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Abstract

A local isotropic single parameter scalar model that can simulate the mechanical behaviour of quasi-brittle mate-

rials, such as concrete, is described. The constitutive law needs the mechanical characteristics and the fracture energy of

concrete to be completely de®ned. The damage parameter is obtained directly from the value of an equivalent e�ective

stress in order to reduce the computing e�ort. Due to the unique damage parameter, this model is suitable for the study

of quasi-static problems involving monotonically increasing loads. The problem of localisation and mesh dependency

have been partially overcome by using an enhanced local method in which a characteristic internal length related to the

mesh dimension is employed instead of the characteristic fracture length. In this work, the model was enriched further

with the introduction of a shear retention factor that accounts for the friction between the two surfaces of a crack.

These new features assure a real improvement of the damage model, maintaining nevertheless its simplicity and low

computing cost and making it suitable for the practical solution of large scale problems. Several numerical simulations

of experimental tests, concerning fracture tests on concrete specimens and beams failing in shear, have been performed

for the validation of the model. The main results from the numerical analyses are described and compared with the

experimental ones. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Continuum damage models are constitutive relations

in which the mechanical e�ect of cracking and void

growth is introduced by means of internal state vari-

ables, which act on the elastic sti�ness of the material.

The simplest model was proposed back in the ®fties by

Kachanov [1] in order to describe the behaviour of al-

loys subjected to creep. These models have become

popular for brittle and ductile failure analyses where the

e�ect of damage is represented as a apparent degrada-

tion of the Young modulus of the material. In particu-

lar, they have been applied to quasi-brittle materials

such as concrete.

In this work, an isotropic, single parameter damage

model based on the theory of Kachanov [1] and on the

contributions by Simo and Ju [2], Lubliner et al. [3] and

Oliver et al. [4] has been adopted. It represents the

simplest approach to the non-linear analysis of brittle

continuum where progressive mechanical degradation

due to the applied action has to be considered.
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To overcome the problem of localisation and mesh

dependency, that typically arises in mechanical analyses

of strain softening materials, in this paper an enriched

local method is employed in which a characteristic in-

ternal length, related to the mesh dimension, substitutes

the characteristic fracture length. Such a method, which

is actually a mesh size regularized method, has been used

in Ref. [5], and named enhanced local method (e.l.m.). It

is a simpli®ed approach, which conjugates a low com-

putational cost with a su�cient reliability of the results.

In particular by means of the proposed approach the

energy dissipated in a band of cracking elements does

not depend on the width of the band. Several tests [5,6]

demonstrated that with this method, even if the mesh

dependency in term of width of the band is not con-

trolled, the reliability of the results in term of global

response, e.g. load±displacement curve is assured. The

validation of the e.l.m. is given by the numerical simu-

lation of the experimental procedures for fracture energy

measures of cement paste on parallelepiped notched

specimens.

The main original contribution of this work consists

in the improvement of the damage model by the intro-

duction of a shear retention factor (s.r.f.) whose func-

tion is to account for the friction between the two

surfaces of a crack. This new feature represents a real

improvement of the damage model allowing the correct

prevision of the secondary mechanisms of shear resis-

tance of the structures. As a validation, the experimental

test of a four point bending of a reinforced concrete

beam without shear reinforcement, failing in shear [7],

has been reproduced with the numerical model. It has

been observed that the model without the shear reten-

tion factor, or with a constant factor, was not able

to predict the measured failure load. Only the use of

a variable shear retention factor has allowed for a

good ®tting between numerical and experimental re-

sults. The s.r.f. evolution law, which is given in the

paper, has been calibrated on the basis of the available

laboratory tests.

The e�ectiveness of the proposed theory has been

proved through several numerical simulations of experi-

mental tests, concerning beams failing in bending and in

shear [8] and the numerical reproduction of the ``shear

valley'' obtained by Kani [9]. The main results from

these analyses are described and compared with the ex-

perimental ones in the following.

Previous works, [10±14] have shown that, despite its

simplicity, the single parameter damage model used in

this work, represents a well-balanced compromise be-

tween the need for an accurate description of the me-

chanical behaviour of concrete and the requirement of

small computational e�ort, necessary when facing large

scale problems. The introduced new features, i.e. the

enhanced local method and the shear retention factor,

do not compromise the simplicity and low computing

cost of the damage model thus making it suitable for the

practical solution of large scale problems.

2. The damage model

2.1. Energetic considerations

In Section 2.2, a strain±space damage model, based

on the notion of e�ective stress, as fully explained in Ref.

[2], is adopted. It will be applied to the study of small

displacements and small strain problems. In a steady-

state thermal condition, the speci®c free elastic energy at

a point of a damaged material can be de®ned as

W e; d� � � �1ÿ d�W0�e� � �1ÿ d� 1

2q0

eij r
0
ij

� �
� �1ÿ d� 1

2q0

eij D0
ijkl ekl

� �
; �1�

where d (ranging from 0 to 1) is a scalar value repre-

senting the local damage parameter, q0 is the material

speci®c mass, eij and r0
ij are, respectively, the strain and

the e�ective stress tensors and D0
ijkl is the fourth-order

tensor of the elastic sti�ness of the material. This implies

that initially (d � 0) the material shows a linear elastic

behaviour where W0 denotes the (undamaged) initial

elastic stored energy [2]. As damage increases toward the

unit the free energy approaches zero.

For the energetic consistence of the model, the in-

equality of Clausius±Planck, that states the no-negative

character of the rate of mechanical energy dissipation

for any arbitrary in®nitesimal variation _eij from an

equilibrium condition, has to be assured

_Nm � 1

q0

rij _eij ÿ _W P 0; �2�

where rij is the stress tensor. Eq. (2) can be written as

_Nm � 1

q0

rij _eij ÿ oW
oeij

_eij

�
� oW

od
_d
�

� 1

q0

rij

�
ÿ oW

oeij

�
_eij ÿ oW

od
_d P 0: �3�

Since the variation _eij is completely arbitrary, this

inequality can be ful®lled only if the term in parentheses

is identically null:

1

q0

rij ÿ oW
oeij
� 0 �4�

from which one obtains

rij � q0

oW
oeij
� 1� ÿ d�D0

ijkl ekl � DS
ijkl ekl; �5�

where DS
ijkl represents the secant sti�ness matrix of the

material. Eq. (3) can be simpli®ed into

_N � ÿ oW
od

_d � W0 _d P 0 �6�
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that is always satis®ed if d is a non-decreasing variable

(i.e. _d P 0), W0 being positive de®nite.

2.2. Limit damage surface

According to the strain±space damage model devel-

oped by Simo and Ju [2], at a generic point of the ma-

terial the damage criterion can be written by using strain

as variable, or alternatively elastic stresses, i.e. e�ective

stresses, as follows:

F r0
ij; s

� �
� r r0

ij

� �
ÿ s6 0; �7�

where r r0
ij

� �
, named equivalent e�ective stress, is a

scalar function of the undamaged stress tensor r0
ij and s

is a material parameter that keeps memory of the load

history. The condition F r0
ij; s

� �
� 0 de®nes the damage

surface.

Theoretically, any form of the function F can be

assumed; however, in order to be convenient in terms of

formal simplicity and saving of computation time, F
should be a homogeneous linear function of stresses (e.g.

the criterion of Mohr±Coulomb, Druker±Prager and

Lubliner [3]).

In the present work F is written in terms of the free

energy of the undamaged material

F � 1� r nÿ 1� �� �
n

�������������
2q0W

0

q
ÿ s6 0; �8�

where n � fc=ft with fc and ft the compressive and

tensile strength of concrete and

r �
0 if

P3
i�1

s0
ii

�� �� � 0;P3

i�1
s0
iih iP3

i�1
s0
iij j

if
P3
i�1

s0
ii

�� �� > 0 where xh i � 1
2

xj j � x� �;

8>><>>:
�9�

where s0
ij denotes the tensor of the e�ective principal

stresses.

The relationship (8) of the damage ®eld has been

proposed and used previously by O~nate et al. [15]. It

gives the shape of the limit damage surface whose in-

tersection with planes corresponding to di�erent values

of the third principal stress s0
33 is shown in Fig. 1. In this

work, the following modi®cation of Eq. (8) has been

adopted [6]:

F � 1� r nÿ 1� �� �
nt

�������������
2q0W

0

q
ÿ s � rÿ s6 0; �10�

where the scalar t, function of the normalised octahedral

tangential stress s�oct, has the following de®nition:

Fig. 1. Original limit damage surface as in Ref. [14]. Intersection with the planes: (a) s33 � ft=2, (b) s33 � 0 and (c) s33 � fc=2. Test with

fc � 30 MPa and ft � 3 MPa.

t � 0:975� a exp
s�oct

b

� �
with s�oct �

0 if
P3
j�1

ÿ s0
jj

D E
> 0;������������������������������������������

1
3

P3
i�1

ÿs0
iih iP3

j�1

ÿs0
jjh i
ÿ 1

3

0B@
1CA

2
vuuuut otherwise

8>>>>>><>>>>>>:
�11�

R. Scotta et al. / Computers and Structures 79 (2001) 737±755 739



and allows one to consider the strength increase that

concrete, exhibits in biaxial or three-axial compressive

state. Assuming the parameters a � 16:347 and b �
0:07269, the intersections of the resulting modi®ed ad-

missible ®eld with the s0
33 � 0 plane and the octahedral

plane s0
33 � s0

11 � s0
22

ÿ �
=2 are plotted in Fig. 2. It can be

seen that in triaxial hydrostatic compressive state the

limit ®eld reaches a value that is 10 times the uniaxial

value fc. Note that the parameter t is equal to 1 if one or

no compressive principal stress is present s�oct �
���
2
p

=3
ÿ �

,

while in the presence of triaxial hydrostatic compressive

state s�oct � 0 and t is equal to 0:975� a. Di�erent

choices of the parameters a and b in Eq. (11) are pos-

sible.

2.3. Damage evolution

A fully equivalent expression for Eq. (10), more

convenient for the following derivation, is

F � G r� � ÿ G s� �6 0 �12�
with G� � a suitable monotonic scalar function. Conse-

quently, the evolution law of damage can be expressed

by the rate equation as usually done in associated

plasticity:

_d � _g
oF r0

ij; s
� �
or

� _g
oG r� �

or
;

_s � _g;

�13�

with the Kuhn±Tucher conditions _g P 0, F 6 0 and
_gF � 0. _g is the damage multiplier equivalent to the

plastic multiplier in rate independent plasticity. The

Kuhn±Tucker conditions state that

(i) the rate of damage growth is positive or zero

( _g P 0),

(ii) strain and stress states located outside the elastic

domain de®ned by Eq. (10) are not allowed (F 6 0),

(iii) when damage grows the loading function re-

mains equal to zero ( _gF � 0).

The combination of these three conditions yields the

consistency condition _F � 0, which has to be satis®ed

whenever there is a growth of damage. If F � 0 and
_F � 0, then from Eq. (12) one derives s � r and from

Eq. (13), _d P 0, else _d � 0 and _s � 0.

Initially, there must be s � ft since the uniaxial ten-

sile strength of concrete is the threshold of the equiva-

lent stress for the onset of damage.

Of particular numerical convenience is the choice of a

direct explicit function for d. The following, proposed by

Oliver [4], has been adopted in this work:

d � d�r� � 1ÿ ft

r
e

A 1ÿr
ft

ÿ �
�14�

which is de®ned in the stress interval � ft;1�, so that for

r � ft it gives d � 0 and for r!1 it gives d � 1. If an

uniaxial tensile test is considered, then r � s0
11 and,

W0 � s02

11= 2q0 E0� � the total energy dissipated during the

deformation process, that is equal to the speci®c fracture

energy of the material gf [16], can be obtained by the

following integration along the whole strain path:

Fig. 2. Limit damage surface adopted in this work. Intersection with the planes: (a) s33 � 0 and (b) s33 � �s11 � s22�=2. Test with

fc � 30 MPa and ft � 3 MPa.
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gf �
Z 1

ft

W0 d�d� �
Z 1

ft

s02

11

2q0E0

d�d�
ds0

11

ds0
11: �15�

After some mathematics, the following result is ob-

tained:

gf � f 2
t

q0 E0

1

2

�
� 1

A

�
) A � gf q0 E0

f 2
t

�
ÿ 1

2

�ÿ1

: �16�

This relationship shows that the parameter A in Eq.

(14) depends on the speci®c fracture energy dissipated

during the whole damaging process. The total dissipated

energy must be greater than the elastic free energy of the

undamaged material stored at the onset of damage:

gf � W
�
0 � DN � f 2

t

2q0 E0

� DN with DN P 0: �17�

When introduced in Eq. (16), this gives

A � f 2
t

DNq0 E0

� 2W
�
0

DN
�18�

which puts into evidence the non-negative character of

parameter A.

Analogously a uniaxial compression test can be

considered and the symbol Nc is adopted to identify the

global energy dissipation. Since the parameter A is used

to describe both the compression and the tensile be-

haviour of the material, the following relationship be-

tween gf and Nc holds:

A � Nc q0 E0

f 2
c

�
ÿ 1

2

�ÿ1

) Nc � n2gf : �19�

The density of fracture energy gf (or Nc) is a char-

acteristic of the material, as the other mechanical pa-

rameters E0, m, ft and fc and it is de®ned as the fracture

energy normalised to the characteristic length of frac-

ture: gf � Gf=lc. The value of the fracture energy Gf can

be measured by means of a bending test on parallelepi-

ped specimens [16]. More details on the value of lc will

be given in this work when the problem of the locali-

sation in strain-softening analyses is addressed.

2.4. Tangential constitutive law for the damaged material

The constitutive relationship (5) can be rewritten in

an incremental form as follows [13]:

dr � DSde� dDSe � �1ÿ d�D0deÿD0dde; �20�
where matrix notation has been adopted. Eq. (20), after

substitution of Eq. (13) for dd, becomes

dr � �1ÿ d�D0deÿD0e _s
oG
or

dr

� �1ÿ d�D0deÿ r0 _s
oG
or

or
or0

D0de �21�

and ®nally rewrites as

dr � �1
�
ÿ d�Iÿ r0 _s

oG
or

or
or0

�
D0de � DTde; �22�

where the non-symmetric tangent sti�ness matrix DT

depends only on the vector of the e�ective stress r0.

In this paper, the modi®ed Newton±Raphson

schemes, where the secant sti�ness matrix (5) or the

initial sti�ness matrix are used in place of the non-

symmetric tensor DT, have been preferred in numerical

applications since they require less computational e�ort

and assure stability to the numerical solution.

2.5. Strain softening behavior and regularization tech-

nique for the damage approach

As known, the standard local constitutive laws

are inappropriate to model strain softening material

behaviour. Indeed, when the tangent sti�ness matrix

ceases to be positive de®nite, the ®nite element analysis

shows strong spurious mesh sensitivity, becoming non-

objective [17]. The mesh dependency manifests itself in

terms of shape and dimension of the damaged zone (the

strain localises into a narrow band, whose width de-

pends on the element size, and tends to zero as the mesh

is re®ned towards a vanishing size) as well as in terms of

global energy dissipation (the energy dissipation due to

damaging converges to zero as the size of the mesh tends

to be zero).

The most popular techniques ensuring objectivity are

the so-called localisation limiters, which include e.g.

gradient models [18] and non-local models.

Here attention is con®ned to the non-local damage

theory, developed by Pijaudier-Cabot and Bazant [17]

and Bazant [19], whose localisation properties were ex-

tensively studied by Pijaudier-Cabot and Benallal [20].

In the non-local approach to the proposed damage

model, the non-local equivalent tensile stress ~r is intro-

duced in Eq. (14) to replace the corresponding local

value r, to control the growth of damage index d. Such a

non local variable ~r represents the average of the local

equivalent e�ective stress r over the representative

spherical volume surrounding each point of the material,

~r � 1

Vr�x� �
Z

V
w�xÿ s� � r � ds with

Vr�x� �
Z

V
w�xÿ s�ds; �23�

where V is the volume of the structure, Vr�x� is the

representative volume of material at point x and

w�xÿ s� is a selected weight function, usually

w�xÿ s� � exp

 
ÿ kxÿ sk2

2l2
c

!
: �24�

The internal length lc helps to limit the localisation

process and control the size of the localisation zone. For

standard concrete, Bazant and Pijaudier-Cabot [21]
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demonstrated that lc is equivalent to the characteristic

internal length of fracture given by

lc � Gf

gf

� 3:0da; �25�

where Gf is the fracture energy (J/m2) and gf is the

speci®c fracture energy (J/m3) that can be experimentally

measured in bending tests on notched concrete speci-

mens. Typically, lc depends on the maximum size of

aggregates da as written in Eq. (25).

Provided the mesh re®nement is adequate, with a non

local approach the size and shape of the damaged zone

become independent of the mesh size, type and orien-

tation, and the solution properly converges toward a

mesh independent unique solution [20].

However, the bene®ts derived from the use of a non-

local approach are balanced by some drawbacks. First

of all, in the absence of an adaptive mesh re®nement,

which is still a research issue for localisation, for the

non-localisation process to be e�cient, it is necessary to

adopt a uniform mesh discretisation with the maximum

size of the elements of about 1=2 cm (i.e. a su�cient

number of Gauss points used for the numerical inte-

gration in the ®nite element (FE) analysis have to be

within the sphere of radius lc surrounding each point,

where the value of lc is typically of some centimetres).

This condition must be ful®lled in the critical zones of

the structure, which are usually a priori unknown. Such

a requirement makes the non-local analysis of actual

engineering structures practically impossible. Moreover,

the so-called ``embedded localisation band'' concepts

could be investigated as a possible alternative to non-

local methods for large scale computations.

A second obstacle to the applicability of the non-local

analysis is the sensible increase of the computational time

that the process of non-localisation of the variables re-

quires. In practice, at each iteration imposed by the so-

lution algorithm of the non-linear problem, once the

local value r is evaluated at each Gauss point of the

mesh, the corresponding non-local ~r value must be cal-

culated before the damage parameter at the same Gauss

point can be updated. This operation consists in multi-

plication of vectors of local values by the non-symmetric

weighting matrix following from Eq. (23). Finally, the

analysis becomes heavier if a full Newton±Raphson al-

gorithm is adopted for the solution of the non-linear

algebraic system, since the non-local approach increases

the non-symmetry of the tangent sti�ness matrix, which

is already non-symmetric as Eq. (22) shows.

Due to the above exposed argumentation, a simpli-

®ed approach, named (e.l.m.), alternative to the non-

local theory, has been used in this work. It consists in the

modi®cation of Eq. (16) as follows:

A�e� � Gfq0E0

l�e�c f 2
t

 
ÿ 1

2

!ÿ1

; �26�

where the characteristic length l�e�c , and therefore the

parameter A�e�, are dependent on the size of every ®nite

element used in the FE mesh. The length l�e�c counter-

balances the lack of the characteristic length as inde-

pendent variable, typical of all the local continuum

models, even the ones based on fracture mechanics

concepts.

The concept of making the local model dependent on

the FE size has been suggested, for example, by Refs.

[23±25], and applied by many authors, e.g. Ref. [26].

Oliver [22] proposed the following relationship for the

characteristic length l�e�c :

l�e�c �
V �e�R

V �e�
o/
ox0 dV

; �27�

where V �e� is the FE volume; / is a non-dimensional,

continuum and di�erentiable function de®ned in

the three-dimensional space, which is able to describe

the displacements in the localisation band, and x0 is the

linear coordinate, perpendicular to the localisation

band. Oliver [22] has demonstrated that a smeared crack

analysis application of Eq. (27) leads to a unique mesh

independent solution, which approaches the exact solu-

tion as the mesh size tends to zero.

Based on the study of Oliver [22], in this work the

following alternative approximate measure of l�e�c has

been used:

l�e�c �
��������
V �e�m
p

m �
1 ± 1D analysis
2 ± 2D 00

3 ± 3D 00

24 : �28�

With such an assumption, while fracture energy Gf

correctly remains a characteristic of the material, the

speci®c fracture energy gf becomes dependent on the

discretisation and it becomes variable from one element

to another.

The e�ectiveness of this approximate theory can be

assessed with the simple test presented in Table 1, where

the energy released at cracking is evaluated for three

di�erent ®nite element shapes: it can be observed that

the approximate theory gives exactly the analytical value

for the cubic element, while for the two irregular ele-

ments it gives a solution of the same magnitude of the

exact results. On the contrary, the results obtained by

using a constant lc could gives arbitrary values, de-

pending on the selected lc.

Therefore, as the energetic dissipation is concerned,

the proposed approximate theory provides a numerical

solution that approximates the exact solution, indepen-

dently of the mesh size, only by using a regular mesh

discretisation. In particular it is worth noting that the

errors induced by using formulae (28), increases up to

in®nity with the element slenderness.

Moreover, such an approach does not require the

parameter lc as a known datum of the problem. Indeed
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the characteristic length, even if theoretically de®ned, is

of di�cult practical evaluation and it strongly a�ects the

results obtained both with non-local models and also the

parameter A (Eqs. (16) and (25)) of the previously de-

scribed local model.

Another crucial point that supports the use of the

proposed enhanced local method is that it does not need

any increase of CPU time to be implemented with re-

spect to the classical local approach, and needs much

less CPU time than the non-local methods.

However, it is worth noting that the proposed ap-

proximate approach e.l.m. cannot completely eliminate

the aspect of mesh dependency which manifests in terms

of shape and dimension of the damaged zone.

2.6. Limits of the single parameter scalar damage model

The damage model and its evolution law used in the

present work are of particular convenience because their

easy implementation in existing ®nite element codes and

because the small computational e�ort that is required

in addition to the usual elastic analysis, if a suitable

solution scheme is adopted. The form given to Eq. (14)

allows to determine the local damage in a direct way,

once the elastic stress (or strain) of the undamaged

material is known and avoids the step-by-step integra-

tion of the damage evolution. These advantages are of

capital importance if large scale problems are to be

faced.

The presented single parameter damage model is in-

capable of taking into account the crack closure e�ect

and the increase of the material strength with the rate of

deformation. The presence of a single damage parameter

to account for damaging caused by both tensile and

compressive stress states produces the e�ect that, in

contrast with the experimental evidences, the damage

due to initially applied tensile strains causes an unreal-

istic loss of sti�ness if subsequently compression strains

Table 1

Evaluation of exact and approximate crack energy release for three di�erent ®nite element shapes

Element shape Element volume Fracture surface Energy dissipation

Exact FE solution

Local model

�lc � constant�
e.l.m. l�e�c �

����
V3
p

V 0:5V 2=3 0:5V 2=3Gf VGf=lc V 2=3Gf (error

ÿ50%)

V 1:0V 2=3 1:0V 2=3Gf VGf=lc V 2=3Gf (error 0%)

V 2:0V 2=3 2:0V 2=3Gf VGf=lc V 2=3Gf (error

�50%)
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are applied. Therefore, the damage surface changes ho-

motetically as damage increases.

As a consequence, the proposed damage model can

be conveniently used, as in this work, only for the

analysis of problems with quasi-static monotonic in-

creasing loads, but not to simulate problems with cyclic

or dynamic actions. To face such a type of problems

di�erent damage models able to comply with the sti�ness

recovering and rate dependent e�ects, must be used (see

e.g. the work by Dub�e et al. [27], Faria and Oliver [28]

and Saetta et al. [29]).

3. Finite element formulation

The local equilibrium condition of the continuum can

be written as

rij;j � bi � 0 on X; rijnj � ti on C; �29�

where X and C are the body volume and surface, bj is the

vector of the mass loads, nj is the unit vector normal to

the surface and ti is the vector of surface loads. Eq. (29)

can be written in a global weak form through the prin-

ciple of the virtual workZ
X

deijrji dX �
Z

X
duibi dX�

Z
C

duiti dC �30�

that has to be satis®ed for arbitrary virtual variations dui

and deij from the equilibrium position.

For quantitative solutions, the equilibrium Eq. (30)

is discretised in space by the ®nite element method.

The displacements u � ui, assumed as basic variables of

the problem, are expressed in the whole domain by the

global shape function matrix N and nodal value vectors

a:

u � Na: �31�
The strain tensor is written as

e � Lu � LNa � Ba; �32�
where L is the strain operator and B is the strain matrix.

After substitution of Eqs. (31) and (32) into Eq. (30), the

following system results:

Ka �
Z

X
NTbdX�

Z
C

NTtdC; �33�

where K is the global sti�ness matrix

K �
Z

X
BT�1ÿ d�DBdX; �34�

and D is the elasticity tensor of Eq. (1).

The system of Eq. (33) is non-linear due to the de-

pendence of the damage parameter d (that is of the

sti�ness matrix K) on the strain tensor e (that is on the

displacement vector a). Therefore, a step-by-step solu-

tion must be adopted, where the external loads on the

right-hand side of Eq. (33) are applied incrementally.

Within each step the adoption of a regular Newton±

Raphson algorithm for the solution of the non-linear

system, with the proper tangent sti�ness given by Eq.

(22), would provide quadratic convergence to the solu-

tion. However, with a full Newton±Raphson scheme the

tangent sti�ness matrix has to be formed and refactor-

ized (solved) for each iteration. Moreover, the tangent

sti�ness matrix becomes non-symmetric and the com-

putational time drastically increases, so the advantages

of using the e.l.m. instead of a non local model vanishes.

In our numerical tests, we have found that the adop-

tion of a modi®ed Newton±Raphson scheme (where the

initial elastic or the secant sti�ness matrix DS is used in

substitution of the tangent sti�ness) requires a compu-

tational time, to reach the same tolerance, which is

smaller than that needed with the full Newton±Raphson

scheme. In fact, the greater number of iterations neces-

sary at each time step due to the crudeness of the pre-

dictor, is more than counterbalanced by the time-saving

obtained avoiding the evaluation and the inversion of

the tangent sti�ness matrix. Moreover the modi®ed

Newton±Raphson scheme is always convergent to the

solution, even in the presence of ¯ex points in the load±

displacement curve.

With the modi®ed Newton±Raphson algorithm, the

iteration scheme for the solution of system (33) becomes

Ksdai
n � Fn�1 ÿ Pi

n�1; ai�1
n�1 � ai

n�1 � dai
n; �35�

where n means the time step and i is the iteration

counter, and

Fn�1 �
Z

X
NTbn�1 dX�

Z
C

NTtn�1 dC;

Pi
n�1 �

Z
X

BTri
n�1 dX:

�36�

The convergence norm used in the numerical tests is

hi
n�1 �

jFn�1j ÿ jPi
n�1j

jFn�1j ÿ jFnj < t; �37�

where j � j indicates the Euclidean norm. The solution is

iterated until the tolerance t is ful®lled.

4. Numerical applications developing of the shear reten-

tion factor

4.1. The numerical ®nite element codes

Two di�erent numerical codes based on the scalar

damage model described before have been developed

and tested: a local three-dimensional ®nite element code
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developed at the UPC and a local/non-local two-

dimensional ®nite element code developed at the Uni-

versity of Padova. Both numerical codes are able to

consider steel reinforcement having uniaxial elasto-

plastic isotropic constitutive behaviour, allowing for the

analysis of reinforced as well as plain concrete struc-

tures. The mathematical model considers perfect adhe-

sion between the concrete and the steel. The presence of

uni-dimensional elements representing the reinforcement

steel contributes to the spreading of the damage. A

modi®ed Newton±Raphson algorithm, that uses the

initial elastic sti�ness matrix as iteration matrix, has

been adopted for the solution of the non-linear system.

The two di�erent numerical codes, when applied to the

same two-dimensional problems, have given almost the

same results.

4.2. Test 1. Numerical simulation of fracture energy

measurement test

Some numerical tests reproducing the experimental

procedures for fracture energy measures of cement paste

on parallelepiped notched specimens have been per-

formed. The tests simulate the numerical experiments

done by Horvat and Persson [30] and allows to validate

the e.l.m. previously described.

In all the numerical examples the same mesh topo-

logy, made of six-node isoparametric triangular ele-

ments, has been used. Di�erent scaling factors of the

nodal coordinates have been used along X and Y di-

rections to match the real dimension of the specimens.

The concrete characteristics are summarised in Table 2,

the discretisation and the main results obtained from the

analyses are drafted in Figs. 3 and 4. The tolerance limit

t controlling the iteration scheme has been set in 0.5%.

With the modi®ed Newton±Raphson algorithms using

the initial sti�ness matrix, the number of iteration nec-

essary to reach convergence is resulted to be about 50±70

at the end of the analyses, when the structures are ex-

tensively damaged. Similar conditions have been also

obtained in all the following examples.

Comparison between the solutions obtained with the

non-local approach and the enhanced local approach

has been made to assess the e�ectiveness and practical

relevance of the adopted approximate procedure. It has

been observed that the results obtained with the local

solution with constant lc are strongly dependent on the

mesh re®nement and the softening branches of the

curves become shorter as the mesh size decreases.

Moreover, the non-local approach is strongly dependent

on the assumed value of the characteristic length lc.

Here, the best ®t over all the three specimen sizes has

been derived using lc � 12 mm. In general good solu-

tions have been obtained with the e.l.m. which has the

advantage of not requiring the lc value as an input

datum.

4.3. Test 2. Four point bending test of beam failing in

shear

The test considers the reinforced concrete beam of

Fig. 5, which was experimentally loaded up to failure by

Table 2

Mechanical properties of concrete for fracture energy test 1

Elastic modulus Ec � 31 GPa

PoissonÕs ratio m � 0:20

Uniaxial compressive strength fc � 35 MPa

Uniaxial tensile strength ft � 6:0 MPa

Fracture energy Gf � 60 N/m

Fig. 4. Comparison of numerical and experimental load±

displacement curves of the fracture energy measurement test of

concrete.

Fig. 3. Discretisation used in the FE simulation of fracture energy measurement test of concrete: deformed mesh at failure.
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Walraven [7]. The beam has no shear reinforcement. The

experimental observation showed that failure was im-

putable to the shear force, after the developing of di-

agonal cracks which reduces the available area of

concrete in the vicinity of the load points. The failure

load was of about 70 kN; the theoretical ultimate ¯exure

limit strength of the beam would correspond to a load of

about 120 kN.

The problem was numerically simulated with (a) the

three-dimensional numerical codes using a 4� 16� 1

mesh (representing only half of the symmetric beam)

made of three-dimensional 20 node isoparametric ele-

ments (Fig. 5); and (b) with the two-dimensional com-

puter code using a 5-rows for 34-columns mesh made of

eight-noded isoparametric elements, with the plane

stress assumption.

The properties of the concrete and of the reinforcing

steel used in the test are summarised in Table 3.

The resulting numerical load±displacement curve is

plotted in Fig. 6 (continuous line labelled bS � 0:00) and

compared with the experimental one (thickest line). It

appears clearly that the numerical model predicts a

failure load of about 40 kN, which is far lower than the

experimental one of about 70 kN. This result together

with the fact that both the steel and the compressed

concrete are far below their limit strength at the moment

of failure, indicates that the failure of the beam is

without doubt imputable to the shear force. At the load

level of about 35 kN, the damage, which develops due to

the shear stress at the sides of the load application

Table 3

Mechanical properties of concrete and reinforcing steel for the

four point bending test 2

Concrete

Elastic modulus Ec � 28 GPa

PoissonÕs ratio m � 0:20

Uniaxial compressive strength fc � 30 MPa

Uniaxial tensile strength ft � 2:5 MPa

Fracture energy Gf � 10 N/m

Reinforcing steel

Elastic modulus Es � 206 GPa

Yielding stress fy � 440 MPa

Ultimate strength fs � 550 MPa

Hardening parameter H � 20 GPa

Deformation at failure esu � 8%

Fig. 6. Four point bending test: comparison between the numerical and experimental load±de¯ection curves (the de¯ection of the

points of load application is represented).

Fig. 5. Four point bending test: geometry of the beam [7] and

three-dimensional FE mesh.
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points, strongly reduces the shear strength of the beam

and leads to a sharp reduction of the corresponding

sti�ness. The experimental observation was that vertical

cracks formed ®rst in the central zone, where the

bending moment is maximum and constant. On subse-

quent loading the stresses rotated and new inclined

cracks formed in the region between the point load and

the supports. Despite the coarseness of the mesh, the

damage distributions at di�erent load levels plotted in

Fig. 7 con®rm the experimental observation and testi®es

the presence at incipient failure of a diagonal band at

about 45°, in the same position as the experimental shear

cracks. It penetrates under the compression zone, re-

ducing the resistant area, ®nally leading to the failure. In

Fig. 8 the progressive passage from a De Saint Venant

compressive stress distribution, for low load level, to a

M�orsch type resistant mechanism for the ultimate load,

is recognisable.

In the construction practice it is well known that

structural elements without shear reinforcement exhibit

appreciable shear bearing capacity. Such an evidence is

taken into account in all the building codes that, below

an allowable shear stress level, admit the design of

structural members without transversal shear reinforce-

ment.

The inability of the numerical model to predict cor-

rectly the experimental behaviour is due to the fact that

it does not consider the various mechanisms of shear

transfer that have been evidenced and reviewed in Ref.

[31]. Among these mechanisms, which do not require

web reinforcement to be activated, some are implicitly

accounted for by the damage model (arch mechanism

and concrete cantilevers), others are not considered. The

most relevant is the ``interface shear transfer'' or ``fric-

tion'' that is the bearing capacity due to aggregate in-

terlocking developing between two slipping surfaces of

an open crack. This residual capacity is a function of

geometry, of surface conditions and of material char-

acteristics. It is of fundamental importance to explain

the greater shear capacity that concrete structures show

1 2
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Fig. 7. Four point bending test: damage distribution at load levels 21, 30, 34 and 38 kN (analysis without shear retention factor).
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with respect to that calculated if only shear transfer

through the compressed zone is considered.

In the form presented so far, the damage model is

incapable of preserving a shear transfer caused by the

aggregate interlocking. In fact, because of the isotropy

of the mechanical behaviour, the damage induced by the

tension a�ects in the same amount both the compressive

and the shear sti�ness. Eqs. (5) and (22) clearly show

that when damage approaches 1, both the secant and

tangential sti�ness matrices tend to be identically null, in

regard to the axial and the shear stresses. Such a

drawback can be bypassed with the introduction of a

shear retention factor as explained hereafter.

4.4. Developing of a shear retention factor

The incapability of the numerical models to describe

the aggregate interlocking shear resistance mechanism

has been already encountered in the so-called crack

models and it has been often solved with the introduc-

tion of a ``shear retention factor'' able to assure a re-

sidual friction along the crack directions. Of this type is

the model proposed by Cervera et al. [32±34], which

assigns a reduced value for the shear sti�ness in the di-

rection parallel to the crack:

G � �1ÿ bS�G0 �38�
with bS equal 0.00 for the undamaged material or for

instance 0.5 through an open crack so avoiding the

complete loss of shear transfer.

In a similar way a ``shear retention factor'' for the

damage model is proposed in this work. It modi®es the

secant sti�ness matrix of the material in the following

form:

rij � �1ÿ d � �1ÿ dijdkl�bSd�D0
ijklekl � Ds�

ijklekl �39�

Fig. 8. Four point bending test: minimum principal stress at load levels 21, 30, 34 and 38 kN (analysis without shear retention factor).
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which for the normal stresses �i � j and k � l� gives the

normal secant sti�ness matrix rij � �1ÿ d�D0
ijklekl while

for the shear stresses introduces a reduction of the

damage action in order to assure a minimum shear

strength even for the completely damaged material

for d � 1; i 6� j; k 6� 1! rij � bSD0
ijklekl: �40�

From Eq. (1), by analogy, the new expression of the

GibbsÕ elastic free energy becomes

W� � 1
2
�1ÿ d � �1ÿ dijdkl�bSd�eijD0

ijklekl �41�

that di�ers only for the part associated with the shear

deformation:

W� ÿW � 1
2
��1ÿ dijdkl�bSd�eijD0

ijklekl: �42�

Such an expression, due to the properties of the elastic

sti�ness matrix and the Kronecker delta, can be rewrit-

ten as

W� ÿW � 1
2
bSdGeijeij; i 6� j �43�

that is surely positive assuring the positiveness of W�.
From an energetic point of view, the introduction of the

shear retention factor implies a greater storage of free

energy. At least, for beams, where the shear deformation

is negligible respect to the ¯exural one, the magnitude of

the energetic di�erence is small if compared to that of

the original damage model and therefore the global

structure deformation is not appreciably in¯uenced.

Eq. (39) has been implemented in the numerical

model assuming, as ®rst attempt, bS as a constant.

Various numerical test with bS varying from 0.0 (with-

out shear retention factor) to 1.0 (damage ine�ective for

shear stress) have been performed. The sensitivity of

deformability and damage evolution to the changes of

bS has been explored ®nding out that the results are

almost identical for each value of bS greater than 0.2

while lower values are ine�ective (e.g. the continuous

thin lines labelled ``bS � 0'' in Fig. 6). The introduction

of a high value of the shear retention factor introduces a

new trouble: the failure mechanism changes from a shear

type to a ¯exural type and the strength capacity of the

structure is overestimated (see the dotted lines in Fig. 6).

From these observations it results that the assump-

tion of a constant shear retention factor is not realistic

and a more complex formulation needs to be explored.

The new formulation for bS ought to take into account

that the friction due to the roughness of the crack sur-

face must decrease as the opening of crack increases,

being the friction coe�cient strictly linked to the value

of shear deformation. On this basis, the following evo-

lution law for the shear retention factor has been pro-

posed:

bS;ij � 1ÿ eij

eref

���� ����P 0; i 6� j; �44�

where eij denotes the shear deformation and eref is a

reference value of the deformation which has to be de-

termined through numerical ®tting of the experimental

results. The expression (44) of the s.r.f. obviously is only

one of all those that could be used, but as will be shown

hereafter, such a choice has given appreciable results.

In the four point bending tests, using a value for

eref � 0:8&, the curve with circle symbols in Fig. 6 has

been obtained. It shows a good agreement with the ex-

perimental one in terms of the value of the collapse load,

even if the correspondent displacement is slightly dif-

ferent. However the magnitude of such a di�erence is

comparable with the scattering usually recorded during

experimental tests.

A numerical analysis employing the crack model

proposed by Cervera et al. [32±34] was also done for

comparison. The same material parameters were

adopted together with the constant bS � 0:5. The load±

displacements curve from this analysis is plotted in Fig.

6 (continuous line labelled with ``fracture model

bS � 0:5'') together with those obtained with the damage

model. Even for the crack model the introduction of a

constant s.r.f. transforms the shear failure in a ¯exural

one, while the shear failure disappears. Such a consid-

eration allows us to suppose that expression (44) could

be conveniently used even in a crack-based constitutive

model.

Theoretically the value of eref should depend on the

components of concrete and in particular on the di-

mension of the aggregate. Actually, in all the proposed

numerical tests, which consider various concrete classes

and also high strength concrete (whose results will be

illustrated in the following section), the value of

eref � 0:8& has always been used. This demonstrated

that for the proposed damage model this represents a

mean value that reproduces well the behaviour of all

the analysed concrete structures. Necessarily eref must

change if another di�erent damage model, having a

di�erent shape of the damage surface, is adopted.

4.5. Test 3. Fitting of experimental results from normal

and high strength concrete beam

A series of simply supported beams, made of normal

and high strength concrete, reinforced with only ¯exural

bars, have been cast and loaded up to failure at the

Department of Construction and Transportation of the

University of Padova [8]. All the beams have the same

section b � 14� h � 25 cm, the load was applied in

the centre of the beam, or in two points at the third of

the length, in order to have three di�erent values of the

moment over shear ratio a=d. The complete description

of the material characteristics and the specimen details

are given in Tables 4 and 5, respectively. Some of the

tested beams have failed in shear, others under bending.

The numerical simulation of this collection of tests
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represents a true benchmark for the validation of the

damage model with di�erent failure mechanisms.

For these analyses a mesh composed of 38 columns

and four rows of eight-noded isoparametric elements

was employed. The ®nite element discretisation, the

typical deformation, the damage distribution and the

pattern of the minimum principal stress for the dis-

placement level of 1.4 cm (just after the point of peak

load) of the beam C60_A12_a=d4 are in Fig. 9. It

demonstrates the developing of a damaged zone up to

the point of load application and in correspondence the

decrease of stress (that is of the bearing capacity) in the

compression zone. The numerical results are compared

with the experimental curves in Fig. 10. The displace-

ments are normalised with respect to the beamÕs length

in order to be joined into a unique graph. The model is

able to reproduce all the principal experimental evi-

dences, in particular it discerns between shear and ¯ex-

ural failure. Also, the magnitudes of the numerical

failure load and beam sti�ness are ®tted within a scat-

tering that is comparable with the uncertainties of the

experiments.

In the laboratory procedures the beams with the

lower value of moment over shear ratio a=d were in

reality pieces cut from the 300 cm length beams after

experimenting on them, therefore they were already

cracked and damaged before the starting of the load

process. The images of concrete damage and steel plastic

deformation have been taken from the numerical ana-

lyses with a=d � 4:34 and used as initial conditions in

the following calculations of the beams with a=d � 3.

However, for these beams the di�erences in deformation

between numerical and experimental results are gener-

ally more evident than in the other tests while the model

still correctly predicts the ultimate load. The loading±

unloading cycles that have been sometimes applied to

beams in the laboratory were not considered in the nu-

merical analyses.

It has to be pointed out again that in all the tests the

value eref � 0:8& has been assumed.

4.6. Test 4. The construction of the ``shear valley''

As a last validation test of the numerical model, the

construction of the ``shear valley'' for a beam without

web reinforcement has been developed.

Table 4

Mechanical properties of concrete and reinforcing steel used in

test 3

Class

30 MPa 60 MPa 100 MPa

Concrete

Elastic modulus, Ec 34.3 GPa 37.4 GPa 46.9 GPa

PoissonÕs ratio, m 0.20 0.20 0.20

Uniaxial compressive

strength, fc

22 MPa 43 MPa 98 MPa

Uniaxial tensile

strength, ft

2.7 MPa 3.9 MPa 5.6 MPa

Fracture energy, Gf 60 N/m 80 N/m 80 N/m

Reinforcing steel

Elastic modulus, Es 206 GPa

Yielding stress, fy 540 MPa

Ultimate strength, fs 640 MPa

Hardening parameter, H 0.5 GPa

Deformation at failure, esu 20%

Table 5

Experimental details of the beams of test 3

Beam identi®cation Concrete class

(MPa)

Concrete area

(cm2)

Reinforcing

steel

Reinforcing

ratio (%)

a=d Failure mode

C30_/8_a=d4 30 3500 3/8 0.043 4.34 Flexural

C30_/8_a=d3 30 3500 3/8 0.043 3.00 Shear

C30_/12_a=d3 30 3500 3/12 0.097 3.00 Shear

C60_/12_a=d4 60 3500 3/12 0.097 4.34 Shear

C60_/12_a=d6 60 3500 3/12 0.097 6.51 Flexural

C100_/12_a=d4 100 3500 3/12 0.097 4.34 Flexural

C100_/12_a=d6 100 3500 3/12 0.097 6.51 Flexural

C100_/16_a=d6 100 3500 3/16 0.172 6.51 Shear
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The shear valley, discussed and experimentally ob-

tained by Kani [9], individuates for a beam the range of

a=d (the shear span to depth ratio, which can also be

expressed in terms of the moment and the shear as

a=d � �V � a�=�V � d� � M=�V � d� [35]), for which

failure is caused by shear and not by bending, i.e. where

the ¯exural capacity of the beam is not attained. For

a rectangular beam, without shear reinforcement and

longitudinal reinforcement equal to 2.8%, subjected to a

four point bending test, the shear valley (Fig. 11) is lo-

cated between a=d � 1 and a=d � 7. For greater values

of a=d, bending becomes more relevant than shear and

the failure happens due to yielding of the reinforce-

ment or crushing of the compressed concrete. For lower

Fig. 9. Test 3. FE mesh used in the analysis of the beam C60_A12_a=d4. Beam deformation, damage pattern and minimum principal

stress distribution at incipient failure.

Fig. 10. Test 3. Comparison between the numerical and experimental load±displacement curves.
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values of a=d the loads are directly transmitted to the

support through a compressed strut, without apprecia-

ble forces on the beam. The depth of the valley increases

with the amount of ¯exural reinforcement. To avoid

brittle shear type failures, shear reinforcement must be

designed to cover the shear valley.

On a beam with dimensions 14� 25� 300 cm3, made

of concrete of class C100 (Table 4), several analyses were

performed, varying both the position of the loads from

the centre to the support (i.e. varying the value of a=d)

and the amount of longitudinal reinforcement �lS �
AS=�b=d� � 1.1, 1.8, 2.5 and 3.0%�. The results of these

studies are summarised in Fig. 12, where the load±dis-

placement curves for the beam with lS � 1:8% are rep-

resented for di�erent positions of the points of load

application, and Fig. 13 which illustrates the obtained

shear valley.

The closure of the shear valley for low values of a=d
was impossible to obtain since for the numerical loading

and boundary conditions, where in reality displacements

were imposed to the loaded point and the supports were

nodal constraints, the splitting failure of concrete over

the supports was always reached before the shear failure.

Nevertheless, the numerical results for a=d greater than

2 are in good agreement with those obtained by Kani [9].

5. Conclusion

A local isotropic scalar model able to simulate the

mechanical behaviour of quasi-brittle materials, such as

concrete, has been described. The damage is directly

related to the e�ective stress of the material through a

suitable exponential equation in which only one material

parameter, that is the fracture energy, needs to be given

together with the classical material mechanical charac-

teristics. The evolution law of damage is described with

an associated plasticity type law.

This model is suitable for the study of quasi-static

problems where monotonically increasing loads are ap-

plied. Due to its simplicity, it is of clear and immediate

applicability and can be easily implemented in existing

®nite element codes.

The problems of localisation and mesh dependency,

as far as the energy aspect is concerned, typical for the

analysis involving strain-softening materials, have been

overcome with the use of the enhanced local method. In

this method a characteristic internal length, linked to the

mesh dimension, is employed instead of the character-

istic fracture length. This assumption, whose e�ective-

ness have been proved both analytically (Table 1) and

numerically (test 1), joins the numerical advantages of

the local model with the necessity of adopting suitable

procedures to overcome the localisation problems.

In this work, the model was further enriched with the

introduction of a shear retention factor that accounts for

the well-known experimental observation that a not

negligible quota of shear stress is transmitted through an

open crack due to the e�ect of friction between the two

surfaces of the crack. Several calculations were per-

formed to ®nd out a suitable expression for the s.r.f.

variable with the deformation and to assess the in¯uence

of this factor on the global and local results obtained

with the numerical model. Despite of the simplicity of

this improvement, which does not require additional

calculation, no negative e�ects have been found, while a

good agreement with experimental data was obtained.

The introduction of the shear retention factor has made

it possible to reproduce numerically the experimental

Fig. 11. Experimentally obtained shear valley for a rectangular

beam without shear reinforcement [9].

Fig. 12. Test 4. Load±displacement curves for the beam with

lS � 2:8% for di�erent values of a=d.

752 R. Scotta et al. / Computers and Structures 79 (2001) 737±755



evidences of beams failing in shear that have been the

objective of the numerical tests 2±4.

In conjunction with a modi®ed Newton±Rapshon

solution scheme, where the secant or the initial sti�ness

matrices have been used, the model demonstrated to be

stable and accurate. The simplicity and the low re-

quirement of computing time of the model make it

suitable for the practical solution of large scale problem.

The new features described in this work, the shear

retention factor and the enhanced local method, have in

future to be extended to more sophisticated damage

models for example able to comply with the rate de-

pendent e�ects and the crack closure e�ect, which im-

plies sti�ness recovery under alternate loads.

The e�ect of the bond slip between concrete and re-

inforcement on the distribution and width of cracks have

been recognized in Refs. [25,36], with reference to crack

models. Further researches are needed to investigate such

e�ect within the framework of a damage approach. In

fact, the damage which grows in the vicinity of a crack

naturally induces a weakness of the concrete intimately

connected with the steel, and therefore the bond slip and

the tension sti�ening e�ect as well, are in some way im-

plicitly accounted for with the damage model.

Fig. 13. Test 4. Numerically obtained shear valley for a rectangular beam without shear reinforcement.
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