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Abstract

In recent years, Domain Decomposition Methods (DDM) have emerged
as advanced solvers in several areas of computational mechanics. In
particular, during the last decade, in the area of solid and structural
mechanics, they reached a considerable level of advancement and were
shown to be more efficient than popular solvers, like advanced sparse
direct solvers. The present contribution follows the lines of a series of
recent publications by the authors on DDM. In these papers, the authors
developed a unified theory of primal and dual methods and presented a
family of DDM that were shown to be more efficient than previous
methods. The present paper extends this work, presenting a new family of
related DDM, thus enriching the theory of the relations between primal
and dual methods. It also explores memory requirement issues,
suggesting also a particularly memory efficient formulation.



1 Introduction

In the last decade Domain Decomposition Methods (DDM) have progressed
significantly leading to a large number of methods and techniques, capable of giving
solution to various problems of computational mechanics. In the field of solid and
structural mechanics, in particular, this fruitful period has led to the extensive parallel
development of two large families of methods: (a) the Finite Element Tearing and
Interconnecting (FETI) methods and (b) the Balancing Domain Decomposition (BDD)
methods. Both introduced at the beginning of the 90s [1,2], these two categories of
methods today include a large number of variants. However, their distinct theories have led
to a lack of extensive studies to interconnect them in the past. Thus, in the present decade
two studies [3,4] have attempted to determine the relations between the two methods.

In particular, the studies [4,5] set the basis of a unified theory of primal and dual DDM.
This eftfort also led to the introduction of a new family of methods, under the name “Primal
class of FETI methods”, or in abbreviation “P-FETI methods”. These methods are derived
from the Dirichlet preconditioned FETI methods. They, thus, inherit the high
computational efficiency properties of these methods, while their primal flavor gives them
increased efficiency and robustness 1n ill-conditioned problems. However, so far a primal
alternative for the lumped preconditioned FETI methods has not been presented. Filling
this hole 1s the object of the present study and even though the new formulations do not
appear to exhibit all the advantages of the P-FETI formulations, they serve the purpose of
diversitying our knowledge of the relations of primal and dual methods.

In modern DDM practice, the lumped preconditioner 1s used mostly in order to diminish
memory requirements. Thus, in order to present a complete study of the lumped
preconditioner in DDM, we also explore and compare the memory requirements of various
DD formulations.

This paper thus presents the primal alternatives of the lumped preconditioned FETI
methods and compares the efficiency of various DDM, with respect to their computational
cost and memory requirements. In particular, it 1s organized as follows: Section 2 presents
the base formulation of the introduced methods. Section 3 sets up some algebraic relations
that lead to the transformation of the algorithms into a more economical form, which is
derived in the section that follows. Finally, section 5 presents numerical results for

comparing the new formulation with previous ones and section 6 gives some concluding
statements.

2 Basic formulation of the primal alternatives of the FETI methods equipped with
the lumped preconditioner

The P-FETI methods were built on the concept of preconditioning the Schur
complement method with the first estimate of displacements obtained using the FETI
methods. Accordingly, the primal counterparts of the lumped preconditioned methods will

be obtained by similarly preconditioning the intact global problem. Thus, the following
equation

Ku=f o K Lu=L"f° (1)



will be preconditioned with the first displacement estimate of a FETI method. In eq. (1),
K, u, and f represent the global stiffness matrix, displacement and force vectors,

respectively, while

- — e

K(l) u(l) f(l)
K’ = ;U 5 and =]
K(”s) u(ﬂs) f(”s)

(2)

are the matrix block-diagonal assemblage of the corresponding quantities of the
subdomains s = 1,..., n, and L is a Boolean restriction matrix, such that »° = Lu . Using

the original FETI formulation, usually referred to as “one-level FETI” or “FETI-17” [1], the

following preconditioner for (1) 1s derived (this equation 1s obtained following an analysis
almost 1dentical to [4,section 6]):

-1 yT s
A=A L, (3)
where: A" =H'K*H , H=I-B'0G(G'0G)'R* and G =BR’ (4)

Here, R® and K* are the block-diagonal assemblage of subdomain zero energy modes and
generalized inverses of subdomain stiffness matrices, respectively. B 1s a mapping matrix
such that null(B) =range(L), O 1s a symmetric positive definite matrix used in the FETI-1

coarse projector (see for instance [6]), while L and B, are scaled variants of L and B

(see the expressions gathered from various DDM papers 1n [4]).

Furthermore, 1if we use the original dual-primal FETI (FETI-DP) formulation [7], we
obtain:

o

-1 T s
A'=LD AL (5)
where: A7 =N K N°'+ (NjT ~-N*K® K ) LK I (—K;;. K N*+ N:) (6)
K. =IS$L and S. =K -K KK (7)

In eq. (6), subscripts ¢ and r denote the restriction of the matrices to the coarse problem
d.o.f. and the remaining d.o.f., respectively. Matrix N 1s a Boolean matrix which extracts

f

the subdomain d.o.f. that do not belong to the coarse problem, from subdomain d.o.f.
vectors, like in equation u, = N u . Furthermore, matrix N 1s used in eq. (6), in order to

extract the coarse problem d.o.f. from global d.o.f. vectors, like in equation u, = N u".

Comparing the lumped preconditioned FETI-1 or FETI-DP method with the methods of
this section, 1t 1s noted that the methods presented above have a significantly higher
computational cost, because they operate on the full displacement vector u of the structure
and also need multiplications with the full stiffness matrices of the subdomains. In order to

diminish their cost, their algorithm will be transformed 1nto a more economical version, by
representing primal variables with dual variables.

3 Auxiliary equations leading to the change of variables of the algorithms



In order to perform the transformation of variables, we need to prove some relations of
the introduced matrices. First, the L and B matrices satisfy the (some of the most
complete studies on these equations can be found 1n [3,8]):

range(L) =null(B) and range(L,)=null(B)) (8)
T2 T T 2 T
(L,L')"=L,L and (B B))" =B B, (9)
Ty _ T, pTp _
L'L,=1I and L)L +B B, =1 (10)

In the following two subsections, we show that for both preconditioners (3) and (5) the
following equations hold:

A K L=1 (11)

=] s |

;ﬁis KSA:; — 25"1 (12)

3.1 Auxiliary equations of the primal alternative of the lumped preconditioned FETI-I
method

In this subsection we prove that egs. (11) and (12) hold when A" is derived from the
FETI-1 method (eq. (4) ). First, H is a projector satisfying

RRH=0 , HB'OG=0 , H*=H and H'L=L (13)
The stiffness matrices satisfy the relations:
K°R°=0 and HK' =K’ (14)

and the property: There 1s a matrix Y such that:

K*K*=I+R'Y (15)
Using egs. (13) - (15) we obtain:

A K =H'K"HK*=H"K*K*=H" (1 + R“’"Y) =H'+H'RY=H' (16)
Finally, fro eq. (13) and (16), we obtain the two equations that we want to prove:

A K L=H"L=1 (17)

A KA =H'H'K"H=A4" (18)
3.2 Auxiliary equations of the primal alternative of the FETI-DP method

In this section we prove that egs. (11) and (12) also hold if A is defined by eq. (6).
First, we note that matrices introduced in eq. (6) satisfy relations:

N*N® =1 , N°N® =1 , N°N" =0 , N N‘+N'N'=] (19)

K: =N*K°N® , K. =N°K'N’ and K =N'K'N® (20)



Furthermore, we note that K° may be decomposed in the form:

et _ B A A i AY
K.’i’ - N,S'T NST Kﬁ* K?‘C N?‘
¥ '

- 4K, K. || N; (21)
=N K:N‘+N°* K.N*+N° K’N°+ N’ K’ N’

Using decomposition (21), egs. (19) and doing the matrix algebra, we obtain:

A7K* =N] N+ N K KNG +(NS =N K K ) LK LSS (22)

cc C CC C

We note that range(N_L) = range(L.) , which implies that:

X:N, L=LX (23)
Thus, using eqs (22) and (23) we prove eq. (11):

A7 KL= N NJL+N] K} KiN:L+(N =N K}, K., JLK. LS.LX

cC E CC €

FC C

= N" N°L+N* K°' K N*L+ (Nﬁ - N KK ) LKL KX o

=N, N L+N3 K K,CN¢L+N*5 N L - N" K K;‘;NCL
=(N; N} + N N)HL=1

Finally, 1t suffices substituting definition (6) and eq. (22) to eq. (12) to obtain, after doing
the necessary matrix algebra:

= AF (25)

REMARK 1. It can be shown that eqs. (24) and (25) also hold when the coarse d.o.f.
include edge or face averages of the interface between the subdomains. In order to prove

this, we generalize the definition of u, and u’, so that preconditioner (6) expresses all

vertex, edge and face conditions of coarse displacement continuity, that are usually used in

FETI-DP, PFETI-PD and BDDC literature’. Hence, we perform a change of basis 1n
subdomain d.o.f., as follows:

i
W T T U,
W = NT ONT || (26)
& ] Ky
- ol _ur i

where matrix NjT NfT | is orthogonal and its subblocks satisfy egs. (19), (23) and

b e

" The BDDC method was introduced in [9] and it can be shown identical to the PFETI-DP
with any vertex, edge or face coarse constraints [10]. In fact, this method was introduced
independently in three studies: (a) as a preconditioner based on constrained energy
minimization in [9] and later called BDDC, (b) as the primal derivative of the FETI-DP
with only vertex constraints [7] or vertex, edge and face constraints [11] in [4] (In fact as
primal alternative of the FETI-DP it was first mentioned and tested in an earlier publication
[12]) and (c) as a preconditioner inspired from FETI-DP in [13]. In fact, even though the
work 1n [13] 1s apparently restricted to vertex constraints and homogeneous scaling, that
paper probably derived this method in the simplest and most intuitive way.

S




3Z:N‘L=LZ (27)

where L, 1s a Boolean restriction matrix that ensures continuity of #, across the interface

with the relation . = L u . Under the above definitions, matrix N’ can express all vertex,

edge-averaged of face-averaged coarse d.o.f. that are used in FETI-DP, PFETI-PD and
BDDC literature. Eq. (26) implies:

U

— N; —
N AY

f-l'

S e

|
=

S (28)
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With definition (26), we define matrices K, K and K  using eqs. (20). With the

detinitions that have introduced in this remark, the preconditioner (5) expresses all vertex,

edge of face coarse d.o.f. compatibility conditions that are usually used in FETI-DP,
PFETI-PD and BDDC literature. Furthermore, it can be easily verified that all relations

used so far in section 3.2 still hold if matrices N, and N are defined as in eq. (26).

}

Following this analysis, one concludes that eqs. (24) and (25) also hold when the coarse
d.o.f. include edge or face averages. It is worth noting that the change of basis (26) is
similar to a change of basis used to define coarse d.o.f. in [14]. The difference in our case is
that the change of basis 1s orthogonal because this makes our proofs straightforward.

3.3 Auxiliary equations regarding both primal methods based on FETI-1 and FETI-DP

In this subsection, we prove some relations that are based on eqgs. (8) - (12) and thus
hold for both preconditioners (3) and (5). First, we have:

LA“K°L=LL=1 , BA"K'L=BL=0 (29)

-1 _ gTpsy yT 35ty _ T prs TN A" T
KA'=L'K'LL A" L =L'K*(I-B!B)A* L, =

T prs 7s T s pT p s~ T T s’ (30)
L'K'°A L, -LK'B,BA" L,=1-L'K"B,BA" L,
LI'K*LL,A* B" =L'K*(I-B)B) A" B"
i - - 31)
=L K'A" B' ~L'K'B,BA* B' =-L'K"B,BA’ B'
In addition, using the above relations we have:
A" K'BIBA* =A" K*(I-LL))A* =4" K4 - A" K'LL A"
- - - (32)
=4 —LL';AS = BEBA*’
T s s pTpgs' _ 7T pTpgst
L,A" K'B,BA" =L B ,BA" =0 (33)
From eq. (32), 1t follows that:
s s pT pgst Tp%st _ T\ A8 _ D 45
BA” K"B,BA" =BB,BA" =B(I-LL,)A" = BA (34)

and using eq. (33):



T Zs! TrspTpys' T s T s pT p %s~!
L,A" L,LI'K°B)BA* =L,4° (I-B"B,)K*B) BA 39
9T Zs ' s pT p s T %s ' pT spT p st T %s!' pT s pT p 75
— [ 47 K*B'BA” -2 4" B'B K*B'BA" =-1' 1" B'B K" B" B

4 Final form of the algorithms

In this section, 1t will be shown that if the initial solution vector of the PCG algorithm
applied for the solution of eq. (1) , with the preconditioner of eq. (3) or (5), is set equal to
(In what follows, we use the notation and steps of Algorithm 1):

W =A"f (36)

then there exist suitable vectors (denoted below with the subscript “1”), such that the
following variables of the PCG can be written in the forms (£ =0,1,...):

2 =-L'A Bz}, p'=-L4"B'pf , r*=L'K'Blr* and ¢*=I"K'Blq’(37)

Eqgs. (37) allow expressing the PCG vectors, which have the size of the total number of
degrees of freedom (d.o.f.), with respect to vectors whose size is equal to the row size of
matrix B (which in turn i1s equal to the number of Lagrange multipliers used in dual
DDM). They thus lead to a reduction of the cost of the algorithm. Before proceeding with

the proof, we will study how the linear combinations and dot products performed by the
PCG algorithm are transformed due to egs. (37).

The linear combinations of the PCG vectors are simply transformed to linear

combinations of Lagrange multiplier vectors. For instance: using eq. (37) the PCG residual

becomes:
rk_ — _”k 1qk1_LTK BT k-1 77k ]]T Bqu—l (38)
ZLTKBg(ﬁkl—ﬂqulkl)if‘] —_”quifcl

In order to discuss the transformation of the PCG dot products, we define vectors:

z* =BA* B"z* and zF = =B K'Blzf , pf=BA" B'p} and pt =B,K'B,p, (39)

e Initialize

3 pOTFO
r=b-Ku , =47, p=2, ¢ =K , 5’ =7
JZ |
e Jterate k£ =1,2,... until convergence
0k = 4 nk—lpk—l R _ﬂk—lqk L oK FLk
k-1 k' i kT k
z 4 P r
pk:Zk_Z TP ¢ =Kp" . 1= Kk
i=0 P (g P q

Algorithm 1. The PCG algorithm for solving system Ku = f

preconditioned with A™" (full reorthogonalization)
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p = BK "“'B;i‘lk and 7 = Bﬁ“'_lBTrzk , ¢, =B K SB;‘];TC and ¢, = BA* B'q; (40)
Then for instance (using eqgs. (10) and (37) ), the following dot product becomes:
p* q* =-pl BA" L I'K*Blqf =-pf BA* (I-B"B)K'Bq}

P

S o~ | (41)
=—p, BA" K'B g, +p; BA" B'B K'B g,

Here, 1t 1s needed to make the following assumption, which will also be verified in the

proof that follows: ¢, € r:«,ulge(BféiS_l ). Thus, there is a vector y such that g, = BA* y and
the first term of eq. (41) becomes (using eq. (34) ):

~p BA" K'Blqf =—pf BA" KB BA" y=-p! BA" y=-pf ¢t (42)

For the second term, there are the following three choices (taking into account the
assumptions (37) and the definitions (39) - (40) ):

Tk

P> 4
pf BA" B'B K’Blqf =1 p} ¢! (43)

KTk

L1?93 qi

Thus, using each of these choices and expression (42), the dot product (41) takes the
following three expressions:

ps gy —-pf g
P g =-pf qf +p 4§ =pf (¢F —q) (44)
P g s 4 =(ps -4

where 1t 1s noted that the last two options are more cost effective. Like dot product kaqk

which was used here as an example, all dot products of the PCG can be expressed in the
form of dot products of Lagrange multiplier vectors, like in eqgs. (44).

We are now ready to proceed to the proof of eqgs. (37), proving also that there are vectors
ysuch that ¢ = BA* y and ‘= BA* y and obtaining the transformed algorithm with

respect to Lagrange multiplier vectors. We simply follow the steps of Algorithm 1. Thus,
from eq. (36) 1t follows (using eq. (30) ):

P=f—Au’ = f—AA" f = f—(]-—-—L"‘KSB;BE“Lp) F= LTKSB;BA’S"LF f (45)

and: W =BA" L f (46)

Computing the residual »° from the above equations, we get:

P — — —

0 C T 1 s s 1| pT T 7-5
Py L || Ky Kyl By | o | LK,
0 S s o S

Tiwy [ K;, K|l O K,

i _

|

Pl = LTKSBEFIG =%

N
|

ng 7 (47)

— L= | B

where subscripts 5 and i restrict the matrices to interface or internal d.o.f. of the
subdomains, respectively. In eq. (47) it is worth noting that the residual vanishes in internal



d.o.f. of the subdomains, when these d.o.f. are not adjacent to interface d.o.f., which 1s also
observed 1n the lumped preconditioned FETI methods. Furthermore:

" BT T prs s [ T
BP;; Kbb Kib BP;;
s S

0 _be K; 0

r, =B,K'B,1 = n =B, K;,B, 1’ (48)

where 1t 1s worth noting that matrix ng K ;’ngh 1s equal to the lumped preconditioner of

FETI-1 method (with respect to the lumped preconditioner of FETI-DP, matrix B, K, B,

1s only augmented with some extra lines and columns). Then, using eq. (35) it follows that
there isa y such that (here y =L f from eq. (46) )

A 8 ¥ Ga TyspT. 0 T s T s pT p s
=4 =LA LL'K°B)r’ =L A° L L'K°BBA* y

- (49)
T s pT s pT 75~ T %s™ pT s pT_.0 T %s™' pT,,0
=—-L A" BB KB BA y=-L A B BKBn#n =-LA Br,
. "po _ Zo
and: Z =8 , EL(=r)=BA" Bz and p =z =4 (50)
Ly =%
Then, using eq. (31):
¢°=Ap° =-L'K°LL} A" B"p) = I'K*B.BA* B"p{ = "K*B] p? (51)

Theretfore:
9’ (=20)=py =BA" B"p = ¢ € range(BA" ) and ¢)(=pd)=B K'Blq’ (52)

Then (similar to eq. (44) and using the fact that both #’, ¢, € range(Bﬁ'ﬁ'_l) :

U'T

ozpo r :(p3 -
p g (s —p)a
So far, we have followed the steps of the initialisation of Algorithm 1 and have shown
that eqgs. (37) hold for £ =0. In the following, we show that if we assume that egs. (37)

hold for all previous iterations of the PCG, they will also hold for iteration £ . Thus, this

proof will be concluded recursively. We simply follow the steps of iteration & of the PCG.
We thus have:

7 (53)

k k
' =r

k-1 k-1 k k-1 k-1 k k-1 k-1

', =T =g and A =rT -0 (54)

which also implies that if 7', ¢*" € range(BA® ) then r* € range(BA* ).
Continuing, like in eq. (49) we obtain (provided that " & range(BﬁS_l) ):

k  -1_k _ T s TyspT k7T %s™! T -5 pT P
=A== A" L I'K*Brf =L14" L L'K’B'BH"y 559

-L'A* B'B K°BIBH"y=-L} 4" B'"B K'B)r =—L' 4" B"r}

and: zf=p and zZX(=r)=BA" B'Z (56)

Then, in the case of full reorthogonalization:



The dot product terms are written (using eq. (44) and assuming ¢, € 1rr:1.11ge(1825’-l )):

Fg 2 g -q)
pa p(g—q)
Then, like in eq. (51) (using eq. (39) ):

(58)

¢" =Ap* =L'K’Blp; , qf =pi=BA" B'pf and ¢i(=p!)=B K'Blpt (59)

which also shows that g € range(B}ifl). Note that this concludes recursively the proof

that 7*, ¢ € range(Bﬁ'*_l), k =0,1,... Finally, we have:

k' ok k! k'S k
k_ P T =(p3 — P )?"1_

' q° (py -pi )

7 (60)

In eq. (58), we use vector ¢, that has not been computed yet. This vector will be
computed using eq. (54) that implies that:

k

o= =g =gy = (1/771{_1)(7'3](—1 _rak) (61)

Hence, using the previous equations, the final form of the algorithm is obtained as is shown
in Algorithm 2 (in the case of full reorthogonalization). It is worth noting that even though
the formulation 1s primal, the final algorithm is very similar to the algorithm of the FETI-1
(or FETI-DP) method with the lumped preconditioner. In particular:

o With the appropriate definition of 4° , matrices BA* B" and B, K,,B, that are

used during the iterations are equal to the FETI-1 matrix operator and lumped
preconditioner, respectively. Compared to the matrix operator of FETI-DP, matrix

BA* BT is simply augmented with some redundant columns and rows and will thus
have the same eigenspectrum as the FETI-DP operator, with the exception of some

® ™ ~ s . ® '
zero eicenvalues. Thus. using overator BA* B and preconditioner B' K* B' for
? py " T bb T p,

FETI-DP, we would simply obtain the same results.
e The algorithm iterates on vectors of the size of the Lagrange multipliers.

e From the equations that compute vectors »* and ¢* (k=0,1,...) in Algorithm 2, it

follows that the residuals #* vanish in internal d.o.f. of the subdomains, when these

d.o.f. are not adjacent to the interface, again as in FETI-1 with the lumped
preconditioner.

On the other hand, each iteration of the present algorithms requires more linear
combinations of vectors than the corresponding dual algorithms. These operations become
important in the case of reorthogonalization. In this case, the required dot products

2 (¢'—q), i=0,..,k—1 imply the same computational cost as in FETI algorithms,

bccause at cach iteration g; —g, is computed and stored. ITowever, compared to FETI

methods, this algorithm requires twice as many linear combinations for computing the
vectors p' and p;, that represent the direction vectors p*. In total, in this algorithm

10



e Initialize

0 T 4% ~() 0 ik 0 _L}J‘K;b T .0
u =LA Lf , uw=0, n=B4 Lpf , = - B, n
L ib
pf’ — zl BT K, BT : qf p, =r =2z, BA* B"
DEE _
qU _ b Sbb BT , pO BT K;bebql ’ 770 (p pl )r
Ky (p3 ”"p1 )9’1
e Iterate k£ =1,2,... until convergence (| 7*| < €)
ul _u]'l'??klp]kl : rk: _ﬁqukl 5 rlk:rl _n—qu{l
Zf‘:rf: oyt lqé‘:l : r;‘:zz:BA' BTzk , (1/77“)( ‘! }"3k)
2 (g -q)) 2t (4i-q)
P =g =Y —ipl g = pz-—zz“z L2 )
— p, (¢5—q)) = pl (4h—q))
ET _
g =" " |B,p, » P5=4¢,=B,K;B,p, , 77"‘=(p pl i
: K a (p "'p1 )‘31

e After convergence
k 0 T %s™' pT~k
u'=u —L,A Bu

Algorithm 2: The primal alternative of the FETI-1 and FETI-DP methods with the
lumped preconditioner (full reorthogonalization)

reorthogonalization requires 50% more floating point operations than in dual methods. In
addition, while in FETI methods reorthogonalization requires storing two vectors per

iteration, here it is required to store the three vectors p;, p; and g; —gq; , which implies

50% higher memory requirements for reorthogonalization in Algorithm 2.

5 Numerical results

Our numerical tests are divided in two categories: First, we compare the computational
cost of lumped preconditioned FETI methods with the introduced primal alternatives and
then, the memory requirements of various DD formulations.

5.1  Comparison of the computational cost of dual and primal formulations originating
from lumped preconditioned FETI methods

We have implemented the FETI-1 and FETI-DP methods with the Iumped
preconditioner and their primal alternatives in our Matlab DDM code and we consider the
3-D elasticity problem of Fig. 1. Details on our DDM implementations can be found in
[4,5] This cubic structure 1s composed of five layers of two different materials and is
discretized with 28x28x28 8-node brick elements. Additionally, it 1s pinned at the four

11



corners of its left surface. Various ratios E, /E, of the Young modulus and p,/0, of the

density of the two materials are considered, while their Poisson ratio is set equal to
v, =V, =0.30. An optimal decomposition of this heterogeneous problem must generate

subdomains with good aspect ratios, while preserving the material interfaces when
partitioning the model [6]. Hence, two decompositions of this heterogencous model of
73,155 d.o.f. in 100 subdomains are considered: In the first decomposition (Fig. 2a), the

model has been partitioned in subdomains with good aspect ratios without taking into
account the material interfaces (Decomposition P1). In the second decomposition (Fig. 2b),
the five layers of different materials have been partitioned independently, thus generating a
decomposition which preserves the material interfaces but produces subdomains of
suboptimal aspect ratio in the thin layers (Decomposition P2).

Table 1 presents the iterations required by primal and dual formulations of the lumped
preconditioned FETI-1 method. The results show that like in the case of comparing dual
and primal formulations of the Dirichlet preconditioned FETI methods, the iterations of the
two formulations of the lumped preconditioned FETI-1 methods are comparable. More
precisely, it 1s noted that in the more ill-conditioned cases the primal method requires
slightly fewer iterations (up to 11%) than the dual one. In fact, judging also from many
other tests that we have performed comparing the two formulations of FETI-1 and FETI-
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Figure 1. A cubic structure composed of two materials

Table 1

Number of iterations (Tolerance: 107) of the lumped

preconditioned FETI-1 method and its primal alternative for the
solution of the example of Fig. 1

Ratio of Young Type of Dual Primal
moduli decomposition  formulation formulation
10° P1 25 24
10° P1 44 41
10° P2 25 24
10° Pl 53 47
10° . 30 26

12



[BF IHHE
i He |

e
b

(a) (b)

Figure 2. Two decompositions of the cubic test problem in 100 subdomains:
(a) Optimal aspect ratio partitioning (Decomposition P1),
(b) Layered partitioning (Decomposition P2)

DP with the lumped preconditioner, it appears that the difference between the number of
iterations of primal and dual formulations in ill-conditioned problems is more pronounced
in the case of the lumped preconditioner than in the case of the Dirichlet preconditioner. A
probable explanation is that the lumped preconditioned methods lead by themselves to
more 1ll-conditioned systems than the Dirichlet ones.

On the other hand, bearing in mind that the primal formulation implies a 50% higher
reorthogonalization cost, we conclude that statistically the primal formulation will be
probably slower than the dual one for well-conditioned problems and probably faster for
1ll-conditioned problems with relatively low reorthogonalization cost. In addition, in the
case of the lumped preconditioner, our results do not show the increased robustness
(measured 1n terms of the maximum achievable solution accuracy in ill-conditioned
problems) of the primal formulation that has been seen in the case of the P-FETI
formulations. A probable explanation of this observation is given by the increased
operations required in each iteration of the primal algorithm as opposed to the dual one and
also by the fact that due to setting the initial solution vector equal to eq. (36), the initial
residual of the primal methods is equal to the initial residual of the dual methods (see the
residual of eq. (45), which 1s equal to the initial residual of the FETI methods). Thus,
contrary to the P-FETI formulations, the residuals of the primal formulations of the lumped

preconditioned FETI methods begin from relatively high wvalues, as in the dual
formulations.

5.2  Comparison of the memory requirements of dual and primal formulations

In the following tests, the memory requirements of selected primal and dual
formulations are compared. Among the primal and dual formulations of lumped
preconditioned methods we choose the dual formulation because it will usually require less
memory than the primal formulation, since the primal formulation has a 50% higher
overhead for storing the direction vectors. Among formulations originating from Dirichlet
preconditioned methods, the best candidate is probably the primal formulation because it
results 1n a statistically smaller number of iterations (the primal formulation also requires
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storing direction vectors of the size of the number of interface d.o.f., while the dual

formulation requires storing Lagrange multiplier sized vectors, that can be more than 25%
lengthier in 3D problems [5]).

We will also test another P-FETI configuration, that reduces the memory required to

store the factorized subdomain stiffness matrices K°. Usually, the largest part of the
memory required by FETI and P-FETT methods is occupied by this matrix. Given that in P-

FETI formulations the factorized K° matrix is involved in preconditioning operations, we
can quite safely diminish the accuracy of the related operations. Here, we will test the

results obtained from storing the factorized K in single precision. In particular, the exact
strategy we use 1s: (a) Build and store K° in double precision, then (b) Perform its

factorization in double precision, (¢) Ovewrite the factorized K° with a copy of it in single
precision, thus releasing half of the required memory, (d) Perform the required forward and
backward substitutions in double precision, loading in memory the entries of the factorized

K" 1n double precision, whenever each entry is needed in the forward and backward
substitution algorithm.

Thus, 1n the tests that follow we will compare this configuration with the lumped
preconditioned FETI methods and P-FETI methods (with a fully double precision

preconditioner). We suppose that the stiffness matrix K of each subdomain is stored in

skyline format. Note that at first we store the factorized K in full double precision. Then,
each processor (in the case of parallel processing) overwrites this matrix with a copy of it
In single precision, thus releasing half the memory required. Afterwards, each processor
does the same for the next subdomain assigned to it. Single precision preconditioners for
DDM were tested 1n [15]. It was there noted that loading in double precision matrix entries
that were stored 1n single precision does not add computational cost to the process.

In our first test we compare the lumped preconditioned FETI-1 method to the P-FETI1

with K* stored in single or double precision, in the 3D elasticity problem of Fig. 1. Table
2 shows the obtained results for a well-conditioned configuration of this problem

(E,/E, =10"), while Table 3 reports on a more ill-conditioned case (E,/E, =10°). In

these results, subdomain and coarse problems are solved with a skyline solver. The
memory requirements reported in Tables 2 and 3 ignore the small percentages of memory
required by DDM for node and element data bases and subdomain and interface mapping.
These memory costs depend on implementation, they are practically the same for all the
DDM that are here tested and usually constitute a very small percentage of total memory

requirements. In both tables, we note that the storage of K* in single precision does not
increase the CPU time of P-FETII, nor diminishes the maximum attainable solution
accuracy. These two configurations require the same number of iterations and since single
precision matrix entries can be loaded in memory in double precision without adding
significant computational cost, the two configurations have the same CPU time. Finally, it

is worth noting that the memory requirements of the P-FETI1 with K* stored in single
precision are more than 20% less than those of the lumped preconditioned FETI-1.

Tables 4 and 5 perform the same comparison for P-FETIDP configurations in the case of
the shell problem of Fig. 3. Here, we leave out the lumped preconditioned configurations
because they are known to have poor performance in fourth-order problems. Fig. 3 depicts

a semi-cylindrical panel with a radius of 0.5, a length of 1.6 and a thickness of #=10" or

t =107 . Moreover, the Young modulus is 1x10° and the Poisson ratio 0.30 . The panel is
modeled with a structured mesh of 131x131 nodes and is discretized with triangular TRIC
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Table 2

Comparison of the lumped preconditioned FETI-1 and P-FETI1 with K® stored in

single or double precision for the solution of the example of Fig. 1 (E, /E, =10",
decomposition P1, tolerance: 10™)

Method “—_I_Mllmi—— [ter. i,
K, K” Reorth.  Total Acuracy
FETI-1 (Lumped) - 123 16 165 25 2.3E-10
P-FETI1 23 123 8 194 21 4 5E-11
P-FETI1(Single prec.) 23 62 8 132 21 4.4E-11

Table 3

Comparison of the lumped preconditioned FETI-1, P-FETI1 with K® stored in

single or double precision for the solution of the example of Fig. 1 (E, /E, =10°,
decomposition P1, tolerance: 10™)

Method % [ter. Max,
K K*  Reorth. Total Acuracy
FETI-1 (Lumped) = 123 34 183 53 9.3E-7
P-FETI1 a3 123 15 200 37 4.0E-7
P-FETI1(Single prec.) 23 62 15 139 37 3,.7E-7

shell elements [16]. Furthermore, it is fixed on 16 nodes along its two linear edges as
shown 1n Fig. 3. This model of 102,870 d.o.f. is decomposed in 130 subdomains (Fig. 4).

The results ot Tables 4 and 5 verify our conclusions from the previous example. The single
precision storage practically does not affect the efficiency of P-FETIDP. Only in the more

ill-conditioned case of =107 we observe a small performance deterioration, while in both
tables, memory gains are higher than 20%.

Coming back to the second-order problems, where the lumped preconditioned dual
formulations usually need less memory than primal formulations, we will perform an
approximate parametric analysis, in order to determine when the primal formulation with

K* stored in single precision will have less memory requirements than the lumped
preconditioned dual formulation. Compared to the primal one, the lumped dual formulation

does not need to store matrices K°

i

and K,, while it will have a higher
reorthogonalization memory overhead. On the contrary, in the primal formulation the

single precision storage of K " saves half the memory required for storing this matrix.

Thus, 1if we require half the memory of K " to be less than the memory of K " _ then the

2

primal formulation with single precision storage of K* will need less memory than the
lumped preconditioned dual formulation. We will check when this condition holds in the
following parametric model problem.

Suppose a 3D (2D) problem, discretized with 6-node brick (4-node quadrilateral)
elements and a subdomain s of this problem with a cubic (square) shape. Suppose also that
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Table 4

Comparison of the P-FETIDP with K* stored in single or double precision for the
solution of the example of Fig. 2 (=107, tolerance: 107)

Memory (MB) Max.
Method ————————————————— lter.
K: K* Reorth.  Total Acuracy
P-FETIDP 39 67 10 140 48 3.3E-8
P-FETIDP (Single prec.) 39 33 10 106 48 3.5E-8

Table 5

Comparison of the P-FETIDP with K* stored in single or double precision for the
solution of the example of Fig. 2 (+ =107, tolerance: 10™)

Memory (MB)
Method e W e S - VB,
K K* Reorth.  Total Acuracy
P-FETIDP 39 67 30 160 139 3.4E-5
P-FETIDP (Single prec.) 39 33 31 127 141 5.2E-35

Table 6

Approximate estimate of the size, mean skyline width and number of stored entries ot
matrices K and K!” of a square (cubic) subdomain s (7: number of nodes per
edge of s, m : number of d.o.f. per node, d : problem dimension)

Matrix Matrix size Skyline width Number of entries
K _ _— 2y 2d-1
K" m(n-2)" m(n-2)"  m*(n-2)""

safe to conclude that statistically the primal formulation with single precision storage of the
factorized subdomain stiffness matrices will require less memory than the lumped

preconditioned dual formulation in 3D second-order problems, while the contrary will hold
1in 2D second-order problems.

6 Summary and conclusions

The present paper studies the uses of the lumped preconditioner in modern DDM
practice. In the beginning of the 90°, the lumped preconditioner constituted the first choice
for second-order problems. Later on however, when the advantages of using large number
of subdomains per processor were discovered, the use ot the lumped preconditioner became
limited to the case where there was not enough memory available for solving large second-

order problems.

Recently, a unified primal and dual DDM study [4] left an open 1ssue regarding the
lumped preconditioner. In particular, this paper introduced the primal alternatives of the
Dirichlet preconditioned FETI methods, thus creating the open question of the existence of
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a primal alternative of the lumped preconditioned methods. The present work thus presents
these primal alternatives. However, the new methods do not seem to share all the
advantages of the primal offspring of the Dirichlet preconditioner. In particular, they are
less robust than the dual formulations and are slightly slower in well-conditioned problems.
Their principal value lies in the fact that they add a new level of completion to the theory of
the relations of primal and dual methods. The fact that a primal algorithm can be turned
into an algorithm that uses dual operators and vectors appears to be new in DDM literature.
On passing, we also note that the same transformations used in this paper can be used for
the P-FETI and the BDD methods in order to transform them into algorithms that operate
on dual quantities.

Furthermore, it 1s also worth noting that the analysis of sections 2-4, which leads to the
primal alternatives of the lumped preconditioned FETI methods, also holds in the case
where the discussed FETI methods are applied to problems of implicit dynamics. While the
FETI-DP and its primal alternatives can be directly applied to implicit dynamic problems
(see for instance [5]), the FETI-1 and its primal alternatives degenerate to the formulations
deprived of coarse problems [17]. It 1s quite straightforward to prove that these FETI
variants for Implicit Dynamics equipped with the lumped preconditioner, as well as the
FETI variant introduced in [18] and revisited in [5], all have primal alternatives that are
derived following the same analysis as 1n sections 2-4.

The second part of the presented work checks 1f indeed the lumped preconditoner 1s the
best choice for minimum memory consumption 1n second-order problems. In particular, the
fact that primal formulations move many operations of the dual formulations into the
preconditioner 1s exploited in order to save important amounts of memory. Our parametric
study shows that the lumped preconditioned dual methods will probably require less
memory in 2D second-order problems, while they are overcome by primal formulations
with subdomain stiffness matrices stored in single precision in 3D second-order problems.
Presented results show 20-25% saving of memory in 3D elasticity and shell problems. In
these problems, primal methods with single precision stored subdomain stiffness matrices
in their preconditioner seem to be the methods of choice for memory saving. Furthermore,
even though there can be no proof that they will be fully effective in highly ill-conditioned
problems, in some considerably ill-conditioned tests performed in this paper they appear
successful. More parts of the preconditioner could also be stored in single precision,
trading off robustness for memory saving, but further memory saving would be
considerably less important than that obtained from the subdomain stifiness matrices.
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Figure 4. A decomposition of the semi-cylindrical
panel in 130 subdomains — Top view

7  Concluding remarks

The final section of this paper aims at summing up what has been shown in this work
and then studying the consequences of these findings. The main concept behind this work
has been the fact that the definition of an operator that estimates subdomain displacements
from subdomain forces can be used to build a primal and a dual DDM, that are strongly
connected, provided that the operator satisfies two conditions. In particular, the first
condition allows the primal formulation of the problem to be turned into a dual one. Then,
a second condition guarantees that the two resulting DDM, the primal and the dual one,
will have the same non-zero and non-unit eigenvalues. This suggests that the two
formulations will probably have similar convergence properties and iteration counts. Some
of the most popular DDM since the beginning of the 90’s in structural and solid mechanics,
have been 1nserted in this general framework, by proving that these two conditions hold for
them. In particular, this has been proven when applying the methods FETI-1, FETI-2 and
FETI-DP or their primal alternatives BDD and BBDC for the static analysis of structural
problems. It 1s also worth noting that it would be simple to extend the proofs performed in
this work to the applications of these methods for implicit dynamic structural problems The
only things that change are the subdomain stiffness matrices that are substituted with the
corresponding matrices of the implicit dynamic analysis and the zero energy mode
projections that must be removed.

Hence, after summing up the general theoretical framework that has been set up here,
we can Investigate 1ts consequences. A first and obvious but not unimportant consequence
of this framework is that the setting of section 2 allows a very modular programming of
primal and dual methods. If this general setting of primal and dual methods is programmed

then by programming separately the estimate operator K* for some DDM, both primal and
dual formulations are directly obtained. Furthermore, in the version of this formulations
where internal d.o.f. of the subdomains are condensed, recent results show that the primal
formulation, while it has similar performance to the dual one in well-conditioned problems,
it 1s statistically faster and more robust in ill-conditioned ones [4,5]. Furthermore, with
reference to the case where internal d.o.f. are not condensed, a recent study [9] proves that
1f the two conditions that have been set in the present paper hold, then the algorithm of the
primal formulation can be made to operate on dual variables, instead of primal ones. The
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Table 3

Condition nr. and nr. of iterations (Tolerance: 10™) of some
DDM for the solution of the example of Fig. 3 (£=107")

Condition. nr. of Nr. of iterations
Method both —
formulations anal Dual-
formulation formulation
FETI-1 2.2E+6 131 135
FETI-2 5.4E+1 35 36
FETI-DP 2.0E+3 48 49

Table 4

Condition nr. and nr. of iterations (Tolerance: 107) of some
DDM for the solution of the example of Fig. 3 (£ =107")

Condition. nr. of Nr. of 1terations
Method both _—
formulations Prlmal Dual.
formulation formulation
FETI-1 1.9E+8 319 330
FETI-2 5.3E+2 91 -
FETI-DP 7.1E+4 139 145

main gain from this transformation is that the primal algorithm that would be excessively
costly because it operates on the full displacement vector of the structure (thus practically
inhibiting for instance the process of reorthogonalization in the PCG algorithm), is now
converted to an algorithm, which operating on dual variables has comparable
computational cost to the pure dual formulation. Hence, when internal d.o.f. are not
condensed, the results of [9] show that the primal and dual formulations have comparable
efficiency. However, in this case, the dual formulation turns out to be more robust and our
tests show that in most problems it will probably be faster than the primal one.

Hence, in order to draw a general conclusion from comparing the primal and dual
formulations, it is necessary to discuss when it is favourable to condense the internal d.o.f.
of the subdomains. In modern DDM practice it has been noted that usually the
condensation of internal d.o.f. leads to higher computational efficiency, while, avoiding the
condensation can probably lead to less memory-consuming solutions in large-scale second-
order problems. However, the results of [9] also suggest that the primal formulation
requires less memory in fourth-order problems and in many second-order problems.
Consequently, the general picture at the moment , with respect to computational cost,
robustness and memory requirement, seems to be in favour of the primal formulation, at
least for the majority of the cases. However, since the beginning of the 90’s, the dual
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methods have been implemented in many other areas beyond the pure static and dynamic
analysis of structures. Therefore, for the primal formulation this work will have to be
adapted when possible, or simply redone. Thus, the best choice today is probably to be
armed with both options.

This paper comes to offer a small piece to the long series of works that have gradually
led to today’s understanding of the concept of duality in DDM for structural and solid
mechanics. Before ending it, it is thus probably suitable to remind some of the most
important steps in the efforts that have led here. A large step in this process was made in
the beginning of the 90’s, with the introduction of the FETI method, which was a dual
method that quickly gained a lot of popularity. Since then, the major advances in the dual
methods, like the introduction of the FETI-2 and FETI-DP methods were closely followed
by similar advances in the area of the primal methods. While more and more advances

were appearing that suggested that there were connections missing between primal and dual
formulations, the first studies of these connections came forward. Today, the international

research community of DDM has gone a long way since the introduction of the first dual
methods and it can be said with a lot of certainty there is a lot more to come.
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