1st Latin-American Workshop on Structural Health Monitoring
LATAM-SHM 2023
December, 5-8 2023

DETECTION OF LOSSY BOLTS IN A JACKET-TYPE WIND
TURBINE SUPPORT USING A VIBRATION-ONLY RESPONSE
STRATEGY BASED ON ACCELEROMETER DATA

RICARDO PRIETO-GALARZA*!, CHRISTIAN TUTIVEN*' AND
YOLANDA VIDAL*®

* Control, Data, and Artificial Intelligence, CoDAlab
Department of Mathematics, Escola d’Enginyeria de Barcelona Est, EEBE
Universitat Politecnica de Catalunya, UPC
Campus Diagonal-Besés (CDB) 08019, Barcelona, Spain
e-mail: {ricardo.prieto,yolanda.vidal}@upc.edu - Web page: https://www.upc.edu/es

"Mechatronics Engineering
Faculty of Mechanical Engineering and Production Science, FIMCP
Escuela Superior Politécnica del Litoral, ESPOL
Campus Gustavo Galindo Km. 30.5 Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
Phone number: 4593 9 9103 5259,
e-mail: cjtutive@espol.edu.ec - Web page: https://www.espol.edu.ec

YUniversidad Ecotec
Km. 13.5 Samborondén, Samborondén, EC092302 Ecuador.

°Institute of Mathematics (IMTech)
Universitat Politecnica de Catalunya (UPC)
Pau Gargallo 14, 08028 Barcelona, Spain
e-mail: yolanda.vidal@upc.edu - Web page: https://imtech.upc.edu/en

Key words: wind turbine, structural health monitoring, damage detection, jacket structure

Abstract. The early detection of damage in wind turbine structures is of crucial importance
to ensure the safety and efficiency of wind farms. This study specifically addresses the problem
of detecting a common damage: loose bolts, which can have a significant impact on the per-
formance and lifespan of a jacket-type structure. This work focuses on the structural health
monitoring of jacket-type support used by offshore wind turbines. A vibration-only response
strategy based on accelerometer data is specifically proposed to detect loose bolts in the wind
turbine jacket using an anomaly detection model. The methodology consists of two training
phases using only healthy data: training a generative adversarial network (GAN) and training
an encoder based on the learned GAN model. Through the GAN network training process, a
generator, and a critic are obtained. The encoder is then trained to map healthy samples to
a latent vector, placing the data at points in the latent space that correspond to the healthy
state of the input data. Once the encoder training is complete, the encoder maps the input
sample space to the latent space, and the generator maps the latent space back to the initial
space. In the case of a healthy input, this mapping process should closely resemble the original
input sample. However, when damaged-state input samples are used, the model output does

not resemble the input. To identify anomalies, the reconstruction error and a comparison of the
residual error of the critic properties are employed as the final two loss functions. The proposed
strategy has been validated through laboratory experiments on a down scaled model. The deep
learning models have proven to be an effective technique for the early detection of loose bolts
in jacket-type structures of wind turbines. This approach can significantly contribute to im-
proving the safety and performance of wind farms by enabling timely and efficient intervention
in the event of possible structural failures.

1 INTRODUCTION

In recent years, the global utilization of wind energy has seen a substantial rise [I], with an
increasing installation of offshore wind turbines (WTs) to harness more consistent and stronger
winds. However, to sustain this growth, it is imperative to concurrently reduce operational and
maintenance costs. In this context, structural health monitoring (SHM) solutions have emerged
as a means to provide early alerts, thereby reducing maintenance expenses and extending the
lifespan of turbines.

Various types of supports are used for WTs, and this study specifically focuses on jacket-
type structures, which are preferred for locations with significant water depths and unfavorable
soil conditions [2]. To enhance SHM in WTs, the integration of artificial intelligence (Al) is a
promising avenue as it aids in predicting component damage. Unsupervised learning methods
have garnered significant attention recently, enabling the analysis of extensive sensor data to
identify patterns indicative of damage. For instance, in a recent work, Feijéo et al. utilized
an unsupervised learning approach based on autoencoders (AEs) to scrutinize vibration sensor
data from WTs [3]. The AE model is employed to extract pertinent features from sensor
data, facilitating the detection of structural anomalies and thus providing early warnings for
potential issues. Another notable approach, as suggested by Mao et al. [4], involves the use of
generative adversarial networks (GANs) for SHM in offshore WTs, significantly enhancing the
capacity to identify damage and anomalies. Their study utilized GANs to analyze vibration
data from turbines, generating images representing turbines in various states. These images
were subsequently employed to train a supervised classification model for the detection of
damage.

This study employs a combined GAN and AE model approach for early damage detection
in WT jacket supports through unsupervised learning. Inspired by Schlegl et al.’s work on
medical image anomaly detection [5], the research aims to develop an unsupervised deep learning
method for anomaly detection in experimental jacket structures using vibration data exclusively.
The methodology involves simulating wind-induced rotor vibration via Gaussian white noise,
collecting accelerometer data, preprocessing it into the time-frequency domain, normalizing it,
training GAN and AE networks on healthy data, and testing the damage detection approach
using loose bolts at four locations. Key contributions include i) relying solely on healthy data,
ii) utilizing time-frequency feature extraction based on the Wigner-Ville distribution (WVD),
iii) and operating with only vibration-response data, assuming the unknown input excitation
signal is wind, waves, or currents.

The subsequent sections of this article are organized as follows. Section [2| elaborates on
the development of the proposed methodology, Section [3| presents and discusses the obtained

Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

results, and, finally, Section [4| summarizes the conclusions derived from the study.

2 METHODOLOGY

The methodology collects experimental data across 5 structural conditions - healthy and
loose bolt stats at four jacket support levels. The data is partitioned into training, validation
and testing sets before transforming into the time-frequency domain using the WVD, converting
into tensors. The tensors are normalized before training on the WGAN architecture and AE
using only the healthy training data.

2.1 Experimental Setup

The utilized WT structure in this study is a scaled-down version, as depicted in Figure
(left).

Figure 1: Representation of the scaled-down structure (left). Placement of the sensors (mid).
Positioning of the four levels within the jacket substructure (right).

Nacelle

The structure is composed of a jacket support, a tower, and a nacelle (simulated using a
beam and an inertial shaker to model wind-induced rotor vibrations), measuring a height of 2.7
meters. At strategic locations on the turbine, eight triaxial acceleration sensors are positioned
to collect three signals (namely, accelerations along the x-axis, y-axis, and z-axis), resulting in
a total of 24 acceleration measurements, as shown in Figure [1| (mid). Furthermore, the turbine
base is segmented into four levels, as depicted in Figure [1| (right).

WTs operate in three distinct wind speed regions. To simulate various wind speeds, a shaker
is employed to induce vibrations in the structure, modifying the amplitude of the white noise
signal (scaling by factors of 0.5, 1, and 2). This study focuses solely on the operational region
with higher wind speeds, resulting in a white noise amplitude of 2. This choice is due to

Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

the turbine’s increased vulnerability to damage under higher wind conditions. For additional
details on the experimental arrangement, refer to [6].

Loose bolts at 4 different levels are the damage cases studied in this research. The levels are
according to those segmented in the Figure (1] (right).

2.2 Data Collection

A total of 125 experimental rounds are conducted, with 45 involving structures in a healthy
condition and 80 involving structures with various types of damage. The distribution of exper-
iments conducted for various structural conditions is detailed in Table [1

Table 1: Matrices obtained for each structural state.

Level Structural State Matrix name No. of experiments Matrix dimensionality

Healthy X0 45 4,459,365 x 24
1 Loose Bolt - Level 1 X! 20 1,981,940 x 24
2 Loose Bolt - Level 2 X2 20 1,981,940 x 24
3 Loose Bolt - Level 3 X3 20 1,981,940 x 24
4 Loose Bolt - Level 4 X+ 20 1,981,940 x 24

Each experiment has a duration of 60 seconds, with a sampling rate of approximately
1651.616 Hz. Consequently, within each experiment, a total of 99097 data points are recorded
for each of the 24 sensors. Thus, the structure of the data matrix can be expressed as follows:

i1 12 ... TIN
Ty T2 ... Ton | € Xuxn(R), (1)
SL’Ml Ty .- LEMN

where M = 99097 represents the total number of samples in each experiment, N = 24 represents
the number of sensors, and X,y denotes the vector space of a matrix in R with M rows and
N columns.

Each structural state represents the aggregation of all experiments conducted under that
specific condition and is denoted as X, differentiated by a superscript. Specifically, X° repre-
sents the matrix composed of 45 experiments with only healthy data, while X!, X2, X3 and
X* are matrices containing data related to structural damage (loose bolt) at each of the four
damage levels, with 20 experiments conducted at each level. Table (1| provides an overview of
the characteristics and dimensions of the matrices for each experiment and structural state.

2.3 Data Split: Train, Validation and Test Sets

In this work, the deep learning models, WGAN and AE, are exclusively trained using healthy
data. Matrix X is divided into three distinct subsets, namely X7 .. = X° and X7, utilizing

the following distribution: ¢) Training set: Comprising 80% of the data, equivalent to 36
experiments. i) Validation set: Representing 11% of the data, equivalent to 5 experiments.

Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

i1i) Test set: Accounting for the remaining 9%, equivalent to 4 experiments. On the other hand,
all experiments X', X2, and X3 are added to the test set.

The training set is utilized for the initial training of the model. The validation set plays
a crucial role in the evaluation process by offering an unbiased means to validate any adjust-
ments to hyperparameters. Finally, the test set is reserved for the ultimate evaluation of the
model’s accuracy. This evaluation is conducted once the model is fully trained and measures
its performance on unseen data.

2.4 Feature Engineering

Feature engineering involves the creation of new features from the original ones during the
preprocessing stage. In this work, this process is divided into two main parts. Initially, the
data undergo reshaping, and subsequently, a transformation is applied using the WVD, which
converts matrices into tensors.

In pursuit of rapid damage detection, the dataset is partitioned into 826 samples for each of
the 24 sensors, corresponding to a detection time of 0.5 seconds. Matrix segments, previously in
the time domain, are transformed into sub-tensors in the time-frequency domain using WVD.
Each resulting sub-tensor measures 826 x 826 x 24. However, due to the segmentation process,
the last sub-tensor contains incomplete data and is thus omitted. As a result, a complete
experiment consists of 119 sub-tensors, yielding a total size of 119 x 826 x 826 x 24 after feature
engineering. This segmentation and feature engineering process is applied to matrices X .
X0 X0 .. X' X% X3 and X%

val? test

2.5 Normalization

Normalization is used to standardize the dataset on a common scale to enhance the training
by ensuring that all features are of equal importance. The chosen normalization method is
min-max within the range [-1, 1]. To perform it, the tensor X2 . is selected as the source,
from which both the maximum and minimum values are extracted, and employed to normalize

all the other samples, including X0, XP = X' X% X3 X%

To further enhance the methodological process, a reduction in tensor size is executed to
accelerate the training speed. The interpolation technique applied is nearest neighbors. The
procedure involves computing a reduction factor, which represents the ratio between the original
size and the desired size. In this study, the reduction factor is determined to be 12.90. Therefore,
the tensor is resampled every 13 coefficients along its various axes. Consequently, the final tensor

shape for input into the deep learning models becomes 119 x 64 x 64 x 24.

2.6 WGAN Architecture

Schlegl et al. [5] propose a two-stage training process: (1) WGAN training and (2) encoder
training based on the trained WGAN model. The primary objective of stage (1) is for the
WGAN network to acquire the capability to generate tensors closely resembling healthy data.
Conversely, stage (2) is aimed at constructing an effective latent space to reproducing healthy
data. The combination of these two stages forms a composite model for anomaly detection.

The Wasserstein generative adversarial network is an unsupervised deep learning model with
two neural networks - a generator and a critic. It operates in two stages to generate tensors
resembling the training data. The Wasserstein distance [7], instead of cross-entropy loss, is

Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

used to quantify the difference between the probability distributions of real P(r) and generated
P(g) samples. Using the Wasserstein distance can improve training and generate higher quality
samples compared to traditional GANs.

In the generation phase, the WGAN model aims to fool the critic into perceiving its gener-
ated tensors as authentic by minimizing P(g) and P(r). To improve generalization and prevent
overfitting, early stopping is used for epoch selection, resulting in improved generated tensors
and downstream segmentation [§]. Early stopping is also implemented in the AE subsection.
The generator exclusively utilizes a 256-point random data tensor from the latent space, em-
ploying a four-layer architecture to address the complexity of the problem. A comprehensive
description of these layers can be found in Table

The initial layer, denoted as lg;, serves as the input layer. Both prior to and following the
second layer, [go, a 2x upsampling operation is applied. Layers lg, and [g3 employ a leaky ReLLU
activation function and incorporate batch normalization with 128 and 64 units, respectively.
Finally, the output layer, lg4, features a batch normalization of 64 units and utilizes a hyperbolic
tangent activation function, because in this way the generated tensors have the same range as
the ones used as input (recall that the normalization used scales the data to [-1, 1]).

Table 2: Generator stage architecture in the WGAN.

Name Type Output shape Kernel Stride Padding

lg1 Linear [1,32768] n/a n/a n/a
lgo Conv2d [128,32,32] 3 1 1
lgs Conv2d [64,64,64] 3 1 1
lgs Conv2d [24,64,64] 3 1 1

The generator’s loss function is defined by —L > f,,(gs(2()), where f, represents the
critic’s loss function, gy denotes the generator’s output, 2 stands for the i-th latent vector,
and m denotes the number of generated tensors.

On the contrary, the critic employs a scoring strategy based on the calculation of the Wasser-
stein distance. This calculation aims to maximize the separation between the probability distri-
butions P(g) and P(r), effectively measuring their proximity. The proposed critic architecture
for tensor generation during training encompasses 5 layers. A detailed description of these
layers is provided in Table [3] In particular, layers lcy, leo, les, and ley employ a leaky ReLU
activation function, a dropout layer with a rate of 0.25, and batch normalization, with the
output layers matching the number of units in each layer, respectively. Finally, the layer lcs
represents the final layer, producing a single output value referred to as the score.

Table 3: Critic stage architecture in the WGAN.

Name Type Output shape Kernel Stride Padding

ley Conv2d [16,32,32] 3 2 1
le, Convad [32,16,16] 3 2 1
les Conv2d (64,8,8] 3 2 1
les Convad [128,4,4] 3 2 1
les Linear 1 n/a n/a n/a

Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

The loss function of the critic is defined by L 3", f,(z@) — L3 £, (ga(2)), which
can be broken down into two key components. The first part of the equation assesses the
critic’s evaluation on real tensors and is represented by fw(R) = L3> f, (")), where m
corresponds to the number of real tensors within the dataset, 2 signifies the i-th real tensor,
and f, denotes the function responsible for evaluating the critic’s response to a given tensor.
Conversely, the second part of the equation involves the evaluation of the critic on the generated
tensors and is expressed as fw(G) = L 3" f,(gs(z'))), where m represents the number of
generated tensors, and 2% represents the i-th generated tensor.

Ultimately, the equation fw(R) — fw(G)quantifies the disparity between the assessments
made by the critic on real and generated tensors. This value is instrumental in updating the
weights of the generator and signifies the discrepancy in scores assigned by the critic to real and
generated (fake) data, with the aim of minimizing this difference and enhancing the quality of
the generated tensors.

Arjovsky et al. [7] identified a limitation within the WGAN algorithm, specifically concern-
ing the utilization of weight clipping to enforce a Lipschitz constraint. It is observed that this
approach is ineffective, as it poses challenges in achieving optimal training of the critic network.
If the clipping parameter is too large, it prolongs the time required for the weights to reach their
limit. Conversely, if the parameter is too small, issues such as vanishing gradients could arise.To
address this limitation, Gulrajani et al. [9] introduced an enhancement to WGANSs by incor-
porating a gradient penalty parameter to enforce the Lipschitz constraint. This enhancement
contributed to maintaining stability during training. The gradient penalty is introduced to en-
sure that the critic network maintained a bounded gradient, thereby mitigating concerns related
to exploding gradients and model degeneration. As a result of this improvement, modifications
were made to the loss function of the critic in WGANS to include the gradient penalty term. The
adjusted loss function for the critic is expressed by fw(R)— fw(G)+AEzpz[(|Vafw(2)|2a—1)?],
where A functions as the scaling factor for the penalty term, E; p; represents the mathematical
expectation over samples of Z, and Z denotes a randomly sampled interpolation between pairs
of real and fake samples. In this interpolation process, an initial random value, €, is generated
within the range [-1,1]. Subsequently, this value is multiplied by the real tensor and the residual
value, 1 — ¢, is calculated. The generated tensor is then multiplied by this residual value, and
the two tensors are subsequently summed. Finally, Pz denotes the empirical distribution of z,
and fw(Z) represents the critic’s output for a given sample Z. The operator Vi denotes the
gradient of the function fw(Z) concerning &, and | - | represents the Euclidean norm. Regard-
ing hyperparameters, these encompass a latent dimension of 256, a tensor size of 64 x 64, 1149
epochs, 24 channels, and a batch size of 64. Furthermore, the hyperparameter A is established
at a value of 10.

2.7 AE Architecture

An AE represents a type of neural network model rooted in unsupervised learning, which
is proficient at data compression (encoding) and subsequent decompression (decoding). Its
primary objective is to replicate the input vector in the model’s output, a process driven by
the features learned during training.

This configuration adheres to the conventional AE setup, where an encoder precedes a de-
coder. In this context, the decoder takes the form of the generator within the pre-trained
WGAN network with fixed weights. The data used for training this network corresponds to

Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

the same dataset employed in training the WGAN network.

The primary aim of this stage is for the encoder to acquire the capacity to generate effec-
tive latent spaces for the recreation of healthy data. The loss function employed focuses on
minimizing residual loss through mean squared error (MSE). It can be expressed as

1

o 12 = go(BEO) [P 4= |) = Flao(BE) I,

where || . ||* denotes the sum of squared residuals for each value within the tensor, the term
f () represents the critic features from an intermediate layer, x serves as a weighting factor, gy
denotes the WGAN generator, ng corresponds to the dimensionality of the intermediate feature
representation, n stands for the number of coefficients within the tensor, and z® represents
the i-th real training tensor. It is important to emphasize that as explained in subsection 2.6},
the early stopping technique is also used in this stage of training to avoid overfitting.

Table[d] presents the configuration details of the encoder architecture. It consists of five layers:
leq, leg, les, ley, which are convolutional layers featuring leaky ReLLU activation functions and
a dropout rate of 0.25 for each. Furthermore, they incorporate batch normalization layers with
identical output values. Lastly, the les layer takes the form of a linear layer equipped with a
hyperbolic tangent activation function, yielding an output dimension matching the latent space
(256). Hyperparameters include a latent dimension set to 256, a tensor size of 64 x 64, 200
epochs, 24 channels, and a batch size of 64. The final hyperparameter, x, is established at a
value of 1. Finally, the comprehensive methodology can be summarized using the flow chart

Table 4: Encoder stage architecture in the WGAN.

Name Type Output shape Kernel Stride Padding

ley Conv2d [16,32,32] 3 2 1
le; Comnv2d [32,16,16] 3 2 1
les Conv2d (64,8,8] 3 2 1
ley Conv2d [128,4 4] 3 2 1
les Linear 256 n/a n/a n/a

presented in Figure 2]

2.8 Damage Detection Indicator

To evaluate the network’s ability to detect anomalies, it’s crucial to establish an indica-
tor that, based on the outcomes from trained networks, can distinguish between healthy and
unhealthy data. This indicator is referred to as the anomaly score and is defined as follows:

o = o (xD) + kag(z®), (2)

where, a,(zV) = 1 || 2 — gy(E(z")) ||* represents the anomaly score derived from the
difference between the values in the input tensor and the generated tensor, and ay(z®) =
2| f(2) = fgo(E(2™))) ||* signifies the anomaly score obtained by subtracting the critical
features of the input tensor from those of the generated tensor.

In cases of healthy data, anomaly scores tend to be low as the model excels at generating
tensors resembling healthy ones. Consequently, differences between these tensors are minimal.

Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

Figure 2: Flow chart of the methodological process for training the model.

Jacket Type WT

WVD
NN
m { [Transform[| ._
==
Q xuv Q x° Q x°
train test

A

Size of each matrix

(119, 826, 826, 24) [
¢ n

Nor i 1

NN NN
form(|
ensforn
Data Split
0 0 0 X0 Q X0

WGAN Architecture

Critic

7]
I’ Score

valid ‘

Eight Tri-Axial Accelerometers

—

Generator
m ﬂ

AutoEncoder Architecture

Q x0 ‘ | Encoder

valid

N N

)
train

Transfer the structure and
locked weights

b) Data preprocess
c) Training Process

a) Data collection and data split

Generator /]

Reconstructed

=

1 2 3 4
x x x x N
— — | F W,
X X X X
Size of each matrix Size of each matrix
(99097, 24) (119, 64, 64, 24)

However, with unhealthy data, the model still generates healthy data, leading to significantly
increased disparities between these tensors and the actual data, resulting in higher anomaly
scores.

To establish a threshold, the aforementioned metric is employed to compute anomaly scores
within the training data. Assuming a normal distribution for anomaly scores, the six-sigma
rule, detailed in [10], is applied. As shown in Figure , the computed threshold value is
i+ 60 = 0.001099, where i and o denote the mean and standard deviation of the anomaly
score values, derived solely from the Xp . data. Therefore, results that exceed this threshold
indicate damaged state samples.

Figure 3: Threshold obtained with the six-sigma rule.

x1073

—— Train
---- Threshold

1.8 1

Anomaly score
=R P e
o N EN o

o
)

o
o

0 500 1000 1500 2000 2500 3000 3500 4000
Number of samples

Finally, once the threshold for diagnosis has been obtained, the anomaly score is computed
for the test set, which is composed of X2, X', X? X3 X* The flowchart of the proposed
methodology is given in Figure [4]

Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

Figure 4: Flowchart of the proposed methodology.

‘ > ar(x(i)) <
Real tensors JL

.‘ Encoder S Generator A ciitic Threshold

= fo=5=of Pr= ol

i kog(z®)
Critic M
alr J
o=

@

x

x

©

I

s

Latent Vecto

!

3 RESULTS

In this section, the results are presented, beginning with the training and validation stages
of the WGAN and AE models. The times required for the training, validation, and inference
processes of the experiments are detailed, providing a comprehensive view of the efficiency of
the proposed models. Furthermore, the results of the model evaluation are presented in a test
set composed of both healthy and unhealthy data, highlighting their ability to accurately and
effectively discern between both categories.

Figure || (left) illustrates that the training loss of the critic in the WGAN network converges
to zero, indicating the accurate reproduction of healthy tensors. The validation loss curve also
approaches zero, which means a successful model generalization. The early stopping technique
is applied, saving network weights at the epoch with minimal validation loss. In this experiment,
epoch 49, marked by a vertical black line in Figure |5| (left), exhibits the best performance with
a validation loss of -0.122767 and a training loss of -1.742411. The critic aims to maximize the
gap between P(g) and P(r), so the loss curve of the critic near zero signifies the similarity of
the generated tensors to the healthy ones. Figure || (right) displays the training and validation
loss of the AE network’s encoder stage, indicating a convergence to near-zero encoder loss. This
convergence signifies the effectiveness of the encoder in generating latent vectors for constructing
healthy tensors. Both validation and training loss curves closely match, reflecting successful
model generalization. The early stopping technique is applied, preventing overfitting by storing
the network’s weights at the best epoch. Minimum losses occur around epoch 20, with values
close to zero (0.000585), as shown by a vertical dashed black line in Figure [5| (right).

Table [5| presents information regarding the time required for training, validation, and infer-
ence processes. It consists of various metrics associated with the time taken for these tasks.
The time is measured in hours, minutes, and seconds. The time required to process an entire
experiment, which consists of 119 samples, is similar in all cases. This time becomes relevant
when there is a need to infer a massive quantity of samples in the model.

Another interesting observation lies in the outcomes derived from bolts examined across
various levels. For the purposes of the research, detection is carried out successfully, as can
be seen in Figure [6] (left). The threshold, marked with a horizontal dashed black line, is
significantly distant from the anomalies detected at various levels of loose bolts. Notably,
the data associated with the healthy samples closely aligns with the designated threshold, yet
consistently registers values beneath it across all instances |§| (right). A significant difference in
amplitude range is observed between the unhealthy samples and the healthy samples. Greater
stability with much smaller anomaly score amplitude ranges is typically exhibited by the healthy

10

Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

Figure 5: Critic loss per epochs (left). Encoder loss per epoch (right).

x10~*
8 i 7.21 —— Train
i 7.0- Validation
i 6.8
2 i Lﬁ 6.6
_t'(_j :L $6.4-
5 ' :c? 6.2-
! 6.01
~41 i ‘
_g{ — Train i 5.81
Validation i 5.6 -
8 10 20 30 40 50 1 3 5 7 9 11 13 15 17 19
Epochs Epochs
Table 5: Duration time (H:m.s) for training, validation, and inference.
Epochs Total time Time by epoch Time by experiment
WGAN train 50 07:19.90 00:08.80 00:00.24
WGAN validation 50 01:01.10 00:01.22 00:00.24
AE train 20 02:39.80 00:07.99 00:00.22
AE validation 20 00:22.20 00:01.11 00:00.22
Inference - 00:21.22 - 00:00.25

samples. However, the results reveal an overlap in the characteristics of bolts at different levels,
see Figure |§| (left), underscoring the challenge inherent in distinguishing them. This overlap
suggests an opportunity to dig deeper with a thorough investigation, using statistical methods
and machine learning. The goal of this new exploration is to uncover a clear and meaningful
difference among the various levels. This will enhance the evaluation system’s ability to tell
them apart accurately.

The data derived from experiments with loose bolts provides evidence that the neural net-
work has a remarkable capacity to accurately discern between samples with loose bolts and
healthy data, achieving a precision rate of 100%.

4 CONCLUSIONS

This study demonstrates the effectiveness of combining WGAN and AE networks for unsu-
pervised anomaly detection in structures using accelerometer data. When applied to a jacket-
type offshore WT structure, this methodology achieved precision 100% in differentiating cases
of loose bolts from healthy cases, showcasing its potential as an SHM methodology.

Although these proof-of-concept results in a controlled environment are promising, their
feasibility and impact in the real world require further validation. Additional data sets that
encompass diverse structural conditions are needed to thoroughly evaluate the robustness of this
approach. Furthermore, real-world testing under complex loading and environmental conditions
will determine the viability of the methodology for SHM across various structures.

11

Ricardo Prieto-Galarza, Christian Tutivén and Yolanda Vidal

Figure 6: Results of early detection of loose bolts (left). Zoom-in healthy data samples (right).

x1071

x1073
3.0 2.00 4 —— Loose bolt level-1
Loose bolt level-2
2.5 1.75 1 —— Loose bolt level-3
° — Loose bolt level-1 1501 —— Loose bolt level-4
S g~ —— Health
S 2.01 Loose bolt level-2 § y
: —— Loose bolt level-3 i 1.25 === Threshold
g 15 —— Loose bolt level-4 % 1.00
g —— Healthy S
R T Threshold RO A W T P C Y SN |
054 0.50 -
0.25 1
O -
T T T T 0.00 T T T T
0 2000 4000 6000 8000 9600 9700 9800 9900
Number of samples Number of samples
ACKNOWLEDGMENTS

This work is partially funded by the Spanish Agencia Estatal de Investigacién (AEI) - Minis-
terio de Economia, Industria y Competitividad (MINECO), and the Fondo Europeo de Desar-
rollo Regional (FEDER) through the research projects PID2021-1221320B-C21 and TED2021-
129512B-100; and by the Generalitat de Catalunya through the research project 2021-SGR-
01044.

REFERENCES

1]

2020 Energy 202 117787 ISSN 0360-5442

Vidal Y, Aquino G, Pozo F and Gutiérrez-Arias J E M 2020 Sensors 20 1835

Feijoo M d C, Zambrano Y, Vidal Y and Tutivén C 2021 Sensors 21 3333

Mao J, Wang H and Spencer Jr B F 2021 Structural Health Monitoring 20 1609-1626

Schlegl T, Seebock P, Waldstein S M, Langs G and Schmidt-Erfurth U 2019 Medical image
analysis 54 30-44

Puruncajas B, Vidal Y and Tutivén C 2020 Sensors 20 3429
Arjovsky M, Chintala S and Bottou L 2017 Wasserstein gan (Preprint [1701.07875)

Bohland M, Bruch R, Loffler K and Reischl M 2023 Current Directions in Biomedical
Engineering 9 467-470 URL https://doi.org/10.1515/cdbme-2023-1117

Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V and Courville A C 2017 CoRR
abs/1704.00028 (Preprint [1704.00028)

Pyzdek T and Keller P 2014 Siz sigma handbook (McGraw-Hill Education)

12

1701.07875
https://doi.org/10.1515/cdbme-2023-1117
1704.00028

	INTRODUCTION
	METHODOLOGY
	Experimental Setup
	Data Collection
	Data Split: Train, Validation and Test Sets
	Feature Engineering
	Normalization
	WGAN Architecture
	AE Architecture
	Damage Detection Indicator

	RESULTS
	CONCLUSIONS

