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ABSTRACT

Physics-informed neural networks (PINNs) [1] have recently arisen as a promising solution methodol-
ogy for inverse problems. The solution is approximated with a neural network trained by minimizing
the residual of a partial differential equation. This work aims to pinpoint the strengths and weaknesses
of PINNs in relation to the classical adjoint optimization. We present an incremental comparison of
PINNs w.r.t. the classical adjoint optimization in the context of inverse problems. To this end, we
consider the three key ingredients (a) the forward solver, (b) the Ansatz space of the optimization
variable, and (c) the sensitivity computation. The empirical investigation is performed for full wave-
form inversion, where the unknown is a scaling function of the density field to locate internal voids [2].
PINN-based approaches, as presented in [3], represent both the solution and the scaling function with
separate neural networks and perform a nested minimization of the emerging residuals.

For the incremental comparison, we first replace the neural network responsible for the forward solution
with a non-learnable forward operator, i.e., a classical finite difference scheme as forward solver (a).
Next, the importance of the discretization of the scaling function for the density field is investigated
by comparing a discretization using a neural network, as in [3], with a discretization using piece-
wise polynomials (b). Lastly, the sensitivity computation with automatic differentiation is partially
substituted with the continuous adjoint method (c). These aspects are studied using two-dimensional
benchmark problems [2] and complex three-dimensional cases based on CT scans of rare drill cores [4].

The investigation led to two main insights. Firstly, the fully PINN-based approach is not the most
efficient, as the optimizer needs to learn both the forward and inverse solution simultaneously. Instead,
it is more advantageous to restrict the optimization to the scaling function of the density field and use
a conventional method, e.g. the finite difference method, as forward solver. This modification reduces
the number of required epochs from 400’000-600’000 as reported in [3] to 50, while the time per epoch
only increases by a factor of five. The second insight is that using neural networks to discretize the
scaling function of the density field is highly beneficial. Piece-wise polynomials lead to numerous
oscillatory artifacts, whereas neural networks recover both smoother and sharper solutions (Fig. 1).

Due to these insights and the the continuous adjoint method being faster than automatic differentia-
tion, a hybrid approach is proposed. It enables an efficient integration of neural networks with classical
forward solvers. Its idea is to discretize the scaling function of the density field with a neural network,
after which a classical forward solver estimates the forward solution. The sensitivity is then computed
in two steps. First, the sensitivity of the measurement cost w.r.t. the inverse field is computed using
the continuous adjoint method. Next, the sensitivity of the inverse field w.r.t. the network parameters
is obtained with automatic differentiation. The hybrid approach retains the advantages of a neural
network discretization while achieving similar wall-clock-times as the classical adjoint method.

We will conclude the presentation with a generalization of the proposed approach for other types of
inverse problems.
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(a) Neural network discretization. (b) Piece-wise constant discretization.

Figure 1: Surface plot of the predicted material distribution for a plate with hole after 50 epochs,
illustrating the smoother and sharper inversion with neural networks.
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