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Abstract

This paper studies the phenomenon of structural size effect and
strain localization in J2 plasticity. Size effect is here understood as
the change in the response of a given structure when the spatial di-
mensions are scaled up or down while the geometry and other rele-
vant properties of the structure are preserved. The work exploits the
advantages of the mixed displacement-pressure formulation in incom-
pressible or quasi incomplessible situations. Elasto-J2-plastic consti-
tutive behaviour with regularized softening is considered. Stability
issues are discussed to ensure existance and uniqueness of the solution
of the corresponding discrete finite element formulation. Numerical
examples show that the formulation derived is able to solve a wide
range of structural scales, including real life engineering applications.
The results obtained do not suffer from spurious mesh dependence.
Furthermore, the formulation includes the classical theories of perfect
plasticity and linear fracture mechanics as limit cases.
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1 Introduction

The question of how the load capacity of geometrically similar structures
varies when scaling up or down their relative sizes has been a question of
interest in structural mechanics from the very beginning of the discipline,
and over the centuries.

Five hundred years ago, after conducting experiments on the strength of
ropes of different lengths, Leonardo da Vinci concluded that the strength of
the rope is inversely proportional to its length.

More than a hundred years later, in the XVII century, Galileo [1] rejected
Leonardo’s conclusions and, in doing so, he introduced the concept of stress.
Galileo established that geometrically similar structures of increasing sizes
L, subjected to increasing loads P , fail at the same nominal stress, defined
for 3D scaling as

σN = P/L
2 (1)

or σN = P/bL for 2D scaling, b being the thickness. The work of Galileo
is regarded as the first deterministic scaling theory of solid mechanics. Any
departure from Galileo’s law can be described as size effect on structural
strength.

Towards the end of the same XVII century, Mariotte [2] repeated the work
of Leonardo and established the basis for the statistical theory of size effect
by observing that long ropes support the same load as short ones, unless
they include a flaw in which they will break sooner than the shorter. In this
work, statistical effects are not considered, and structural failure is assumed
to be a deterministic phenomenon.

During the XVIII century, as continuum mechanics and the theory of
elasticity developed, the nominal stress was identified with the maximum
stress in the structure, and it became obvious that Galileo’s law failed when
stress singularities existed.

In 1921, A. A. Griffith [3], after performing experiments on the brittle
fracture of glass sheets, introduced the first fracture mechanics theory, a
basis for what we now know as linear elastic fracture mechanics (LEFM).
For Griffith, a crack becomes unstable when the elastic energy stored by
the material around the tip of the existing crack is greater than the energy
necessary for extending the crack.

This energy criterion is essentially different from Galileo’s stress criterion.
It has been experimentally verified and theoretically justified that the failure
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Figure 1: Size effect on the nominal strength at failure

Figure 2: Size effect on the non linear structural response
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nominal stress for failures with large crack or notches follows the law [4]:

σN = cσR (1 + L/LR)
−1/2 (2)

where σR is the nominal stress corresponding to a certain scale LR (c is a
constant).

Therefore, for almost a century there have been two very different ap-
proaches to assess structural failure. It is clear from their basic assumptions
that the stress criterion is valid for very ductile failures, while the energy
criterion is valid for very brittle behaviour. With regard to the scaling effect,
experimental evidence shows that, for a given structural problem, ductile
behaviour corresponds to the small scale limit, while brittle fracture occurs
in large scale limit. More precisely, ductile behaviour is observed when the
energy dissipated by inelastic behaviour in the formation of the failure mech-
anism is much larger than the total stored elastic energy; contrariwise, brittle
behaviour occurs when the ratio between the dissipated inelastic and avail-
able elastic energies is close to one.

But, even if these considerations clarify the limits of applicability of both
failure criteria, it is also true that real life engineering applications rarely
correspond to one or the other of the limit situations. The small scale limit
is suitable for small laboratory specimens, and the large scale limit is appro-
priate for structures of very large dimensions or even for scales larger than
man-made structures. Thus, it is of practical interest to develop analytical
and numerical tools suitable to bridge the gap between perfectly ductile and
perfectly brittle behaviour. This is called quasi-brittle failure. Figure 1 shows
the observed scale effect law for quasi-brittle behaviour, bridging in-between
the two described limits. Note that the scales used in both axes of Figure 1
are logarithmic.

In quasi-brittle fracture, size effect does not only affect the load capac-
ity (peak load), it also reflects on the post-peak behaviour (ductility) of the
structure. Figure 2 shows curves of nominal stress vs. relative deflection
for geometrically similar structures of different scale, properly normalized to
make them comparable. Apart from the effect on the peak load, it is also ev-
ident that for small structures the post-peak curves descend slowly, for larger
structures the descend is steeper, and for sufficiently large scale structures
the response exhibits a snap-back, that is, the slope in the post-peak regime
changes from negative to positive and becomes negative again. The areas
under the load-deflection curves in Figure 2 characterize the energy absorp-
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tion during the loading process. The capability of a quasibrittle structure to
absorb energy decreases, in relative terms, as the structure size increases.

It is clear that tracking softening structural responses cannot be done un-
der load control, experimentally or numerically. Therefore, the corresponding
experiments or analyses are done under displacement control, a method ca-
pable of overcoming limit points (where the slope is zero). Unfortunately,
displacement control fails near turning points (where the slope becomes in-
finite) and a combination of load and displacement control is necessary. Nu-
merically this can be achieved by procedures such as the arc-length method.

In this work locally defined softening plasticity models are used to bridge
the afore mentioned gap, covering the classical theories as limit cases. As
model problem, J2-plasticity is selected as inelastic constitutive model, which
corresponds to Mode II fracture in FM terminology. In this framework,
structural failure is connected with the problem of strain localization and
formation of shear bands.

Softening materials subjected to monotonic straining exhibit strain local-
ization. In the so-called J2 materials, shear (or slip) strains concentrate. This
phenomenon leads to the formation of shear bands inside the solid where the
shear deformation concentrates while the material outside the band unloads.
Upon continuing straining, the width of the shear band diminishes and, un-
less there is a physical limitation, it tends to zero. In J2 materials, these are
called slip lines. It is generally accepted that the amount of energy released
during the formation of a fracture unit area is a material property, called the
fracture energy.

In the last two decades, many different finite element strategies have been
devised to model strain localization and the references in the bibliography
are innumerable. The possibilities are several, and both the weak and the
strong discontinuity approaches have been followed. In the first, the objec-
tive is to capture the localization band as precisely as possible, with standard
elements with continuous displacement interpolation. In the second, the dis-
placement field is enhanced with discontinuous functions, defined either at
element or nodal level, so that the limit discontinuous behavior can be cap-
tured. Regardless of the technical differences between the different discrete
method proposed, as it is always possible to interpret a weak discontinuity
as a regularization of a strong one, with the discontinuity smeared across
the maximum possible resolution of the mesh, that is, one element, both
approaches are essentially identical if the FE mesh is fine enough.

The main difficulty why most attempts to model weak discontinuities in
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softening materials with standard, local, approaches fail is that the solutions
obtained are spuriously determined by the fineness and orientation of the spa-
tial discretization used. To remedy this, micropolar, gradient-enhanced and
non-local models have been proposed in the last 25 years. In the microp-
olar strategy the standard non-polar description of Continuum Mechanics
is substituted by other nonstandard theory, the Cosserat’s continuum, see,
for instance, [5] and [6]. In the gradient-enhanced strategy the nonlinear
constitutive laws, for plasticity or damage, are made dependent not only on
the local inelastic strain, but also on its second gradient, which is computed
according to some additional relation which couples it to the local strain [7],
[8], [9], [10], [11]. In the non-local strategy the standard format of the con-
stitutive relationships (stress at a point depends on the strain at that point)
is substituted by a non-local format (stress at a point depends on some av-
erage measure of the strain in the neighborhood of that point), see [7], [12],
[13], [14], [15], among others. Even if these strategies have proved effective
to some extend and a lot of research effort has been devoted to non-local
models in the last years, these non-standard approaches pose new theoretical
and computational difficulties, not fully mastered at the present moment.

Alternatively, significant research effort has been made to model numer-
ically strong discontinuities directly. On one hand, the strong discontinuity
approach (SDA, [16], [17], [18]) and, on the other, the extended finite element
method (X-FEM, [19], [20], [21], [22]) allow to model strong discontinuities
that progress through the FE mesh by enriching the nodal displacement de-
grees of freedom with additional ones that represent the displacement jumps.
Also these computational procedures pose new computational challenges, as
their application invariably needs the use of tracking algorithms in order to
properly follow the progress of the strong discontinuity through the spatial
mesh ([23], [24], [25]). It is not easy for these tracking algorithms to keep
up with the development of multiple, interconnected or branching disconti-
nuities.

Most of the studies about localization with J2 plasticity have been car-
ried out using the irreducible formulation, with the displacement field as
the only primary variable. Unfortunately, J2 plastic flow is isochoric, and
the irreducible formulation is not well suited to cope with the incompress-
ibility constraint. Even in compressible materials, for strain localization to
take place, the plastic regime has to be well developed and, then, the (incom-
pressible) plastic part of the deformation is dominant over the (compressible)
elastic part. Displacement-based finite element methods may lead to inaccu-

6



rate numerical results in presence of constraints, such as in incompressibility
or nearly incompressible situations. The unsuitability of the irreductible for-
mulation is more evident if low order finite elements are used and, very espe-
cially, for simplicial elements (triangles and tetrahedra). The need to solve
this difficulty is still today the drive for active research, see, for instance,
reference [26].

Contrariwise, the mixed displacement/pressure (u/p) formulation is an
appropriate framework to tackle (quasi)-incompressible problems [27]. In
fact, very promising results have been obtained in localization problems with
J2 plasticity using this formulation together with remeshing techniques in [28]
and [29] and in coupled dynamic problems in [30] and [31]. Nevertheless, it is
very difficult to construct stable low order elements and, again, particularly,
low order simplicial elements. This is another very attractive area of on-
going research, see references [32], [33], [34], [35], [36], [37], [38], [39], [40],
[41], among others.

In previous works, the authors have applied stabilization methods ([42],
[43], [44], [45], [46] and [47]) to the solution of incompressible elasto-plastic
and damage problems with mixed displacement-pressure linear/linear sim-
plicial elements. These stabilization procedures lead to a discrete problem
which is fully stable, free of pressure oscillations and volumetric locking and,
thus, results obtained are practically mesh independent. This translates in
the achievement of two important goals: (a) the position and orientation
of the localization band is independent of the directional bias of the finite
element mesh and (b) the global post-peak load-deflection curves are inde-
pendent of the size of the elements in the localization band.

The outline of the paper is as follows. In the next section, a non-
dimensional format for the problem of quasi-brittle fracture in elasto-plastic
problems with softening is identified. In Section 3, the mixed formulation
for J2 plasticity is outlined. For softening plasticity, the necessary regular-
ization of the softening modulus according to the size of the elements inside
the localization band is discussed. Later, the corresponding boundary value
problem is formulated. Strong and weak FE forms are presented. Both
Q1P0 quadrilateral (bilinear displacement and constant pressure interpola-
tions) and P1P1 triangular (equal linear displacement and linear pressure
interpolations) elements are used. Finally, two numerical benchmarks are
presented to assess the present formulation and to demonstrate its ability
to appropriately model structural size effect in quasi-brittle fracture. In the
present work we apply this methodology to the study of structural size-effect.
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2 Dimensional analysis in quasi-brittle frac-

ture

Size effect is one particular aspect of the broader field of dimensional analy-
sis. Dimensional analysis is a conceptual tool often applied in physics and
engineering to understand situations involving a mix of different kinds of
physical quantities. It is routinely used by scientists and engineers to check
the plausibility of derived equations and computations. It is also used to form
reasonable hypotheses about complex situations that can be tested by experi-
ments or by more developed theories of the phenomena. Dimensional analysis
has played a major role in the last century, and it has been profusely used
in engineering to interpret the results of reduced scale experimental models.

The keystone of dimensional analysis is the Buckingham Π theorem [48].
This theorem describes how every physically meaningful equation involving
n variables can be equivalently rewritten as an equation of n−m dimension-
less parameters, where m is the number of fundamental dimensions used.
Furthermore, and perhaps most importantly, it provides a method for com-
puting these dimensionless parameters from the given variables. From a fun-
damental point of view, dimensional analysis and the Π theorem reflect the
requirement that the laws of physics are independent of the units employed
to measure the physical variables.

Let us apply this fundamental theorem to the problem of quasi-brittle
failure in elasto-plastic materials with softening. Let us start with the gov-
erning equations for the elastic problem, stated as: given the elastic tensor C
and prescribed body forces f , find the displacement, u, strain, ε and stress,
σ, fields, such that:

∇ · σ + f = 0 (3a)

σ = C : ε (3b)

ε = ∇s
u (3c)

These equations, subjected to appropriate Dirichlet and Neumann boundary
conditions, must be satisfied in Ω, the open and bounded domain of Rndim

occupied by the solid in a space of ndim dimensions.
In this format, the number of variables is n = 3, and we will consider

force and length as fundamental dimensions, so that m = 2. According to
the Π theorem, the problem may be rewritten as an equation of n−m = 1
dimensionless parameter. Selecting L as a representative length scale of the
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problem, we define non-dimensional coordinates, x̂ = x/L, and displace-

ments, û = u/L, so that ε = ∇̂
s
û. Also, selecting E as an appropriate

elastic modulus, we define non-dimensional stresses, σ̂ = σ /E = Ĉ :∇s
û,

where Ĉ = Ĉ (ν) is a non-dimensional tensor which depends only on Pois-
son’s ratio. Finally, defining non-dimensional forces, f̂ = fL/E , Eq. (3a)
may be rewritten in the non-dimensional form:

∇̂ · σ̂ + f̂ = 0 (4)

Therefore, Poisson’s ratio plays the role of the sought non-dimensional para-
meter

ΠE = ν (5)

As ΠE does not depend on L, the elastic problem scales with the forces in
the same way that f̂ . Strains and stresses do not depend on the scale of the
problem.

To include plastic behaviour, we consider the field of plastic strains, εp,

and redefine the non-dimensional stresses as σ̂ = σ/E = Ĉ :
(
∇̂
s
û− εp

)
.

Details on the plastic model may be omitted, but it can be formulated stating
a yield criterion in the form:

Φ (σ,r) = ‖σ‖ − r = 0 (6)

where ‖·‖ denotes an appropriate stress norm and r is a stress-like internal
variable that controls hardening or softening behaviour and which depends
on an appropriate norm of the plastic strains r = r (‖εp‖). Defining a second
yielding dimensionless parameter

ΠY =
f

E
(7)

where f is a relevant strength measure. Normalizing r̂ = r/f , we can write

Φ̂ (σ̂, r̂) = ‖σ̂‖ −ΠY r̂ = 0 (8)

For perfect plasticity, r̂ = 1, and, as ΠY does not depend on L, the
perfect plasticity problem scales in the same way as the elastic problem. For
hardening plasticity, r̂ = r̂ (‖εp‖), does not depend on L either, and scaling
properties remain unchanged.

Let us consider now the problem of quasi-brittle fracture in softening plas-
ticity. In this case, when yielding occurs r̂ = 1 and, upon progressive loading,
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r̂ diminishes until, eventually, it vanishes. During the process, dissipation oc-
curs in the form of plastic work, whose rate is defined as Ẇp = σ : ε̇p, so
that, at a given time t, plastic work is Wp

t (‖ε
p‖t) =

∫ t
0
Ẇpdt. Let us call

Wp
∞
=
∫
∞

0
Ẇpdt, to the total amount of plastic work, attained when r̂ → 0.

We can redefine r̂ as r̂ = 1−Wp
t /W

p
∞
.

We may now introduce a third dimensionless parameter ΠB

ΠB =
Ueo
Wp
∞

(9)

where Ueo = (1/2)f 2 /E is an appropriate part of the elastic energy stored
per unit volume when yielding occurs. Now, the plastic criterion (8) may be
written as

Φ̂
(
σ̂,Ŵp

t

)
= ‖σ̂‖ − ΠY

(
1−ΠB Ŵ

p
t

)
= 0 (10)

where r̂ = r̂ (ΠY ,ΠB, Ŵ
p
t ) depends on ΠY , ΠB and Ŵp

t =W
p
t /U

e
o .

But softening leads to strain localization and fracture. Let us assume that
there is a material property G, the fracture energy, that defines the energy
dissipated per unit area when a fracture surface forms, and that the elastic
energy of the structure is dissipated only through plastic work. Then, it is

ΠB =
Ueo
G /L

=
L

L
(11)

and ΠB becomes a size-dependent measure of the brittleness of the problem.
For ΠB = 0, behaviour is ductile like in perfect and hardening plasticity; for
ΠB �= 0, behaviour is brittle and energy dissipation controls the problem.

The length L =2EG / f 2 depends only on the material properties; for this
reason, it is often called the material characteristic length. From definition
(11), it is obvious that the brittleness of the problem depends on the ratio
between the dimensions of the problem and this material characteristic length
and, therefore, the problem becomes more brittle as it is scaled up. It is also
clear that the effect of scaling up a given problem is exactly equivalent to
that of scaling down the fracture energy in the same proportion.

Finally, consider that localization takes place in a band of width h, so
that

ΠB =
L

L
=
h

L

L

h
= ΠhB

L

h
(12)

10



The ratio ΠhB = h/L defines the brittleness inside the band, while the
ratio L/h defines the resolution (sharpness of the localization band related
to the problem size.

3 Mixed formulation for J2 plasticity

3.1 J2 plasticity constitutive model

The stress tensor σ may then expressed as:

σ = p1 + s (13)

where p = 1

3
tr σ and s =dev σ are the volumetric and the deviatoric parts

of the stress tensor, respectively. Correspondingly, the strain tensor ε is
expressed as:

ε(u) =
1

3
εv1 + e (14)

where εv = tr ε and e =dev ε are the volumetric and the deviatoric parts of
the strain tensor, respectively. On the other hand, the constitutive equations
are expressed as:

p = Kεev (15a)

s = 2G dev εe = 2Gee (15b)

where εev and ee are the elastic volumetric and the deviatoric strains, respec-
tively; K is the bulk modulus and G is the shear modulus.

On the other hand, the elastic deviatoric strain tensor ee is defined as:

e
e = e− ep (16)

where ep is the plastic strain tensor, which in J2 plasticity is purely deviatoric.
Box 1 summarizes the elasto-plastic model used in this work, accounting

for isotropic softening. As usual, the equivalent plastic strain is defined as

ξ =
(√

2/3
)
‖ep‖ , and the equivalent von Mises stress is s =

(√
3/2
)
‖s‖ .

With these definitions, the rate of plastic work is Ẇp = s : ėp = s ξ̇.
Notice in Box 1 that the isotropic softening variable r = r(ξ) defines the

current size of the yield surface, as it controls the value of the radius of the
von Mises cylinder. Initially, when the equivalent plastic strain ξ = 0, r is
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equal to the initial flow stress σo. Along the softening regime, r diminishes
and, for large value of the equivalent plastic strain, it vanishes.

The plastic multiplier γ̇ is determined from the Kuhn-Tucker and consis-
tency conditions:

γ̇ ≥ 0 Φ (s, r) ≤ 0 γ̇Φ (s , r) = 0 (17a)

if Φ (s, r) = 0 then γ̇ Φ̇ (s, r) = 0 (17b)

Details on how to efficiently integrate the J2-plastic constitutive model can
be found in reference [49].

Box-1: J2-plastic constitutive model

1) Von Mises yield function, Φ:

Φ (s, r) =
√

3

2
‖s‖ − r = s− r

2) Isotropic softening variable, r:

r =

{
σo

(
1−H

(
ξ
ξo

))
0 ≤ ξ ≤ ξo

H

0 ξo
H
≤ ξ ≤ ∞

linear soft.

r = σo exp
(
−2H

(
ξ
ξ
o

))
0 ≤ ξ ≤ ∞ exp. soft.

where ξ is the equivalent plastic strain, σo is the flow stress,
ξo = σo /2G and H > 0 is the softening coefficient.

3) Plastic evolution laws:

.
e
p
= γ̇ n

.

ξ = γ̇
√

2

3

where γ̇ is the plastic multiplier and

n =
∂Φ

∂s
=
s

‖s‖
is the normal to the yield surface.
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Also, the total deviatoric plastic work along the softening process is

Wp
∞
=

∫ t=∞

t=0

Ẇpdt =

∫
∞

0

r (ξ) dξ =
σ2o

2 (2G)

1

H
(18)

both for linear or exponential softening. It has to be remarked that this
value is equal to the area below the r − ξ curve, that defines the softening
response. Note that the isotropic softening variable can be expressed as
r = σo (1−W

p
t /W

p
∞
) .

In order to apply the dimensional analysis of Section 2 to the present
plasticity model, consider that E = 2G, f = σo and the elastic deviatoric
energy at yielding is U eo = (1/2)σ

2
o /2G.

Introducing the normalized variables ŝ = s/σo, r̂ = r/σo, ξ̂ = ξ /ξo and
defining r̂ = 1−Wp

t /W
p
∞
, the model can be expressed as

Φ̂
(
σ̂,Ŵp

t

)
= ŝ− ΠY

(
1−ΠB Ŵ

p
t

)
= 0 (19)

where ΠB = Ueo /W
p
∞

is the local brittleness number and the normalized
plastic work, Ŵp

t = Wp
t /U

e
o , is expressed as a function of the normalized

equivalent plastic strain:

Ŵp
t

(
ξ̂
)
=

{
ξ̂ 0 ≤ ξ̂ ≤ 1

ΠB

0 1

ΠB
≤ ξ̂ ≤ ∞

linear soft. (20a)

Ŵp
t

(
ξ̂
)
= 1− exp

(
−2ΠB ξ̂

)
0 ≤ ξ̂ ≤ ∞ exp. soft. (20b)

3.2 FE softening regularization

If softening is considered, strain localization occurs. In finite elements so-
lutions, strains tend to localize in a band that is only one element across,
independently of the element size. Consequently, plastic dissipation localizes
in a band of width h = he, where he is the element characteristic length of
the elements in the band.

For a locally defined model such as the plastic model of the previous
Section, if the softening parameter H = ΠB and, consequently, the plastic
workWp

∞
are considered as material properties, FE results necessarily exhibit

lack of objectivity, because upon mesh refinement, as element size tends to
zero, no energy is dissipated in the failure process. Clearly, this is physically
unacceptable.
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This can be remedied by modifying the softening law in such a way that
the energy dissipated over a completely degraded finite element be equal to
a given value, which depends on the fracture energy of the material G and on
the element characteristic length he ([50], [51], [52]) that defines the width of
the localization band. In this work, the size of the element will be computed
as h2e = Ae for quadrilateral elements.

The procedure, sketched in Figure 3, is as follows. The total energy
dissipated during the fracture process per unit volume D is scaled for each
element so that the equation

Dh = G =⇒ D =
G

h
(21)

holds. For a plastic model, D = Wp
∞
, and, using Eqs. (18) and (20a), we

have:

H = ΠhB =
Ueo
G /h

=
h

L
(22)

where the length L = (G /Ueo ) is the material characteristic length, which
depends only on the material properties. Eq. (22) makes the non-dimensional
softening modulus H = ΠhB dependent on the ratio between the element and
the material characteristic lengths.

Because of Eq. (21), the necessary condition Wp
∞
≥ U eo requires that

H = ΠhB ≤ 1. This condition sets a maximum size for the elements that can
be used in the analysis, h ≤ L.

Figure 3: Softening regularization procedure based on elemental energy dis-
sipation
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ΠhB is the element (local) brittleness parameter. It can be related to the
global brittleness number of the problem using Eq.. (12):

ΠB = Π
h
B

L

h
(23)

that clearly reflects the phenomenon of size effect at structural level and its
relation with the FE regularization.

4 Boundary value problem

Alternatively to Eq. (3a), the strong form of the continuum mechanical
problem can be stated, in mixed form, as: for given prescribed body forces
f , find the displacement field u and the pressure field p, such that:

∇ · s+∇p+ f = 0 in Ω (24a)

∇ · u−
1

K
p = 0 in Ω (24b)

where Ω is the domain occupied by the elasto-plastic solid. Eqs. (24a)-(24b)
are subjected to appropriate Dirichlet and Neumann boundary conditions.

The associated discrete finite element weak form of the problem is [58]:

(∇s
vh, sh) + (∇ · vh, ph)− (vh, f)−

(
vh,t

)
∂Ωt

= 0 ∀vh (25a)

(qh,∇ · uh)−

(
qh,

1

K
ph

)
= 0 ∀qh (25b)

where uh , vh ∈ Vh and ph , qh ∈ Qh are the discrete displacement and
pressure fields and their variations, defined onto the finite element spaces Vh
and Qh, respectively.

In incompressible elasticity, K tends to infinity and, thus, the volumetric
part of the elastic deformation vanishes. Additionally, in incompressible (J2)
plasticity, the volumetric part of plastic deformation is also zero, so that
εv = ∇ · u =0. Therefore, the second terms in Eqs. (24b) and (25b) vanish.

A major difficulty when using the standard Galerkin discrete form (25a)-
(25b) is that the BB-condition [53] for stability poses severe restrictions on
the choice of the spaces Vh and Qh. For instance, standard mixed elements
with continuous equal order linear/linear interpolation for both fields are
not stable, and the lack of stability shows as uncontrollable oscillations in
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the pressure field that usually, and very particularly in non linear problems,
pollute the solution entirely.

Fortunately, the strictness of the BB-condition can be circumvented by
modifying the discrete variational form appropriately, in order to attain the
necessary global stability with the desired choice of interpolation spaces ([54],
[55]). A particularly appealing consistent stabilization method is the orthog-
onal sub-grid scale method (OSGS), originally developed for computational
incompressible fluid mechanics problems ([56], [57]).

The OSGS stabilization method has been applied to the problem of in-
compressible elasto-plasticity, in small and finite strains, and continuum dam-
age mechanics by the authors in previous works and the interested reader is
referred to them for a detailed explanation, see [42], [43], [44], [45], [46] and
[47]. These developments show that it is possible to stabilize in a consistent
way the behaviour of mixed elements with continuous equal order interpo-
lation. In particular, triangular 3-node P1P1 elements, with linear/linear
interpolations, can be used, displaying satisfactory stable behaviour.

An alternative to the use of stabilized mixed elements with continuous
pressure interpolation is the use of pressure interpolation which is discontin-
uous between elements. In this case, Eq. (25b) may be solved at element
level and the resulting pressure field is then substituted into Eq. (25a). This
results in a global problem with only displacements as dofs. The implemen-
tation of such a procedure is very simple in a standard FE code.

Probably, the most popular of the mixed elements with discontinuous
pressure is the Q1P0 quadrilateral, with bilinear interpolation for displace-
ments and constant pressure. Despite the fact that this element violates the
BB-condition, optimal rate of convergence can be proven under suitable as-
sumptions [58]; it can be said that Q1P0 is marginally stable. Unfortunately,
its performance degrades in irregular unstructured meshes.

5 Numerical results

The formulation presented in the preceding sections is illustrated below in two
selected benchmark problems. The examples involve incompressible elasticity
and J2-plasticity with exponential softening. The following material proper-
ties are assumed: Young’s modulus E = 10 MPa, Poisson’s ratio ν = 0.499
(recall that G = E/2 (1 + ν), K = E/3 (1− 2ν)), uniaxial yield stress σo =
E/1000 = 10 KPa and mode II fracture energy G = 100 J/m2.
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A cylindrical arc-length procedure, combined with the Newton-Raphson
method, is used to solve the non-linear system of equations arising from the
spatial and temporal discretization of the problem. An automatic procedure
to decide the step size is used and about 200 steps are necessary to complete
the analyses. Convergence of a time step is attained when the ratio between
the norms of the residual and the total forces is lower than 10−2 %.

Calculations are performed with an enhanced version of the finite element
program COMET [59], developed by the authors at the International Center
for Numerical Methods in Engineering (CIMNE). Pre and post-processing is
done with GiD, also developed at CIMNE [60].

5.1 Perforated strip

The first example is a plane-strain perforated strip loaded with a uniformly
distributed axial load applied at both ends. Because of the double symmetry,
only one quarter of the domain (the top right quarter) needs to be discretized.
Figure 4a depicts the geometry of the problem; dimensions are related to
length r = 0.1 m. The brittleness parameter of Eq. (11) is computed with
L = 10r.

(a) (b) (c)

Figure 4: (a) Geometry, (b) structured Q1P0 and (c) unstructured P1P1 FE
meshes used for the perforated strip
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Figure 5: Nominal stress vs normalized top displacement curve for perforated
strip with different scales
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Figure 6: Size effect on the nominal strength at failure for perforated strip
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(a.1) (a.2) (b.1) (b.2)

Figure 7: Results for perforated strip. Contours for: (a.1) vertical displace-
ment and (a.2) equivalent plastic strain in Q1P0 mesh; (b.1) vertical dis-
placement and (b.2) equivalent plastic strain in P1P1 mesh

Figure 4b shows the first mesh used in the analysis; it consists of 3,232
Q1P0 quadrilaterals (3,359 nodes). Notice that the mesh is structured and
most of the element sides are at 0o or 90o with the horizontal axis.

Figure 5 shows nominal stress vs normalized top-displacement curves (1
m thickness is assumed) obtained with different scales, from ΠB = 0 to
ΠB = 400. For the smallest scale, ΠB = 0, behaviour is perfectly ductile
and no softening occurs in the post-peak regime. On the other extreme, for
the largest scale, ΠB = 400, the behaviour is almost perfectly brittle and
the elastic loading branch nearly doubles back on itself. For intermediate
increasing scales the normalized curves show increasing brittleness. For scales
such thatΠB > 20, the curve snaps back and mixed load-displacement control
is necessary.

Size effect on the structural strength of the perforated strip is demon-
strated in Figure 6, which shows normalized peak load vs size in log scale.
It is clear that the numerical solutions behave exactly as expected: for the
smaller scales, the nominal stress is constant, as predicted by Galileo’s scal-
ing law, while for the largest scales, the nominal stress decreases according to
the slope 1:-2 predicted by LEFM. It is most remarkable that the numerical
solutions bridge the gap between these two limit theories smoothly.

Figure 7a shows results obtained for scale corresponding to ΠB = 4,
once the plastic flow is fully developed and the collapse mechanism can be
appreciated. The Figure shows contours for: (a.1) vertical displacement and
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(a.2) equivalent deviatoric plastic strain. These plots demonstrate that the
solution obtained corresponds to the analytical solution: a shear band that
starts in the horizontal symmetry axis, where there is a mild stress concentra-
tion, and progresses across the specimen at approx.. 45o with the dominant
field of vertical principal stresses. Orientation of the slip band is independent
of the FE mesh used and the resolution is optimal: one element across. The
solution is completely free of spurious pressure oscillations.

It has to be remarked that the deformation pattern and collapse mecha-
nism computed for all the scales are identical.

In order to assess the validity of the solutions obtained, the problem is
also solved using a second FE mesh, shown in Figure 4c ; it consists of 7,234
P1P1 triangles (3,740 nodes). Notice that the mesh is totally unstructured
and it does not show any directional bias.

Figure 7b shows results obtained using this second mesh for scale corre-
sponding to ΠB = 4, once the collapse mechanism can be appreciated. This
Figure shows contours for: (b.1) vertical displacement and (b.2) equivalent
deviatoric plastic strain. It is evident that the solution obtained resembles
closely the one obtained using the first mesh. This concordance stresses the
consistency of the formulation presented.
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Figure 8: Nominal stress vs normalized top displacement curve for perforated
strip with different meshes (ΠB = 4).
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Finally, Figure 8 compares the nominal stress vs normalized top-displac-
ement curves obtained with the two different meshes. The coincidence of the
peak loads obtained and the similarity of the post-peak branch is remarkable.

5.2 Prandtl’s punch test

The second example is the Prandtl’s punch test, a well-known plane-strain
2D problem often used in the literature to test the ability of J2-plastic models
to capture collapse loads and mechanisms. Figure 9a depicts the geometry of
the problem, a rigid footing with a central point load; dimensions are related
to length b = 0.5 m. The brittleness parameter of Eq. (11) is computed with
L = 2b.

Because of the symmetry, only half of the domain (the right half) needs
to be discretized. Figure 9b also shows the first mesh used in the analysis:
6,600 Q1P0 quadrilaterals (6,771 nodes). Notice that the mesh is structured
and all of the element sides are at 0o or 90o with the horizontal axis.

Figure 10 shows nominal stress vs normalized top displacement curves
(1 m thickness is assumed) obtained with different scales, from ΠB = 0 to
ΠB = 200. As in the previous example, for the smallest scale, ΠB = 0, be-
haviour is perfectly ductile and no softening occurs in the post-peak regime.
For the largest scale, ΠB = 200, the behaviour is very brittle. For intermedi-

(a) (b)

Figure 9: Geometry (a) and mesh (b) used for the 2D Prandtl’s punch test
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test

22



(a) (b)

(c) (d)

Figure 12: Displacement contour fills for the Prandtl’s punch test with dif-
ferent scales: (a) ΠB = 0, (b) ΠB = 4, (c) ΠB = 40, (d) ΠB = 100

ate increasing scales the normalized curves show increasing brittleness. For
ΠB > 20, the curve changes shape in relation with the smaller scales. This
phenomenon, not observed in the previous example, is discussed below.

Size effect on the peak load of the punch test is demonstrated in Figure
11, which shows normalized peak load vs size in log scale. The general trend
of the plot is the same as in the previous example, but the smoothness of the
curve is broken by a subtle kink that can be observed for ΠB = 20.

The explanation for the change of shape in the curves of Figure 10 and the
small kink in the curve of Figure 11 has to be sought in the solutions obtained
for the different scales investigated. Figures 12 and 13 show displacement and
equivalent plastic strain contour fills, respectively, obtained once the plastic
flow is fully developed and the collapse mechanism can be appreciated. They
show contours for different scales: (a) ΠB = 0, (b) ΠB = 4, (c) ΠB = 40 and
(d) ΠB = 100.

These plots demonstrate a new feature of the size effect: in problems
where the shear bands develop slowly and there is a large change in the
stress field during the pre and post peak regimes, the collapse mechanism
may depend to a large extent on the scale of the problem.
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(a) (b)

(c) (d)

Figure 13: Equivalent plastic strain contour fills for the Prandtl’s punch test
with different scales: (a) ΠB = 0, (b) ΠB = 4, (c) ΠB = 40, (d) ΠB = 100

For the smallest scale, ΠB = 0, the solution obtained corresponds to the
classical analytical solution for perfect plasticity: a straight shear band at
45o which starts at the singular point and that progresses in a circular arc
before turning upwards to return to the top surface in a straight line exactly
at 45o. This solution is not highly localized, as it can be observed in Figure
13a. For ΠB = 4, the solution changes slightly: the shear bands are much
more sharply defined, the straight lines bend noticeably and the plastic zone
expands downwards and outwards. For ΠB = 20, the plastic zone reaches
the vertical lateral boundaries. For ΠB = 40, the change is very obvious
and the “reflection” of the shear bands on the lateral boundaries can be
appreciated. This is a fairly complex collapse mechanism. For ΠB = 100,
the collapse mechanism is very different: the punch test has turned into a
pure penetration test, with two vertical shear bands progressing downwards.

For all the scales, the orientation of the slip bands obtained is independent
of the FE mesh used and the resolution is optimal: one element across.
Results obtained using the standard irreductible Q1 element fail completely
to model this problem and they are only able to represent the last case, where
the slip lines follow the alignment of the mesh [44].
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(a) (b)

Figure 14: Displacement and equivalent plastic strain contour fills for the
Prandtl’s punch test with P1P1 triangular elements (ΠB = 0)

As in the previous example, and in order to assess the validity of the
solutions obtained, the problem is also solved using a second FE mesh. To
this end, the quadrilateral elements of the mesh shown in Figure 9 are halved
to obtain a structured mesh of 13,200 P1P1 stabilized triangles (6,771 nodes).
Figure 14 shows results obtained using this second mesh for the smallest scale
(ΠB = 0), once the collapse mechanism can be appreciated. This Figure
shows contours for: (a) displacement and (b) equivalent deviatoric plastic
strain. Again, the resemblance between this solution and the one obtained
using the mesh of quadrilaterals is remarkable. Similar results are obtained
using unstructured meshes of stabilized P1P1 triangular elements [44].

6 Conclusions

This paper presents the application of a stable mixed finite element formu-
lation, written in terms of displacement and pressure fields, to the study of
size effect in quasi-brittle failure involving shear slip lines. The procedure
involves the use of a locally defined softening J2-plasticity model and the
corresponding FE softening regularization.

The key point of the proposed formulation is to ensure stability of the
resulting discrete FE formulation. To this end, two different FE strategies
are followed. On one hand, Q1P0 quadrilaterals with continuous bilinear dis-
placement and discontinuous constant pressure interpolations are used. This
approach, (marginally) stable, is simple to implement in a standard FE code
and it is very economical in computational terms. On the other hand, P1P1
triangles with equal continuous linear/linear displacement/pressure interpo-
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lations are used. This alternative approach, stabilized via the orthogonal
sub-grid scale method (OSGS), is more versatile and suitable for engineering
applications in 2D and 3D.

Numerical examples demonstrate that the mixed displacement/pressure
formulation is able to predict correct failure mechanisms with localized pat-
terns of plastic deformation, which are practically free from any dependence
of the mesh directional bias. Also, a stable formulation of the problem yields
a satisfactory global response in the pre and post peak regimes. The concor-
dance of the results obtained using the two different finite element strategies
highlights the robustness of the proposed formulation.

Evaluating the structural response in two selected benchmarks, it can be
concluded that the formulation proposed is able to solve a wide range of
structural scales, including real life engineering applications. Furthermore,
it includes the classical theories of perfect plasticity and linear fracture me-
chanics as limit cases.
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