial conditions, and β is the resistive net torque and has
no influence of initial conditions and is considered as internal damping of the DC Motor.

Making y1 = x1, y2 = ẋ1,y3 = z,y4 = ż, y5 = x2 and y6 = ẋ2, y5 = z and , has

ẏ1 = y2,

ẏ2 = −−(a+ by3)y1 − (a+ by3)y31 − cy2 + dy3 + µy24cosy3 + (α− βy4)µseny3
1− µε(seny3)2

,

ẏ3 = y4,

ẏ4 = −ε(−(a+ by3)y1 − (a+ by3)y31 − cy2 + dy3)seny3 + µεy24cosy3seny3 + α− βy4
1− µε(seny3)2

,

ẏ5 = y6,

ẏ6 = −ey5 + f(1− y25)y6 + gy1.

(4)

Figure 2 and Figure 3 illustrate the behavior of the adopted dynamical model, using numerical values
a = 91.7, b = 5.023, c = 0.01, d = 91, e = 87.001, f = 18 and g = 9.5072 [24] for the Mathieu-Van der Pol
System and α = 0.8, β = 1.5, ε = 0.3 and µ = 0.2 for the non-ideal excitation [6].

Figure 2: Time History. (a) displacement for the Mathieu system; (b) velocity for the Mathieu system;
(c)displacement for the non-ideal excitation; (d) velocity for the non-ideal excitation; (e) displacement for
Van der Pol system, and (f) velocity for the Van der Pol system
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Figure 3: Phase Portrait. (a) Mathieu system, (b) Non-ideal excitation, and (c) Van der Pol system

Figure 4 illustrates the six Lyapunov exponents, λ1 = 8.9985; λ2 = 8.9539; λ3 = −6.4645; λ4 = −1.4999
and λ5 = −3.203, λ6 = −3.2329, demonstrating the presence of chaos with one positive Lyapunov exponent.
The total time for computing the Lyapunov exponents was ∆τ = 100.000 with a time-step of τ = 1.

Figure 4: Dynamics of Lyapunov expoents

Aiming to minimize vibrations and reduce the oscillatory motion caused in the system , in the following
section we propose the application of Linear Optimal Control to reduce this chaotic behavior to a fixed
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point.

To consider the effect of the parameter uncertainties on the performance of the controller they are added to
the state. The nominal values of the parameters are given below.

The real unknown parameters of system are supposed to be as follows:ā = 73.36 + 36.68r(t), b̄ = 4.024 +
2.012(t), c̄ = 0.008 + 0.002(t), d̄ = 72.8 + 36.4r(t), ē = 69.6008 + 34.8004r(t), f̄ = 14.4 + 7.2r(t), ḡ =
7.5928 + 3.8288r(t), ᾱ = 0.64 + 0.32r(t), µ̄ = 0.16 + 0.08r(t), β̄ = 1.2 + 0.6r(t) and ¯eta = 0.24 + 0.12r(t)
where r(t) are normally distributed random functions [20]. Numerical simulation results are shown in the
next section, where the robustness of the methods is assessed considering that the system parameters present
uncertainties.

Control Design

The Optimal Linear Control design for the Non-ideal Mathieu-Van der Pol system reduces the oscillatory
movement to a small stable orbit. Due to its simplicity in terms of configuration and implementation, the
linear state feedback control is especially attractive [18].

It should be stressed that this approach is analytical and it can be used without dropping any non-linear
term. Rewriting the equations of motion 4, in a state form:

ẋ = Ax+ g(x) (5)

Considering a vector function x̃, witch characterizes the desired trajectory, and the control vector U , con-
sisting of two parts: ũ for the feedforward and uf for a linear feedback, in such way that,

uf = Bu (6)

where B is a constant matrix, and driving the deviation of the trajectory of system 6 to the desired one
y = x− x̃.

The control is optimal, in order to transfer the non-linear system 4 from any initial to final state y(tf ) = 0,

minimizing the functionalJ̃ = 1
2

∫∞
0

(yT Q̃y+utRu)dt, where the symmetric matrix P (t) is evaluated through
the solution of the matrix Ricatti differential equation [19][20][21][22].

PA+ATP − PBR−1BTP +Q = 0 (7)

satisfying the final condition P (tf ) = 0.

In addition, with the feedback control 4, there exists a neighborhood Γ0 ⊂ Γ,Γ ⊂ <n, of the origin such
that if x0 ∈ Γ0, the solution x(t) = 0,t ≥ 0 of the controlled system is locally asymptotically stable, and
Jmin = xT0 P (0)x0. Finally, if Γ = <n then the solution y(t) = 0,t > 0 of the controlled system is globally
asymptotically stable.

Using the theorem [20] the dynamic error y can be minimized (y → 0).
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Application of the Optimal Linear Control to the System

From equation 4:

ẏ1 = y2 + U,

ẏ2 = −−(a+ by3)y1 − (a+ by3)y31 − cy2 + dy3 + µy24cosy3 + (α− βy4)µseny3
1− µε(seny3)2

,

ẏ3 = y4,

ẏ4 = −ε(−(a+ by3)y1 − (a+ by3)y31 − cy2 + dy3)seny3 + µεy24cosy3seny3 + α− βy4
1− µε(seny3)2

,

ẏ5 = y6,

ẏ6 = −ey5 + f(1− y25)y6 + gy1.

(8)

where the function of control U is defined in equation 5.

Rewriting the dynamical system 4 in the space-state form:

ẏ1 = y2 + U,

ẏ2 = −−k1y1 − k2(y1 − y3) + dy26cos(y5) + dsin(y5)(a− by6)

m1 − dr(sin2y5)

ẏ3 = y4,

ẏ4 = − y2
m2

(y3 − y1),

ẏ5 = y6,

ẏ6 =
rsin(y5)(−k1y1 − k2(y1 − y3)) + dy26rcos(y5)sin(y5) + drsin(y5)2 + (m1 − dr(sin2(y5)))(a− by6)

m1 − dr(sin2(y5))
.

(9)

And then

B =


1
1
1
1
1
1

, y =


x1 − x̃1
x2 − x̃2
x3 − x̃3
x4 − x̃4
x5 − x̃5
x6 − x̃6

, x̃ =


0
0
0
0
0
0

,Q = I6, A =


0 1 0 0 0 0

−91.77 −0.01 91.10 0 0 0
9.50 0 0 1 0 0
−0.09 0 0.09 −1.49 0 0

0 0 0 1 0 1
9.50 0 0 0 −87.00 17.99


where the controllability matrixR of the system for the pair [A,B] is obtained byR = [B|AB|A2B|A3B|A4B|A5B].

Thus, R =
(
1
)
. Then the Matrix

P (t) is given by P = 104


0.216 0.031 0.406 −0.030 −0.647 0.040
0.031 0.004 0.058 −0.004 −0.093 0.005
0.406 0.058 0.767 −0.058 −1.218 0.071
−0.030 −0.004 −0.058 0.004 0.092 −0.005
−0.647 −0.093 −1.218 0.092 1.944 −0.123
0.040 0.005 0.076 −0.005 −0.123 0.008


and (an optimal control)
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u = 102(1.6765x1 + 0.2493x2 + 3.2667x3 − 0.2353x4 − 4.6331x5 + 0.2116x6).

The trajectories of the system with control can be seen in Figures 5 and 6. According to the optimal control
verification [23], the function is numerically calculated by L(t) = yT Q̃y,where L(t) is positive definite.

Figure 5: Time History - the blue line is related to the system with uncertain parameters; the red line, with
fixed parameters; the black line, in turn, is related to the controlled system. (a) displacement for the Mathieu
system; (b) velocity for the Mathieu system; (c)displacement for the non-ideal excitation; (d) velocity for the
non-ideal excitation; (e) displacement for Van der Pol system, and (f) velocity for the Van der Pol system
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Figure 6: Phase Portrait - the blue line is related to the system with uncertain parameters; the red line,
with fixed parameters; the black line, in turn, is related to the controlled system. (a) Mathieu system, (b)
Non-ideal excitation, and (c) Van der Pol system

Conclusions

In this work, the dynamics of a new model called the Non-Ideal Mathieu-Van Der Pol System with chaotic
behavior is proposed and analyzed.

We proposed the use of a Linear Optimal Control strategy to reduce the chaotic motion of this system to a
fixed point.

Figures 5 and 6 illustrated the effectiveness of the control strategy applied to solve these problems.
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[23] Cveti-Ćanin, L. Dynamics of the non-ideal mechanical systems: a review. Journal of the Serbian Society
for Computational Mechanics, Sérvia, v. 4, n. 2, p. 75-86, (2010).

[24] F.R.Chavarette, N. J. Peruzzi, M. L. M. Lopes, A. M. Cossi. A Note of Optimal Linear Control Technical
Applied in the Chaos Stabilization in the Mathieu-van der Pol Autonomous Oscillator. International Journal
of Applied Mathematics, v. 25, p. 861-869, (2012).

11


