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Abstract. During each aircraft program a vast amount of aerodynamics data has to be gen-
erated to judge performance, structural loads as well as handling qualities. Within the past
years the usage of computational fluid dynamics has significantly increased providing accurate
insights into aircraft behaviour at early design stages and therefore at least partially enabled
the mitigation of costly design changes. However, fully relying on high fidelity aerodynamic
data is still computational prohibitive. Hence, data-driven models have gained an increasing
attention in recent years. These methods not only provide continuous models but also enable
the inclusion of highly accurate aerodynamic results in time-critical environments. This paper
aims at applying deep learning techniques to derive such models and compare them to state of
the art reduced order modeling techniques. In particular, three deep learning methods, a Multi-
layer perceptron for distribution predictions, a Multi-layer perceptron for pointwise predictions
and an Autoencoder coupled with an interpolation technique are compared to Proper Orthog-
onal Decomposition and Isomap with latent space interpolation. For all methods an efficient
methodology to determine hyperparameters is outlined and applied. Results are presented for
an Airbus provided XRF1 dataset which includes surface pressure distributions at various Mach
numbers and angles of attack.

1 Introduction

Aerodynamic data, no matter if performance values, handling qualities or loads, are an
integral part of every aircraft design, optimization or certification program. The sheer amount
of data needed typically results in relying on different data sources as well as different fidelity
levels. However, continuous models are generally desirable to interact with other disciplines and
drive design activities. Hence, data-driven models have been proposed to not only yield such
models but also to enable the integration of data from various sources and fidelities. Besides
long-standing conventional models, especially deep-learning approaches have gathered significant
interest in the aerodynamics community [1]. Nevertheless, even though several well-established
deep-learning libraries are freely available, their applicability for physics-based problems on an
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industrial level remains unclear. Moreover, rigorous comparison to conventional techniques are
only partially available at best [2]. Therefore, the GARTEUR group “Machine learning and
data-driven approaches for aerodynamic analysis and uncertainty quantification” was initiated
to bring industrial and academic experts together to evaluate the potential of emerging methods.

When looking at classical reduced order models one can split them in two classes, intrusive
and non-intrusive approaches. The former have shown highly accurate results but they require
access to the underlying solver also during the evaluation stage. The latter provide a black-box
representation of the problem enabling rapid turn-around times and a straightforward inclusion
into other, complex workflows. Hence, within this work we focus on non-intrusive, often also
called data-driven, approaches. Within this class proper orthogonal decomposition (POD) [3] as
a dimensionality reduction technique combined with an interpolation method such as radial basis
functions or Gaussian Processes is arguably the most common method. Application examples
for aerodynamics are widespread and can be found in [4, 5, 6, 7, 8]. Models are reported to
be easy to construct and highly accurate as long as no nonlinear behaviour, which violates the
underlying POD assumption, is present. An alternative to POD is the nonlinear dimensionality
reduction technique Isomap [9] which is based on multidimensional scaling. Just like POD it can
be employed to extract low-dimensional structures from a high-dimensional sampling set and
coupled with an interpolation method to predict solutions at previously untried conditions [6].

Recently Neural Networks (NN) as an alternative to classical reduced order models became
popular since deep learning techniques have proven successful in the extraction and represen-
tation of hierarchical data features [10]. Publications are available for the prediction of aero-
dynamic coefficients for airfoils including integral quantities (lift and drag) [11], fields (surface
pressure distribution) [12] as well as unsteady forces [13, 14]. In [15], Convolutional Neural
Networks are introduced to predict the velocity field in non-uniform steady laminar flows while
several extensions are available in [16, 17, 18]. In [19] an application accounting for changing
airfoil geometries has been presented employing Generative Adversarial Networks. A first ex-
tension towards an industrial relevant 3D case featuring transonic flows including shocks and
boundary layer separation has been published in [2] relying on a multi-layer perceptron which is
used for the pointwise prediction of pressure coefficients. The aforementioned paper also includes
an initial comparison to well-established reduced order methods.

In this paper we focus on the comparison of three deep learning methodologies with classical
reduced order models for the prediction of wing surface pressure distributions. This task is
highly relevant for industrial applications since accurately predicting the pressure coefficients
over the wing is essential for the determination of aerodynamic loads, transition prediction and
inverse design. Section 2 provides background information on all applied modeling techniques.
Section 3 outlines the model selection techniques that are employed during the experiments. In
Section 4 we present the test case, based on the XRF1 configuration provided by Airbus and
subsequently discuss results in Section 5.

2 DATA-DRIVEN METHODS FOR AERODYNAMIC FLOW PREDICTIONS

In this section we present the five data-driven methods that we will use for the prediction
of distributed aerodynamic quantities. We have available a point cloud with n points in space
corresponding to the nodes of a CFD mesh on the underlying geometry. The coordinate matrix
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C ∈ R3,n is given by

C = [c1, c2, . . . , cn] (1)

where each cj ∈ R3 is the location of point j. In addition, we consider m full order solutions
Y ∈ Rn,m corresponding to m parameter combinations P ∈ Rp,m

Y = [y1,y2, . . . ,ym] (2)

P = [p1,p2, . . . ,pm] (3)

where each snapshot yi ∈ Rn corresponds to the distributed aerodynamic quantity over all n
points for the parameter configuration pi ∈ Rp . The full order model (FOM) is assumed to be
given by

y = f(p) (4)

The goal of the data-driven methods is to approximate f via a surrogate function f̂ so that

ŷ = f̂(p) ≈ f(p) (5)

Hence, for new parameter combinations a prediction can be computed significantly faster than
with the full order model.

As for the experiments in this paper, the snapshots are consistently split into three datasets
as follows:

1. Train: mtrain snapshots Ytrain that are used for training the models.

2. Validation: mval snapshots Yval that are used for choosing the best hyperparameters for
the model.

3. Test: mtest snapshots Ytest that are used for testing the models.

This provides a common setting for the comparison among models. The model selection tech-
niques based on the performance on the validation samples are described in Section 3, while
Section 5 discusses the results with respect to the test samples.

2.1 Proper orthogonal decomposition

A POD orthogonal basis Φ ∈ Rn,d with d ≤ m modes is obtained using the method of
snapshots [20]. These linear combinations of the snapshots Y also yield a lower dimensional
representation Z ∈ Rd,m of the snapshots where

Y ≈ ΦZ (6)

Φ ≈ Y Z⊤ (7)

Φ = [ϕ1,ϕ2, . . . ,ϕd] (8)

Z = [z1, z2, . . . , zm] (9)
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and each zi ∈ Rd corresponds to the lower d-dimensional representation of yi. The matrix
Ŷ := ΦZ is the best approximation of rank d of the snapshot matrix Y with respect to least
squares [21].

Once Φ and Z are computed, the POD model can be coupled with an interpolation technique
to predict solutions for new parameters p. The reconstructions for the the known parameters
in P are linear combinations of the POD basis.

ŷ(pi) = Φzi (10)

For new parameter combinations the prediction is also computed as a linear combination of the
POD basis. The coefficients are determined by an interpolation function ẑ : Rp → Rd. As for
the interpolation we consider a radial basis kernel ψ : R → R, such as the linear kernel ψ(r) = r,
or the TPS kernel ψ(r) = r2log(r) [22]. Considering Ψ: Rp → Rm as

Ψ(p) =

ψ(||p− p1||)
...

ψ(||p− pm||)

 (11)

the resulting interpolation is expressed in matrix notation as

ẑ(p) =WΨ(p) (12)

where W ∈ Rd,m is a weight matrix to be calculated. Finally the prediction ŷ(p) is computed
as a linear combination of the POD basis with coefficients ẑ(p).

ŷ(p) = Φẑ(p) (13)

Moreover, the model may be extended to include regularization techniques and augmentation
with additional polynomial terms of p in equation 12. We refer to the resulting model as POD+I.

2.2 Isomap

Isomap [9] is a nonlinear dimensionality reduction technique that attempts to preserve the
geodesic distances between all pair of points with respect to an underlying data manifold [6]. It
yields a nonlinear mapping from the high dimensional space to the low dimensional space for a
fixed set of snapshots. Similarly as for POD, interpolation techniques can be used to determine
a low dimensional representation ẑ(p) for new parameters p. Then a non-parametric back-
mapping is used to make the prediction as a weighted linear combination of the snapshots yi

corresponding to the N nearest neighbors of ẑ(p). We refer to the resulting model as Isomap+I
and use the implementation from [6].

2.3 Multi-layer perceptron decoder

A Multi-layer perceptron (MLP) with L hidden layers can be used to predict the distributed
quantity over all n points. Here the input is a[0] := p ∈ Rp. At each hidden layer 1 ≤ l ≤ L a
linear transformation is applied followed by a nonlinear activation.
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z[l] =W [l]a[l−1] + b[l] (14)

a[l] = σ[l](z[l]) (15)

where at layer l, W [l] ∈ Rn[l],n[l−1]
is the weight matrix , b[l] ∈ Rn[l]

is the bias vector, n[l] is the
number of neurons or dimension and σ[l] is a nonlinear activation function such as ReLU . The
prediction at the final layer L is computed as

ŷ(p) =W [L+1]a[L] + b[L+1] (16)

where W [L+1] ∈ Rn,n[L]
. Hence the predictions are computed as linear combinations of the n[L]

columns in W [L+1] plus a bias vector. In this setting the dimension of the last hidden layer is
given by n[L]. The dimension of the previous hidden layers 1 ≤ l < L is determined using a
downsampling multiplier 0 < r ≤ 1.0, so that the dimension of each previous hidden layer is
reduced consecutively by the multiplicative factor r as follows:

n[l] = ⌊n[l+1]r⌉ (17)

where ⌊x⌉ denotes the nearest integer of x. We refer to this model as MLP-Decoder. The
structure of this model is illustrated in Figure 1.
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Figure 2: MLP pointwise

2.4 Multi-layer perceptron pointwise

Alternatively, one can use a Multi-layer perceptron to predict the quantity of interest at a
particular point. The input is then given by the parameters p together with the 3D coordinates
c of the point. That is, the input is a[0] = p⊕c ∈ Rp+3 where ⊕ represents the concatenation of
vectors. The output MLP (p ⊕ c) is the one-dimensional prediction of the quantity of interest
at the location specified by c for the parameters p. The prediction of the distributed quantity
over all mesh nodes is then calculated as

ŷ(p) =

MLP (p⊕ c1)
...

MLP (p⊕ cn)

 (18)
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For this model the dimension of the first hidden layer is given by n[1]. Following [2] the dimension
of the next hidden layers 1 < l ≤ L is determined using a downsampling multiplier 0 < r ≤ 1.0.
In this way the dimension of each next hidden layer is reduced consecutively by the multiplicative
factor r as expressed by:

n[l] = ⌊n[l−1]r⌉ (19)

where ⌊x⌉ denotes the nearest integer of x. We refer to this model as MLP-Pointwise. The
structure of this model is shown in Figure 2.

2.5 Autoencoder

An autoencoder (AE) is a neural network that is trained to transfer its input to its output
and in doing so learns lower-dimensional feature representations from unlabeled high dimensional
data [23, 24]. The autoencoder may be seen as a combination of two neural networks: an encoder
h : Rn → Rd and a decoder g : Rd → Rn. The encoder h maps the data y to a low dimensional
latent representation z = h(y). The decoder g maps back the latent representation z to a
reconstruction ŷ = g(z). Here the input is a[0] = y ∈ Rn and the output is the reconstruction
ŷ ∈ Rn. The dimension of the first hidden layer of the encoder is given by n[1]. The dimension of
the next hidden layers 1 < l ≤ L is determined using a downsampling multiplier 0 < r ≤ 1.0. In
this way the dimension of each next hidden layer is reduced consecutively by the multiplicative
factor r as in the case of MLP-Pointwise. The decoder’s structure is a mirror of the encoder as
illustrated in Figure 3. Similarly as for POD+I, the autoencoder is coupled with an interpolation
function ẑ : Rp → Rd. Altogether the prediction of the model for a new parameter combination
p is the reconstruction that the decoder g makes from the interpolated latent representation
ẑ(p) as expressed by:

ŷ(p) = g(ẑ(p)) (20)

We refer to this model as AE+I.

3 MODEL SELECTION

This section outlines the two methodologies used to choose the hyperparameters of the models.
The selection is done based on the mean absolute error (MAE) with respect to the validation
samples, which is calculated as indicated by equation 21.

MAE(Ŷval;Yval) =
1

mval · n

mval∑
i=1

n∑
j=1

|ŷi;j − yi;j |

 (21)

The two approaches used to find the best hyperparameters are the following:

1. Full Factorial Grid Search:
For POD+I, Isomap+I, and AE+I models, the hyperparameters of the interpolation are
changed following a full factorial design as all options are discrete values. For each com-
bination of hyperparameters, the validation MAE is obtained and the combination of
hyperparameters leading to the lowest MAE is selected. The hyperparameters for the
interpolation are shown in the appendix in Table 4.
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ŷ2

ŷ3
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ŷ6

ŷn
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Figure 3: Autoencoder

2. Surrogate-Based Optimization:
The hyperparameters of the NN models (AE, MLP-Decoder and MLP-Pointwise) are op-
timized using a Bayesian optimization strategy known as Surrogate Based Optimization.
It is an advantageous approach for the optimization of black-box problems as it notably
reduces the number of function evaluations by substituting the black box with a meta-
model [25]. The optimization consists of an initial Design of Experiments stage (DOE, 15
iterations), followed by the Expected Improvement Infill Criteria (EI, 10 iterations) and a
final stage of Expected Improvement Infill Criteria within a moving Trust Region (EI-TR,
5 iterations). The objective function for MLP-Decoder and MLP-Pointwise is the mean
absolute error computed on the validation set. For AE the objective function is the mean
squared error with respect to the training data.

4 TEST CASE

The test case configuration considered here is an industrial-relevant aircraft configuration
known as XRF1. The XRF1 is an Airbus provided industrial standard multi-disciplinary re-
search test case representing a typical configuration for a long range wide body aircraft. It is
used by Airbus to engage with external partners on development and demonstration of relevant
capabilities and technologies. Computational data has been provided from Airbus based on
the XRF1 half-body configuration. High-fidelity RANS-CFD simulations were carried out with
the DLR flow solver TAU [26], using the SST turbulence model. Structural deformations are
accounted for by coupling the CFD analysis to a computational structural mechanics investiga-
tion which relies on a finite element model. Afterwards all results are projected onto the same
aircraft surface mesh for which only the wing surface is retained. The corresponding surface grid
consists of n = 110, 169 grid points and the point could is shown in Figure 4. Note that, the
surface mesh connectivity for this particular mesh is not available. Hence, certain approaches
relying on connectivity information such as graph convolutional networks [27] are not applicable.
A total of m = 89 pressure coefficient (cp) distributions were computed for four different Mach
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Figure 4: Configuration Figure 5: Dataset split

Table 1: Description of the test case

Surface Mach AoA Train Val. Test
Points Range Range Samples Samples Samples

110169 [0.82, 0.96] [−7.6◦, 8.1◦] 66 17 6

numbers 0.82, 0.86, 0.90 and 0.96 and angles of attack in the range of [−7.6◦, 8.1◦]. The sampling
points are displayed in Figure 5. The Reynolds number was fixed to Re = 25 · 106. Out of the
m = 89 total samples 6 are selected for testing, 17, approximately twenty percent, are selected
for validation while the remaining 66 samples are used for training. This partition of the data
is pictured in Figure 5. Table 1 contains a summary of this test case.

The reduced order modeling methods are part of the DLR Surrogate Modeling for AeRo
data Toolbox in python (SMARTy) [28]. SMARTy is a toolbox for predictive modeling of aero-
dynamic scalar or high-dimensional quantities using state-of-the-art data-driven methods. It
allows in a very user-friendly way the construction of reduced order models from CFD data
in a unified layer that includes several preprocessing and postprocessing options, training of
neural networks with PyTorch [29] and TensorFlow [30] as backends and surrogate-based hyper-
parameter optimization. In addition, it features a model selection module that provides a grid
search functionality which automatically takes care of building and training various models and
selecting the best one. For the deep learning models in this paper we use TensorFlow as the
backend.

5 RESULTS

This section discusses the results obtained predicting pressure coefficient distributions at
various combinations of Mach number and angle of attack for the test case presented in the
previous section. First, we present the results from the hyperparameter optimization. Then, we
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analyze the performance of the models with respect to the testing samples. We conclude with a
discussion regarding the computational cost of all models.

5.1 Surrogate-based optimization

As presented in Section 3 the hyperparameters of MLP-Decoder, MLP-Pointwise and AE+I
were optimized using surrogate-based optimization. For this a Kriging-based surrogate model
was employed in order to choose the optimal hyperparameters for each NN. For this the con-
struction and training of a particular NN model can be seen as a black-box function. For each
of the evaluations of the black-box objective function (NN training), the weights of the neural
network were optimized using the well-known optimizer Adam [31].

For the three models the optimizable hyperparameters were the learning rate, the number
of hidden layers L, and the downsampling multiplier r. The other hyperparameters were fixed
based on previous experience as well as running time and model capacity constraints. The mean
squared error was used as the loss function and early stopping with a window size of 10 was
employed in order to avoid overfitting. As for the activation function, all models used ReLU .

In the case of MLP-Decoder the last hidden dimension n[L] was fixed at 256 and the batch
size at 16. It was trained for a maximum of 400 epochs. As for MLP-Pointwise, the first hidden
dimension was fixed at 256 and the batch size at 4098. It was trained for maximum of 250
epochs. Concerning AE+I, the first hidden dimension was fixed at 256, the latent dimension at
64 and the batch size at 16. It was trained for maximum of 150 epochs. For MLP-Decoder and
AE+I the batch size refers to the number of snapshots, while for MLP-Pointwise it represents
the number of parameter-coordinate pairs.

The optimization of neural networks is known to be heavily dependent on the chosen learning
rate and its order of magnitude. Thus this hyperparameter was logarithmically scaled to allow
for a suitable search across different orders of magnitude. The optimal learning rate for MLP-
Decoder was found to be 7.50 × 10−3, while for MLP-Pointwise and for AE+I it was an order
of magnitude lower, 5.62× 10−4 and 1.64× 10−4 respectively.

The optimal MLP-Decoder consists of 8 hidden layers and a downsampling multiplier of 0.838.
As for MLP-Pointwise, the best model features 10 hidden layers with a downsampling multiplier
of 0.906. Regarding AE+I, the best hyperparameters are 2 hidden layers in the encoder and a
downsampling multiplier of 0.7. All optimal hyperparameters and the dimensions of the layers
are shown in the appendix in Tables 6, 7, 8 and 9.

5.2 Interpolation grid search

For POD+I, Isomap+I and AE+I the hyperparameters of the interpolation were chosen by
performing a grid search over the options displayed in Table 4 in the appendix. The best
interpolation technique for POD+I and AE+I was found to be TPS with regularization, while
for Isomap+I a simpler linear interpolation yielded the best results. In the case of Isomap+I the
latent space was fixed to be two-dimensional and the model chose to use the 16 nearest neighbors
for the backward mapping. It is likely that the nonlinear dimensionality reduction step from
Isomap allowed the plain linear interpolation to suffice. Regarding scaling, the three models
scale the parameters to the unit hypercube, pointing to the usefulness of adequate scaling. All
optimal hyperparameters of the interpolation methods are shown in Table 5 in the appendix.
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5.3 Results on test samples

In a production environment it is key that the models perform well at new unseen parameter
combinations. Accordingly, the performance of the models is assessed using the 6 test samples,
which were used neither for training nor validation or hyperparameter selection. The predictive
capabilities are evaluated quantitatively using the mean absolute error (MAE), the 95% and 99%
quantiles of the absolute error (AE q.95, AE q.99 resp.), the maximum absolute error (Max.
AE), the root mean squared error (RMSE), and the r2-score. The maximum error is provided
to give a more complete overview of the performances of all models, but one should bear in
mind that it is an statistic with very high variance. The quantiles of the absolute error provide
a more robust measure of how big the errors get. High errors tend to exist at locations where
nonlinear behaviour occurs in the pressure distribution due to the presence of shock waves and
flow separation. Hence these quantiles help to better assess the ability of the models to predict
local nonlinearities, which is essential for the prediction of loads at transonic flow conditions.
In addition, the root mean squared error, penalizes higher errors more the mean absolute error
and is thus suitable when high errors are to be avoided.

POD+I achieves the lowest MAE among all models, while MLP-Pointwise yields the best
performance in terms of all other error metrics. MLP-Pointwise outperforms POD+I by 7.6%
and 14.25% in terms of the 95% and 99% error quantiles respectively. This suggests that
MLP-Pointwise performs better at capturing localized phenomena such as strong shocks or flow
separation. A possible explanation is that the mini-batch stochastic optimization algorithm with
a mean squared error loss helps the deep learning methods by forcing them to learn local be-
haviour and increasing their generalization performance. Moreover, the use of point coordinates
provides MLP-Pointwise with additional information that can turn out to be useful for learning
such local phenomena by implicitly gathering information on local phenomena and connectivity.
All test metrics with respect to the six test samples are shown in Table 2.

Table 2: Cp test metrics

Metric POD+I Isomap+I AE+I MLP-Dec. MLP-Pointwise

MAE 0.0293 0.0324 0.0382 0.0362 0.0309
AE. q95 0.1256 0.1424 0.1338 0.1250 0.1163
AE. q99 0.3242 0.3160 0.3047 0.2822 0.2780
Max. AE 1.1824 1.0187 0.9988 1.0603 1.0815
RMSE 0.0748 0.0723 0.0734 0.0706 0.0638
r2-score 0.9659 0.9681 0.9671 0.9696 0.9752

Figures 6 and 7 show a comparison of the prediction errors ∆cp := ŷ − y along with the
reference solution for the two test cases that are the farthest away from the training and val-
idation samples. Figure 6 features the case at a Mach number of 0.82 and an angle of attack
of 3.105. In this case MLP-Decoder attains the best performance with respect to all metrics.
It outperforms POD+I by 26.85% and 8.03% with respect to the 95% and 99% error quantiles,
respectively. Figure 7 displays the test case at a Mach number of 0.86 and an angle of attack of
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−6.434. This test point is the farthest away from all training samples. For this test case MLP-
Pointwise achieves the best performance with respect to all metrics. It outperforms POD+I by
34.80% and 45.20% in terms of the 95% and 99% error quantiles, respectively. This performance
appears to support that MLP-Pointwise can better model nonlinear behaviour and extrapolate
to conditions in the flight envelope not covered by the training data.

(a) Reference Solution (b) POD+I

(c) Isomap+I (d) AE+I

(e) MLP-Decoder (f) MLP-Pointwise

Figure 6: Comparison between the prediction accuracy for M: 0.82 and AoA: 3.105
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(a) Reference Solution (b) POD+I

(c) Isomap+I (d) AE+I

(e) MLP-Decoder (f) MLP-Pointwise

Figure 7: Comparison between the prediction accuracy for M: 0.86 and AoA: −6.434

5.4 Computational cost

For practical applications it is not only important that the data-driven models provide accu-
rate predictions of aerodynamic quantities, but also that they do so in significantly lower time
than the time-consuming high fidelity CFD computations. Therefore we provide an overview of
the training and evaluation times of the models to help assess the feasibility of their use in time-
critical scenarios. MLP-Pointwise was trained using an NVIDIA Quadro P4000 GPU, whereas
all other models were trained exclusively on an Intel(R) Xeon(R) W-2135 CPU @ 3.70GHz with
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12 cores. POD+I and Isomap+I require the least time to train, 9 and 11 seconds, respectively.
For POD+I most of the computation time is required for the regularized TPS interpolation,
while for Isomap+I the dimensionality reduction is the most time-consuming step. The train-
ing of AE+I and MLP-Decoder is in the order of minutes, each taking 126 and 166 seconds.
MLP-Pointwise has a training time in the order of hours, taking 5839 seconds to complete 250
epochs. Regarding the evaluation time, for all models it is significantly under one second and
is thus negligible with respect to the CFD simulation time. Table 3 shows for each model the
approximate time per epoch, the training time and the time it takes to perform an evaluation
of one sample to yield a prediction of the complete pressure coefficient distribution.

Table 3: Approximate computational cost in seconds

POD+I Isomap+I AE+I MLP-Dec. MLP-Pointwise

One Epoch – – 0.74 0.42 23.84
Training 9 11 126 166 5839

One Evaluation 0.0024 0.0028 0.0126 0.1901 0.2184

6 CONCLUSIONS

In this paper we compared five data-driven methods for the prediction of surface pressure
distributions for the XRF1 half configuration. These models provide fast approximations and
can be seen as a surrogate for time-consuming RANS-CFD simulations. Proper Orthogonal
Decomposition coupled with latent space interpolation (POD+I) was used as the baseline due
to its low computational cost and widespread use. POD+I performs well regarding global
metrics, however its performance drops when looking at local errors and extrapolating to cases
with high local nonlinearities. Isomap coupled with interpolation (Isomap+I) was used as the
second baseline and it appears to suffer less from these limitations, likely due to its nonlinear
dimensionality reduction technique and local interpolation method.

An Autoencoder coupled with interpolation (AE+I) was used as a hybrid approach between
classic reduced order modeling and deep learning. It features a nonlinear dimensionality re-
duction step as in the case of Isomap. The use of two deep learning approaches without any
explicit dimensionality reduction was also investigated. A multilayer perceptron that predicts
the surface pressure distribution directly from the parameters (MLP-Decoder) was one of these
methods. The other deep learning method was a multilayer perceptron for pointwise predictions
(MLP-Pointwise) used to predict the surface pressure coefficient at a given combination of pa-
rameters and coordinates. The results suggest that this last method is better suited than the
previous ones for capturing local nonlinearities. This method is however the one that requires
the most training time. Throughout, all models are capable of evaluating new samples in nearly
real-time. This is crucial since it enables their use within time-critical environments.

Given that the main challenges that POD faces are related to locality and nonlinearity, kernel
POD coupled with interpolation (KPOD+I) stands out as a natural candidate to improve the
performance of the classic POD+I approach. Another possible approach is the use of a neural
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network instead of the interpolation technique to form a POD+NN model. Regarding deep
learning methods, the best approach employed in this work (MLP-Pointwise) learns and com-
putes predictions point by point without explicitly using information from neighboring points.
Graph Neural Networks [27] and Transformers [32] are two state-of-the-art methods that explic-
itly use neighborhood information during training and prediction time. These methods could
learn the spatial correlations with the use of local aggregation schemes and attention-based
mechanisms. This should, in turn, further increase the accuracy of the predictions by better
capturing nonlinear local phenomena. Thus these methods constitute a promising approach for
future work.
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7 APPENDIX

Table 4: Interpolation hyperparameters

Hyperparameter Possible Values

interpolator Linear, Square, Cubic, TPS
Gaussian, Gaussian-Exponential, Cubic Spline

augmentation None, Constant, Linear, Quadratic
scale False, True

regularization None, True
tune modus None, Maximum-Likelihood (ML)

Table 5: Optimum interpolation hyperparameters

Hyperparameter POD+I Isomap+I AE+I

interpolator TPS Linear TPS
augmentation Constant None Linear

scale True True True
regularization True None True
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Table 6: MLP-Decoder hyperparameters

Hyperparameter Range Optimum

Learning rate [0.0001, 0.1] 7.50× 10−3

Number of hidden layers L {7, 8, 9, 10} 8
Downsampling multiplier r [0.8, 0.9] 0.838

Table 7: MLP-Pointwise hyperparameters

Hyperparameter Range Optimum

Learning rate [0.000001, 0.01] 5.62× 10−4

Number of hidden layers L {7, 8, 9, 10} 10
Downsampling multiplier r [0.9, 1.0] 0.906

Table 8: AE hyperparameters

Hyperparameter Range Optimum

Learning rate [0.00001, 0.01] 1.64× 10−4

Number of hidden layers L {2, 3, 4} 2
Downsampling multiplier r [0.7, 0.8] 0.700

Table 9: Layer Dimensions

Model Dimensions

MLP-Decoder [2, 75, 89, 106, 126, 150, 179, 214, 256, 110169]
MLP-Pointwise [5, 256, 232, 210, 190, 172, 156, 141, 128, 116, 105, 1]

AE+I [110169, 256, 179, 64, 179, 256, 110169]
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