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Abstract 

Enhancing energy efficiency has become a priority for the European Union. Several policies and initiatives aim 
to improve the energy performance of buildings and collect data of sufficient quality on the effect of energy 
efficiency policies on building stocks across Europe. Knowledge about the characteristics of the building stock 
and the usage of these buildings' occupants is essential for defining and assessing strategies for energy savings. 

Nowadays, dynamic measured data from the Advanced Metering Infrastructure (AMI), especially in electricity 
consumption, combined with location-based data, like weather, cadastre, social or economic conditions, should 
be available for a significant part of the building stocks in Europe. Combinedly, this enormous set of data 
contains the characteristics of how buildings and their occupants consume energy. 

In this document, a bottom-up electricity characterisation methodology of the building stock at the local level 
is presented. It is based on the statistical analysis of aggregated energy consumption data, weather data, 
cadastre, and socioeconomic information. For validation purposes, the characterisation of the electricity 
consumption over Lleida (Spain) province is performed. The geographical aggregation level considered is the 
postal code (more detailed than LAU level 2, formerly NUTS level 5), due to it is the highest resolution available 
through the Spanish Distribution System Operators (DSOs) data portal. Besides, a web application to visualise 
the results of the characterisation has also been developed. The major novelty is the use of high-frequency 
consumption data from most consumers in each analysis area without considering any Building Energy 
Simulation (BES) model that considers performance or energy use assumptions. For this purpose, a data-driven 
technique is used to disaggregate consumption due to multiple components (heating, cooling, holiday and 
baseload). In addition, multiple Key Performance Indicators (KPIs) are derived from these components to obtain 
the characterisation results. The potential reuse of this methodology allows for a better understanding of the 
drivers of electricity use, with multiple applications for the public and private sectors. 

This study has been executed in the frame of the Energy & Location Applications of the ELISE (European 
Location Interoperability Solutions for e-Government) action of the ISA2 (Interoperability solutions for public 
administrations, businesses and citizens) Programme. 

 

https://joinup.ec.europa.eu/node/701324
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Executive Summary 

The Digital Economy Unit of the European Commission's Joint Research Centre (JRC), in cooperation with other 
services of the European Commission, is coordinating the “European Location Interoperability Solutions for e-
Government (ELISE)", Action 10 of the ISA2 (Interoperability Solutions for Public Administrations, Business and 
Citizens) Programme. 

The ISA2 Programme supports long-standing efforts to create a European Union free from electronic barriers at 
national borders. It facilitates interaction between European public administrations, businesses, and citizens to 
enable interoperable cross-border and cross-sector public services and ensure the availability of common 
framework and solutions. 

The ELISE action is a package of guidance and solutions facilitating efficient and effective electronic cross-
border or cross-sector interactions between European public administrations, citizens and businesses, in the 
domain of location information and services. 

The ELISE Energy & Location Applications consist of a series of use cases aiming to show how location data 
can support different stakeholders involved in the energy policy cycle at different geographical scales, ranging 
from local to European-wide level. 

This report focuses on the use case named “Scale-up methodologies”, aimed to identify, apply and test in a real 
case study the most appropriate methodologies and technologies to scale-up at district, city, regional and 
national levels energy efficiency assessments made at building level based on dynamic measures of energy 
consumption. 

Energy characterisation of existing buildings at multiple geographical levels (district, city, and region) can be 
used to understand trends in energy use, to correlate the energy consumption to characteristics of the territory 
and to identify specific locations where there are buildings with poor energy performance. But it is often difficult 
to obtain this characterisation, which can be tackled from different points of view, with widely varying levels of 
accuracy and associated costs. In this use case, a bottom-up approach, based on a data-driven methodology, 
addresses the problems related to this characterisation. In essence, the methodology consists in analysing the 
energy consumption and the weather data at district level to obtain KPI’s and correlate these indicators with 
building stock and socioeconomical characteristics, to obtain the energy trends and characteristics of each 
district. This methodology was implemented and validated within the Spanish province of Lleida and the main 
data sources used are: electricity consumption datasets aggregated at postal code level, INSPIRE harmonized 
datasets of buildings, weather data from online services and socioeconomical datasets from the National 
Statistics Institute. The main goal was to provide a characterisation of the electricity consumption, either in the 
residential or in the public sector, at different geographical levels (Spanish census tract and postal code data 
are used for validation purposes). 

In this report, a data-driven methodology addressing the problems related to this characterisation is presented. 

The benefits expected from the use of this methodology are to support the public (e.g. Regional Energy Agencies) 
and the private sector (e.g. Distribution System Operators (DSOs), utilities, ESCO's, and companies working in 
the building renovation sector) to understand energy efficiency and energy use trends and their relation with 
building stock characteristics and socioeconomic factors. Indeed, this methodology should allow correlating the 
energy usage and the territory massively, providing a better understanding and interpretability of a region, 
enabling to detect energy efficiency-related faults and business opportunities. Additionally, a second benefit of 
this methodology is that it could be applied over large areas (a whole province, or an entire region or even a 
country), once the required public data would be available, which seems to be possible for several EU countries 
thanks to the INSPIRE data harmonisation and the steady growth of open data platforms. Compared to other 
methodologies: no simulations, calibration procedures, user surveys, or significant human interaction are 
required. Thus, it can be deployed with less effort in terms of both computational and human resources. 

 

https://joinup.ec.europa.eu/node/701324
https://joinup.ec.europa.eu/node/704538
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1 Introduction 
Characterising the energy demand at the local level is essential to understand the dynamics that support the 
transition to renewable and distributed generation areas. A recent study [1] has shown the necessity to explore 
energy efficiency solutions for buildings at the local aggregated level (e.g. district, neighbourhood, city, region). 
The implementation of local Energy Conservation Measures (ECM) and the increase of in-situ renewable 
generation in buildings are key factors to satisfy energy security and limit global warming in future. This local 
geographical level is large enough to infer a priori unknown patterns of energy consumption and addresses 
concrete solutions or, at least, help decision-making teams in energy planning scenarios. Additionally, this is the 
geographical scale where most urban transformations in Europe occur and where the newest instruments for 
financing energy efficiency strategies in the building sector exist. 

In literature, the energy characterisation based on modelling in groups of buildings is called building stock 
modelling. Three major typologies of buildings exist residential, industrial and services. Each of them 
corresponds to its building archetypes, uses and occupancy patterns. Mainly, two approaches for building stock 
modelling can be identified: top-down and bottom-up methods. Lagevin et al. [2] provide a large and updated 
literature review to extend this initial classification, considering three major developments during the last ten 
years: big data, increased computing power, and new modelling techniques. 

A bottom-up approach begins with a detailed representation of a system's constituent part that may be 
aggregated up to the whole-system level. In this case, it will look at individual buildings through either the use 
of the distinct archetypes, or the use of each building of the stock individually, or, at least, a sample of buildings 
to aggregate the total stock. 

By contrast, top-down approaches begin with an aggregated view of the system that could be disaggregated 
into subsequent sub-systems. In the case of energy characterisation of groups of buildings, they analyse the 
building stock as a large sink with inputs and outputs following historical trends and therefore keeps the building 
stock as a black box (Langevin et al. 2020). Within the two main approaches, i.e. top-down and bottom-up, 
subdivisions can be made. 

A data-driven methodology for urban electricity demand modelling was tested for Dutch municipalities, where 
a combination of multiple datasets (reference electricity demand profiles, local customers composition data, 
and aggregated local annual demand data) was used to train a regression model for local electricity demand 
prediction with an application for the Local Energy Transition [3]. 

To sum up, energy characterisation of existing buildings at multiple geographical levels (district, city, region) 
can be used to understand energy use trends, correlate the energy consumption to characteristics of the 
territory, and identify specific locations where there are buildings with poor energy performance. Nonetheless, 
it is often difficult to obtain this characterisation, which can be tackled from different points of view, with widely 
varying levels of accuracy and associated costs. 

Typically, in the case of bottom-up approaches, the characterisation of the energy performance of a given 
region is performed using building energy simulation (BES) models. In these cases, a calibration of the simulated 
data against real monthly or annual consumption should be considered, which aims to avoid performance gaps 
between reality and simulations. Nonetheless, this type of calibration procedure usually ignores the changes in 
the behaviour of the users over time, and in some cases, the dynamics between the real consumption and the 
climate conditions. Moreover, in several methodologies, a subset of representative buildings should be 
considered to depict the archetype of a certain region. Hence, large biases against reality could be done in the 
sampling or the calibration procedures. All these factors result in high inaccuracies in the estimates of energy 
performance. 

A statistical methodology that uses the actual data to estimate the KPIs of the energy consumption without 
additional calibration procedures, sampling of buildings, or input data from customers, would be interesting, 
especially in terms of scalability. The expected benefits are to support the public (e.g. Regional Energy Agencies) 
and the private sector (e.g. DSO's, utilities, ESCO's, and companies working in the building renovation sector) to 
understand energy efficiency and energy use trends and their relation with building stock characteristics and 
socioeconomic factors. Indeed, this methodology should allow correlating the energy usage and the territory 
massively, providing a better understanding and interpretability of a region, enabling to detect energy 
efficiency-related faults and business opportunities. Additionally, a second benefit of this methodology is that 
it could be applied over large areas (a whole province, or an entire region or even a country), once the required 
public data would be available, which seems to be possible for several EU countries thanks to the INSPIRE data 
harmonisation and the steady growth of open data platforms. Compared to other methodologies: no 
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simulations, calibration procedures, user surveys, or significant human interaction are required. Thus, it can be 
deployed with less effort in terms of both computational and human resources. 

In this report, a data-driven methodology is presented to address the problems related to this characterisation. 
In essence, it consists of the correlation of the energy consumption, weather data, and the building stock and 
socioeconomic characteristics to obtain the normalised energy trends and KPIs that describe the consumption 
of each district. 

Nevertheless, some issues still exist nowadays regarding the availability of energy consumption datasets at the 
needed aggregation levels, both in terms of geographical resolution and time frequency. Therefore, taking into 
account the higher implementation in certain EU countries of the Advanced Metering Infrastructure (AMI) in 
electricity consumption, it is much more feasible to obtain detailed sets for this type of energy than for the rest 
(gas, biomass, oil). In summary, and as a first validation of the data-driven characterisation methodology 
presented in this report, electricity consumption has been considered the only energy resource to be 
characterised due to the problems in obtaining detailed data for the other main energy resources used in EU 
buildings. Thus, the requirements are the aggregated hourly electricity consumption by type of use (residential, 
industrial or services) and the related building stock, meteorological data and socioeconomic conditions of each 
geographical area in analysis. 

The methodology is validated within the Spanish province of Lleida, and the main data sources used are hourly 
electricity consumption datasets aggregated at postal code level from the Datadis platform, INSPIRE 
harmonised datasets of the Spanish cadastre, weather data from an online service and socioeconomic datasets 
from the Spanish National Statistics Institute. The main goal is to provide a geographically aggregated 
characterisation in terms of building performance and usage trends of the electricity consumption, both for the 
residential and public/tertiary buildings. 

ELISE Webinar: Data-driven methodology for electricity characterisation of districts 

The methodology and its application described in this report have been also presented in the ELISE Webinar: 
Data-driven methodology for electricity characterisation of districts, held on 15.07.2021. Further details and 
the webinar recording are available in the dedicated JoinUp page. 

1.1 Preliminary approaches of the methodology 

During the development, implementation, and validation of the characterisation methodology, several 
approaches were discussed from December 2019 to February 2021, and new datasets become publicly 
available during that period. 

In an initial phase, aggregated electricity consumption from Datadis platform was not available. Hence, the 
characterisation at a certain geographical level was intended to be an aggregation of several individual 
characterisations of a representative number of consumers, sufficient to represent all customers' general 
distribution at that level. The focus groups were the residential sector and the public buildings sector. In the 
first case, CIMNE could provide a great amount of residential consumption datasets for several postal codes 
located around Barcelona and Girona (Spain). For the second one, additionally to the CIMNE public buildings 
datasets gathered during several European projects in partnership with the Government of Catalonia, the 
consumption data of public buildings available through open data sites could also be considered. Although the 
procedure was different from the one finally implemented and validated, the original goal remains unchanged 
from the beginning of the project: to exploit the usage of metering data and INSPIRE harmonised datasets to 
provide a characterisation of energy consumption in the residential and public buildings sector to support 
government and private entities regarding energy efficiency and energy use trends. 

As mentioned in the introduction, an attempt has been made to include energy resources such as gas, biomass 
and oil in the analysis. Then, the interpretation of the characterisation could be understood as the performance 
of the buildings and their occupants against the total energy consumption produced in the buildings, regardless 
of the rate of implantation of the different energy resources in the building equipment (heating boilers, chillers, 
cooking equipment, domestic hot water). Nonetheless, the actual availability of big datasets containing high-
frequency gas, biomass or oil consumption is extremely low, especially for the residential sector. This point is 
very significant in Spain, where the validation was conducted, and only electricity consumption data is really 
available for a considerable number of customers. In the mid and long term, this fact should evolve positively 
to implement energy data-driven characterisation techniques due to the pronounced tendency to electrify all-
kind of building systems and the strong implementation of advanced meters for gas consumption. 

https://joinup.ec.europa.eu/node/704512


7 

2 Description of the characterisation methodology 
The data-driven methodology presented in this report aims at characterising the electricity consumption of large 
areas starting from the district level (postal code, in the case of Spain) to upper levels. In essence, it obtains 
data from multiple sources and aggregates this information to the least common geographical level to merge 
the information and provide statistical models used to estimate the drivers of electricity consumption related 
to location. The outcomes are shared through a web dashboard that depicts the detailed electricity consumption 
characterisation for each postal code and an interactive map to benchmark the complete set of indicators 
between all postal codes. As can be seen in section 3, the validation of this methodology is tested over the 
Spanish province of Lleida (>12500 km²) [4]. 

2.1 Data collection and refinement 

2.1.1 Cadastre data 

Figure 1. Spanish Cadastre layer visualised in QGIS 

 
Source: CIMNE - BEE Group own elaboration and Open Street Maps 

In the context of this project, building information is gathered from the national cadastral datasets. The data 
format used by these entities across EU countries is harmonised using the INSPIRE Buildings theme [5]. In the 
case of Spain, the massive downloadable public information of cadastral datasets is available through ATOM 
files [6], where the GML files regarding "buildings" and "building parts" can be obtained for all the municipalities 
(see Figure 1). 

Basically, those files contain a set of georeferenced information for each building and, depending on the type 
of information described; each variable could be grouped in:  

1. Geometry information contains knowledge about 2D geometries of the building parts, gross floor area, 
number of floors above and below ground. 

2. Typology information, which contains variables, such as the major current use, the total number of 
dwellings and building units. 

3. Construction information, which contains the actual conditions of the building and the year of 
construction.   

Even if the amount of information is really extensive, it has to be considered that multiple drawbacks exist 
when using cadastral data gathered through ATOM files. In the case of the variables belonging to groups 2 and 

https://www.zotero.org/google-docs/?ltHTgl
https://www.zotero.org/google-docs/?QUdZlK
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3 described before, it should be considered that many data inaccuracies can exist compared to real conditions. 
Some of the encountered issues are described in the following:  

● Problems when dealing with buildings with several main uses (services + residential, or industrial 
+ services). 

● Non-realistic dwelling areas based on the gross floor area due to the influence of large parking 
and/or community areas.  

● Some of the building information not available for all the regions (Buildings located in the 
countryside vs. those located in cities). For instance, in certain rural areas of the Lleida province, 
there's up to 30% of buildings without current use information. 

In order to avoid unrealistic estimations when the cadastre information is aggregated to district geographical 
levels and beyond, some filters where considered. 

2.1.2 Socioeconomic data 

The economic status and the demographics indicators considered in this methodology are gathered through 
national statistics institutes. In the case of Spain, this data can be obtained from an experimental project of the 
Spanish Statistical Office (INE), named "Household income distribution map" [7]. This project proposes 
constructing statistical indicators of the level and distribution of household income at the municipal and census 
tract geographical levels from the link between INE's demographics information and the tax data from the 
National and the Autonomous Treasuries. 

Some of the indicators obtained at the census tract geographical level are the average incomes per person and 
household, incomes main sources, incomes quantile 80 and 20 ratio, number of inhabitants, average population 
age, percentage of people under 18 and over 65, number of people per household, percentage of single 
households, and Gini index. 

2.1.3 Electricity consumption data 

In case of bottom-up characterisation methods, the electricity consumption of a representative sample of 
residential and public buildings should be used to estimate at an individual level. Afterwards, aggregate the 
individual characterisation indicators to the geographical level of interest. Nonetheless, mainly due to data 
protection laws, it is unfeasible to obtain public or freely available datasets with significant consumption points 
over large geographical areas. Therefore, the consumption data used to validate the presented methodology is 
natively aggregated to the postal code geographical level. In the case of Spain, Datadis web platform [8] 
supplies the historical hourly electricity consumption aggregated by postal code, economic sector, tariff and 
DSO for the whole country. Most Spanish DSO's participate in this platform, which provide electricity services to 
around 28 million consumption points. The aggregated hourly consumption is gathered through the Datadis API, 
which requires authentication using an FNMT electronic certificate [9] of a legal entity. On average, most of the 
postal codes contain two years of historical data. The aggregated information for each obtained item through 
the API (a single day, postal code, economic sector, tariff, and distributor company) is the total consumption, 
the consumption at each hour of the day and the number of online contracts. 

  

https://www.zotero.org/google-docs/?zs2cLC
https://www.zotero.org/google-docs/?PQyBO5
https://www.zotero.org/google-docs/?m3Rvs6
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Figure 2. Aggregated electricity consumption of a subset of tariffs in a single postal code 

 
Source: CIMNE - BEE Group own elaboration and Datadis 

Figure 2 depicts the average hourly residential electric power per built area and tariff in the postal code 
related to Pardinyes neighbourhood in the city of Lleida. As it can be seen, data contains a significant gap during 
November 2019, and multiple energy trends and seasonality's exist between different tariffs. Due to this fact, 
a synthetic tariff is created, named "all", weighting its values using the number of contracts per each of the 
tariffs. This aggregated tariff improves the representativity of each postal code when the results are visualised 
over a map. 

In Spain, during the period of data represented in this report (2018-2019-mid 2020), the electricity tariffs 
framework for a contracted power of less than 450kW is the following: 

Table 1. Electricity tariffs description in the Spanish market 

Access toll name Time-of-use structures Time of use Contracted power range 

(and voltage level) 

2.0 A No <10kW (Low voltage) 

DHA Yes (2 periods) 

DHS Yes (3 periods) 
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2.1 A No >10kW and <15kW (Low voltage) 

DHA Yes (2 periods) 

DHS Yes (3 periods) 

3.0 A Yes (3 periods) >15kW (Low voltage) 

3.1 A Yes (3 periods) <450kW (High voltage) 

Source: Red Eléctrica Española (REE) 

In general, medium and small-sized residential dwellings and small shops use tariffs 2.0, which allows up to 
10 kW of contracted power, and offers three time-of-use structures: A (fixed during the whole day), DHA (Lower 
energy price during night and morning), and DHS (3 periods, lower energy price during the night, medium during 
morning and evening, and higher during afternoon). DHS time-of-use structure is normally useful for people 
who have electric vehicles. In big-sized houses and medium-sized shops or small offices, users tend to contract 
tariffs 2.1, which allows a contracted power between 10 and 15 kW with the same time-of-use tariffs than the 
2.0 access toll.  

The 3.0 tariff is usually contracted in very singular residential houses with lots of electric equipment, commercial 
buildings and medium-sized industries. Finally, the 3.1 tariff and beyond are contracted by big industries, 
normally located in large industrial areas, as they need high voltage energy distribution for their applications. 

2.1.4 Weather data 

Outdoor weather conditions are obtained through the Darksky API service for the whole area in analysis. In 
essence, the historical weather data for the same period is downloaded for each one of the postal codes 
considered. The most important variables in our analysis are the outdoor temperature and wind speed. With 
these variables, a data-driven model is used to infer, if it exists, the weather dependence of the electricity 
consumption during the heating and cooling periods. 

2.2 Geographical levels 

Data used in the framework of this energy characterisation is related to multiple geographical levels. In this 
section, each of the available geographical levels is described. Moreover, in the data integration section, it is 
described how all data sets are normalised to the same level, which is a necessary step to analyse the datasets. 

2.2.1 Building level 

Data referenced to this level contains the exact location where the building is physically placed. Cadastral data 
is an example of a dataset with this geographical level. Apart from cadastral information, and mainly due to 
privacy issues, there are few other open datasets available at this level. Nonetheless, it is worth mentioning 
that this geographical level would be the most interesting one due to its flexibility in terms of aggregation. For 
instance, characterisation results could be easily aggregated by streets, blocks of buildings, neighbourhoods or 
custom aggregations which could provide differences within the census tract or postal code levels. 

2.2.2 Postal code level 

The postal code is a code that is assigned to different areas or places in a country. Initially, it was a code to 
facilitate and mechanise the delivery of mail. It usually consists of a series of digits, although in some countries, 
it includes letters. In the case of Spain, it is composed of the province code (two first digits) and then three more 
digits which represent each different postal code. The institution that defines them is the "Sociedad Estatal 
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Correos y Telégrafos, S.A.". Many other companies, or even the government, widely use this geographical level 
to refer their data to its location; it strikes a good balance between anonymity, simplicity and detail. 

The shape of each postal code is obtained from KML files stored in codigospostales.com [10]. 

2.2.3 Census tract level 

Census tracts are the lowest level units for disseminating statistical information (e.g. from censuses) and are 
also used to organise electoral processes. Being operational in nature, they are always defined by more or less 
fixed sizes: the number of statistical surveys that an interviewer agent can distribute and collect for population 
counting purposes in the time of one or two months, or the number of people who can vote in a ballot box 
without crowding on an election day. 

The multiple purposes of the sections require special attention to be paid to their demarcation and size. 
Therefore, they are defined by easily identifiable boundaries (rivers, streets, etc.) and have a size of between 
1,000 and 2,500 inhabitants, unless the municipality concerned has a smaller population. The size is given by 
the Electoral Regime Law, which assigns a minimum and maximum population measured in number of electors. 
In addition, it is recommended that the size of a section should not exceed 2,500 inhabitants to facilitate the 
operation of the pollsters. 

This law determines that it is up to the provincial delegations of the Electoral Census Office to establish the 
number and limits of the census sections. Normally, the National Statistics Offices use the census tracts as the 
lower level of their statistical analysis to avoid privacy issues when dealing with private data that must be 
anonymised. 

The most updated shape files of the census tract in Spain are obtained from the National Statistical Office [11]. 

Figure 3. Representation of the census tract (colour-filled) and postal code (red-framed) geographical levels in a mixed 
urban-rural region 

 
Sources: CIMNE - BEE Group own elaboration and OpenStreetMap 

  

https://www.zotero.org/google-docs/?HYUi4l
https://www.zotero.org/google-docs/?fLTbz4
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Figure 4. Representation of the census tract (colour-filled) and postal code (red-framed) geographical levels in an urban 
region 

 
Sources: CIMNE - BEE Group own elaboration and OpenStreetMap 

In Figure 3 and Figure 4, the differences between the geographical levels are depicted. The census tract 
polygons are painted in multiple colours, whereas postal codes are the red-outlined areas, and the buildings are 
represented in a darker tone between the streets/roads. The census tract level offers much more detail for 
urban areas compared to the postal code one. The number of blocks of buildings inside a certain census tract 
is much lower than in the postal code level. However, for rural areas, the representativity of both levels is very 
similar, as they usually represent areas of similar size. 

2.3 Data-driven electricity characterisation at postal code geographical level 

The characterisation methodology consists of the following major steps: 

— Data cleaning of the electricity consumption data. 

— Clustering the daily load curves to infer the most representative usage patterns. 

— Estimate a data-driven electricity consumption model using the calendar, clustering results, and weather 
conditions as exogenous variables. 

— Disaggregate the raw electricity consumption in baseload, heating and cooling components using the model 
estimated in the previous step. 

2.3.1 Case study 

To increase the understandability of the following subsections, one postal code is selected to depict intermediate 
and final results of the characterisation. The selected one is the 25006, which is related to the Zona Alta 
neighbourhood in Lleida (see Figure 5). It's known as one of the most well-being districts in Lleida, at least 
compared to the ones near the city centre. Some of its socioeconomic characteristics are an annual incomes 
average of 36,498€ per household, an incomes quantile 80-20 ratio of 3.23 (one of the highest of the province), 
an average population age of 47.42 years old, with 26.95% of people older than 65 and 13.59% under 18. 
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Figure 5. Postal code selected for the case study 

 
Sources: CIMNE - BEE Group own elaboration and OpenStreetMap 

2.3.2 Data cleaning 

Raw data from electricity distribution companies usually contains several gaps or inaccuracy problems due to 
metering or communication issues. In this case, even considering the use of aggregated consumption data at a 
postal code level, which alleviates the influence of poorly measured data at some particular sites, some 
problems were detected during the initial quality checks. Hence, it became mandatory the implementation of a 
data cleaning process before the analytics and modelling steps. 

One of the following conditions must be accomplished to consider a certain consumption as an outlier: 

1. Hourly consumption equal to 0. In the case of electricity consumption aggregated to the postal code 
level, it is certainly impossible to have a zero consumption considering the number of contracts 
available per each postal code. 

2. Hourly consumption lower than the maximum feasible contracted power, depending on the tariff 
restrictions. For instance, the contracted power must be lower than 10 and 15 kW, respectively, for 2.0 
and 2.1 tariffs. 

3. Hourly consumption is six times higher than the 3rd quartile of all the historical consumptions. 

4. Hourly consumption outside the right moving average +- 3 moving standard deviations, considering a 
window of 15 days. 

Figure 6 shows the upper and lower bounds describing the limits for the outlier's detection. The multiple 
combinations of tariffs and economic sectors within postal code 25006 are shown. 
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Figure 6. Electricity consumption time series of the case study and the outlier's threshold considered in each series in 
green 

 
Source: CIMNE - BEE Group own elaboration 

2.3.3 Inferring usage patterns 

Clustering daily load curves can be used to detect similar usage patterns. The representative groups obtained 
would be used along the algorithm to increase the reliability of the characterisation due to the consideration of 
the multiple seasonalitys in the building that could not be related to calendar variables, such as different 
electricity load profiles during weekdays and weekends, or weather conditions. 

Clustering can be achieved using various algorithms, which differ in their way to define the constituents of a 
cluster and how to find them efficiently. The best-suited clustering algorithm depends on the particular data 
set and the intended use of the results.  

In this study, the achieved outcome of the clustering technique is a set of centroid curves for 24h electrical 
load, which will define the typical load patterns for each user. 

The Z-score is calculated for each hour of the day following the equation taking again yt as the energy 
consumption data at time t, but the width N, in this case, is equal to the entire length of the data set (no window 
is applied). 

 

Among the different clustering techniques, distribution-based clustering was chosen because it is the one that 
most closely resembles the way energy measurement data sets are generated by sampling random objects 
from a distribution.  

Let Y = Y1,Y2,Y3,...,Yn  be a sample of n independent identically distributed observations. 

In this case, for example, the observation Y1 is day 1 with its values in the 24 corresponding variables (each 
hour of the day is a variable), that is to say, Y1 =y00:00, y01:00, ..., y23:00. (The graphical interpretation would be a 
point in a 24th-dimensional space.) The distribution of every observation is specified by a probability density 
function through a finite mixture model of G components, which takes the following form 

 

where ψ = { π1,..., πG−1, μ1,..., μk,..., μG, Σ1,..., ΣG} are the parameters of the mixture model, Nk(xi;μk, Σk) is the kth 
component Gaussian density for observation xi with parameter vector (μk, Σk), and (μ1,...,μG-1) are the mixing 
weights or probabilities (such that πk > 0, Σπk = 1, and G is the number of mixture components (in the model-
based approach to clustering each component is associated with a group or cluster). Assuming that G is fixed, 
the mixture model parameters ψ are usually unknown and should be estimated.  
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In the case described above, it is assumed that all component densities arise from the same parametric 
distribution family: the Gaussian. Thus, clusters are ellipsoidal, centred at the mean vector μk, with geometric 
features, such as volume, shape and orientation, determined by the covariance matrix Σk. 

The mixture of multi-dimensional Gaussian probability distributions that best fit the input dataset is estimated 
via the expectation-maximisation algorithm for maximum likelihood estimation. The covariance (Σk) structures 
for parameter estimation of Gaussian mixture models are the following: 

— Spherical: variance is equal in all directions (where the "directions" are the 24 variables, one for each hour 
of the day). 

— Diagonal: each direction has a different variance. 

— Ellipsoidal: allows covariance terms to orient ellipse in different directions plus constraints regarding shape 
and volume of the Gaussian density functions. 

The Gaussian Mixture Model is computed for G clusters between 2 and 10. 

The optimum total amount of clusters is selected by using the Integrated Completed Likelihood (ICL) criterion 
and the model fit is done using the Bayesian Information Criterion (BIC).  

The key difference between the BIC and ICL is that the latter includes an additional term (the estimated mean 
entropy) that penalises clustering configurations exhibiting overlapping groups. While BIC allows a very efficient 
fit for the mixture model, ICL allows a good estimation instead of the number of clusters appearing in the data. 

In Figure 7, the ICL vs the number of clusters (components) is shown for an arbitrary user; in this case, the 
model EVI (name for diagonal, equal volume, varying shape) with G equal to 6 was selected by the maximisation 
of the ICL. 

Figure 7. Selection of optimal number of clusters 

 
Source: CIMNE - BEE Group own elaboration 

According to reduction dimension theory, the 24G space may be reduced to one with several directions equal 
to min{24, G - 1}. Using the representation in these directions, the contours of the fitted Gaussian density 
distributions are shown in Figure 8. 
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Figure 8. Multiple gaussian distributions representing each detected cluster 

 
Source: CIMNE - BEE Group own elaboration 

The plot shows the representation in the particular Dir1 x Dir2 space. The ellipses represent the contours of the 
fitted Gaussian density functions. The data points are painted in different colours and shapes, representing the 
result of the clustering. 

The centroids are the daily load characteristic pattern for each cluster. To obtain the centroids, the following 
average is calculated over all the days belonging to each cluster: 

 

where cs,h is the value for the centroid s at hour h, ns is the total amount of days belonging to cluster s and yi
s,h 

is the electricity consumption data (normalised over a day) for day i, hour h, clustered in s. 

A clustering-classification approach with different subsets of days is considered to infer the usage patterns not 
accounting for the weather dependence component. In a first step, the clustering technique is used to detect 
the patterns from a subset of the daily load curves when low, or even null, weather dependence is expected 
(during March, April, May, September, October, and November). Then, in a second step, a classification of the 
rest of the daily load curves is made using the clustering model obtained in the first stage. 

The results of the clustering technique over the residential customers with tariff 2.0A in the case study area 
are depicted in Figure 9: 
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Figure 9. Clustering of the daily load curves, only using days that are presumably not affected by weather conditions. 
These six profiles represent the usage patterns of the case study 

 
Source: CIMNE - BEE Group own elaboration 

The red curves are the usage patterns, and the black curves are the actual daily load curves used during the 
training phase of the clustering procedure. Subsequently, using the same representation, the results of the 
classification stage are depicted (see Figure 10), where all the daily load curves, including winter and summer 
periods, are considered. As seen, the weather conditions' influence tends to increase energy consumption in 
certain usage patterns. However, in all cases, they maintain the relative shape in terms of hourly relative 
consumption concerning the overall daily consumption. 

Figure 10. Classification of the complete series using the representative usage patterns detected with the clustering 
technique 

   
Source: CIMNE - BEE Group own elaboration 
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2.3.4 Data-driven model 

The technique used to characterise the electricity consumption consists of a penalised multiple linear regression 
model. The terms of this model are explained more in detail in the following subsections. However, in essence, 
the consumption is decomposed into multiple parts: the usage patterns estimated with the previous clustering-
classification technique; the calendar features, which allow modelling the hourly and weekly baseload patterns; 
and the weather features, which enable to estimate the increase in consumption when severe weather 
conditions occur. 

The formula considered for the penalised regression model is: 

 

Where Qe
t is the electricity consumption at instant t; Bt is the baseload terms interacting with the usage patterns 

(st), Ht and Ct are the weather dependence terms, during heating and cooling periods, respectively,  and 
interacting with the hour of the day (dht). Lastly, 𝜺𝜺t is the error term of the model with 𝜺𝜺t ~N(0,𝝈𝝈 2). 

2.3.4.1 Baseload terms 

Normally, the baseload component is one of the most significant parts of electricity consumption. The formal 
definition of baseload consumption consists of the minimum level of demand on an electrical grid over a span 
of time. However, in the framework of this methodology, it is understood as hourly consumption with no weather 
dependence at all. Hence, the baseload component only depends on the representative usage pattern and the 
calendar variables of a certain day.  

Given the regression model presented, differences in consumption along the week and the day are considered.  
For both of them, a Fourier series describing the weekly and daily cycle was used. This decomposition 
transformation reduces the dimension of the fitting problem in cases where input variables are periodic. 

The baseload terms are described in detail below: 

 

 

Where ⍵b is the linear intercept ; SNd(pd
t) and SNw(pw

t) are the Fourier series of the daily and weekly cycles, where 
⍵b,w,n,cos , ⍵b,w,n,sin , ⍵b,w,n,cos  and ⍵b,w,n,sin  are the coefficients estimated within the regression model, Nd and Nw are 
the number of harmonics of both series, and finally, pd

t and pw
t are the relative part the day or the week at 

instant t. The dht and wht variables regard the hour of the day (dht), or the week (wht), at instant t. 

The advantage of using the Fourier series is that it avoids the usage of an excessive number of dummy variables 
which would require the fit of all-possible combinations (24 + 168 dummy variables, in the case of fitting the 
regression model using an hourly-frequency dataset, multiplied by the number of usage patterns detected in 
previous steps). This transformation reduces the fitting problem to the number of harmonics considered 
(normally, between 3 and 5 harmonics per cycle), which are enough to infer the underlying correlation between 
the electricity consumption and the seasonal cycle in study without a considerable loss of information. 
Additionally, an interesting feature of the Fourier series transformations is that, in some sense, it coerces the 
regression to maintain a relationship between closer parts of the cycle and between the beginning and the end 
of the cycle itself. 



19 

2.3.4.2 Weather dependence components 

Besides the baseload terms, heating and cooling dependent components account for the consumption made 
due to the weather conditions of the building location, the energy performance and characteristics of the 
buildings, and the operating behaviour of the HVAC systems.  

This component estimates the increase in consumption due to weather severity. It is a key factor in 
understanding electricity consumption and infer characteristics of how the reference building/dwelling in a 
certain zone is composed and operated. 

Ideally, one of the most interesting building characteristics that could be inferred using this type of modelling 
is the building envelope's Heat Transfer Coefficient (HTC). This coefficient highly depends on the considerations 
made during its estimation. For instance, depending on the consideration or not of certain components, such as 
ventilation or air leakage factors, the HTC should be differently understood. If ventilation and air infiltration 
features, the envelope represents all the surrounding surfaces of the building in contact with the outdoors, 
ground or other buildings. If it is not included in the model, the envelope represents, additionally to the 
surrounding surfaces, the energy transfer due to ventilation and infiltrations. 

Furthermore, to estimate HTC, some additional variables are needed, such as indoor temperatures or 
performance characteristics regarding the HVAC systems installed in the buildings. Without this additional 
information, it becomes nearly impossible to estimate the HTC. Thus, in the framework of this methodology, 
instead of characterising the HTC as a heat energy quantification, an estimation of electricity consumed over 
the baseload due to an increase in indoor-outdoor temperature differences is performed.   

To do so, and considering that only the wind speed and the outdoor temperature are available, multiple-input 
transformations over these features are considered to account for the different interactions between the 
electricity consumption and the weather conditions. 

The first transformation considers the temperature differences between a theoretical balance temperature and 
the actual outdoor temperature. The main reason is to overcome the non-linearities between the outdoor 
temperature and consumption. Furthermore, different balance temperatures are considered during the heating 
and cooling season and during multiple parts of the day. This feature helps the model to characterise better 
certain situations. For instance, regions that require heating and cooling needs at the same time, or significant 
differences of weather dependence along the day. The increase in consumption due to an increase of this 
feature tends to be more related to ventilation systems without heat recovery units or window operations. 
Physically, it could be understood as colder or hotter outdoor air, compared to indoor air, enters the building, 
and the HVAC systems need to react to this fact (increase the consumption). 

The second transformation uses the wind speed product and the theoretical temperature difference obtained 
by the first transformation to correlate consumption and the air infiltrations of the building. Those are the 
accidental introduction of outside air into a building, typically through cracks in the building envelope, doors, 
windows, and chimneys. It is caused by wind, negative pressurisation of the building, and air buoyancy forces 
known commonly as the stack effect. Normally, the higher is the wind speed and the temperature difference, 
the more energy consumption is made due to air infiltrations. Making a similar interpretation to the first 
transformation feature, HVAC systems need to increase the consumption to maintain the normal indoor thermal 
conditions. 

Finally, another useful transformation is the consideration of low pass filters in the inputs of the model. Due to 
building inertia and heat transfer through the envelope, the indoor temperature of buildings does not react 
instantly to changes in the outdoor temperature. Then, to linearise the correlation between energy losses and 
energy consumption, a first-order low pass filter of the outdoor temperature To with a certain 𝛂𝛂 parameter is 
considered. This tuned temperature is called To,lp, and, afterwards, it is transformed using the same differential 
process used in the first transformation. The low pass filter allows retaining the slow undisturbed variations 
(signals with a low frequency), while the fast variations are damped (filtered). It allows transforming the 
temperature used as input in the models into a variable that better represents the system's dynamics to 
enhance the fit of the model. It assumes that the dynamics of the buildings can be described by lumped 
parameter RC models. This assumption means that the response in consumption due to envelope energy 
transfers can be modelled as a first-order low pass filter. 

To summarise the following terms are considered: 
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Where: ⍵+
h,lp is the always-positive linear coefficient for the heating dependent term that considers the thermal 

inertia of the reference building (Th,lp
t), which is calculated as the difference between balance heating 

temperature (Tbal,h
dht) at the part of the day (dht) and the low-pass filtered outdoor temperature (To,lp

t) at instant 
t;  ⍵+

h is the always-positive linear coefficient for the raw heating dependent term(Th
t), which is usually related 

to ventilation heat losses, and it is calculated as the difference between balance heating temperature (Tbal,h
dht) 

at the part of the day (dht) and the raw outdoor temperature (To
t) at instant t; ⍵+

ah is the always-positive linear 
coefficient for the heat losses due to air infiltrations (Ah

t), which is the wind speed (Ws
t) multiplied by the raw 

heating dependent term(Th
t) at instant t; ⍵+

c,lp is the always-positive linear coefficient for the cooling dependent 
term that considers the thermal inertia of the reference building (Tc,lp

t), which is calculated as the absolute 
difference between balance cooling temperature (Tbal,c

dht) at the part of the day (dht) and the low-pass filtered 
outdoor temperature (To,lp

t) at instant t;  ⍵+
c is the always-positive linear coefficient for the raw cooling 

dependent term(Tc
t), which is usually related to ventilation heat gains, and it is calculated as the difference 

between balance cooling temperature (Tbal,c
dht) at the part of the day (dht) and the raw outdoor temperature (To

t) 
at instant t; ⍵+

ac is the always-positive linear coefficient for the heat losses due to air infiltrations (Ac
t), which is 

the wind speed (Ws
t) multiplied by the raw cooling dependent term(Tc

t) at instant t. 

In addition, the ⍺ value of the outdoor temperature low-pass filter depends on the tsampling, which is the number 
of measures per hour, and the 𝝉𝝉 thermal time constant, which is the number of hours needed by the reference 
building to react over a certain change in outdoor temperature. Figure 11 provides an example of different 𝝉𝝉 
(e.g. thermal time constant) values and the step function between input (e.g. raw temperature) and output (e.g. 
low-pass filtered outdoor temperature). 

Figure 11. Example of a first-order low pass filter depending on a set of different time constants 

 
Source: CIMNE - BEE Group own elaboration 
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Last but not least, all the temperature differentials and air leakage terms are multiplied by a dummy variable 
which coerces weather dependence terms to 0 if a certain usage pattern has no weather dependence (dst). 

2.3.4.3 Impact of holiday seasonality's 

After the first tests of the implementation, it was noticeable that the influence of holidays tends to generate 
significant changepoints in electricity consumption for certain regions, sectors and periods of the year. In most 
cases, the holidays periods were national holidays, Fridays or Mondays between national holidays and 
weekends, winter and summer weekends, and summer vacations. Nonetheless, it was difficult to find a feature 
that correlates linearly to the holidays component of the electricity consumption due to the different local 
casuistic of every region along the year. For instance, some of the features that could be used are number of 
tourists, second homes occupancy or number of hotel bookings at the postal code level and daily frequency. 
After successive attempts, this information was impossible to find at the desired aggregation levels. 

Therefore, another strategy is considered in the final implementation. The data-driven characterisation model 
is fitted using only those days that are not suitable to be holidays. Then, the whole period is predicted using the 
trained model. The residuals between the actual and predicted data during the holidays period are considered 
the holiday's component. In addition, this holidays dependence component is estimated only when a difference 
of at least 20% was detected between the RMSE of the holidays / non-holidays period. 

2.3.4.4 Impact of Covid-19 lockdown 

The Covid-19 Spanish lockdown, from 15 March to 21 June 2020, affected the energy consumption drastically 
either in residential, industrial or public sectors. Changes in business activities, user behaviour and building 
occupancy caused this situation. For the case study presented, the period analysed depends on the availability 
of electricity consumption data for each postcode. In general, the evaluated period comprised from mid-2018 
to mid-2020. Thus, the data used to validate the characterisation methodology was fully affected by this 
lockdown period.  

To quantify the decrease or increase in consumption due to the lockdown, a set of terms are introduced into 
the regression model, which adds an interaction of the lockdown period to the baseload terms and a set of re-
adjusted weather dependence coefficients during the period. 

Another consideration made during the period was that the holidays' affectation must be fixed to zero, as people 
should stay at home during those periods, except for specific purposes. Hence, the affectation of holidays, 
seasons or weekends were residuals compared to the normal behaviour. 

 

2.3.4.5 Training of the model 

The electricity time series considered during the training phase changes slightly depending on the economic 
sector considered. The reason behind this discretisation is to consider the most representative area factor for 
each economic sector, as the outcomes of the characterisation are afterwards compared among different 
regions, and the built area normalisation becomes a key factor in the assessment of the energy performance 
of buildings. The ratios considered for each location and existing tariffs are the following: 

— Residential sector:  

 

— Industrial / Agriculture / Offices / Retail sector: 

 

The model's training is recursively performed every three months over a one-year window (see Figure 12). This 
fact provides information on how the reference building is evolving in time. So, the characterisation coefficients 
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become, in some sense, time-variant. The original hourly frequency of the input time series is resampled to 4 
hours to decrease the computational time. 

Figure 12. Model training periods to characterise the evolution in time of the dependencies 

 
Source: CIMNE - BEE Group own elaboration 

Regarding the estimation of the unknown terms, most of them are inferred through the maximum likelihood 
technique implemented in the penalised function of the R package Penalised [12], where the whole regression 
formula is estimated. However, several coefficients cannot be solved using this methodology, as they are 
variables that transform the model inputs themselves. Examples are the thermal time constant of the reference 
building, the number of harmonics of the Fourier series, or the balance temperatures, among others. 

 

The optimisation of these coefficients is made using a Genetic Algorithm that iterates and evolves 
chromosomes (in this case, the coefficients' values to optimise), minimising a cost function. This function is the 
RMSE of the predicted consumption versus the real consumption data. 

2.3.5 Case study results 

In this section, the characterisation results of the case study of the 25006 postal code are explained in detail. 
These results exemplify some of the insights that can be inferred using this methodology. Firstly, Figure 13 
shows how prediction (red) fits the real data (black). 

  

https://www.zotero.org/google-docs/?vEEFou
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Figure 13. Accuracy of the characterisation model over distinct periods and tariffs 

 
Source: CIMNE - BEE Group own elaboration 

The accuracy of the models for each of the tariffs and evaluation periods are detailed in the next table: 

 

Table 2. Mean Average Percentage Error (MAPE) over distinct periods and tariffs 

MAPE (%) 2.0A 2.0DHA 2.1A 2.1DHA 3.0A all 

June 2018 - May 2019 4,52 7,05 5,78 8,28 7,03 5,33 

Sept. 2018 - Aug. 2019 4,31 7,65 5,90 9,30 6,89 5,02 

Dec. 2018 - Nov. 2019 4,18 6,25 5,56 8,36 5,92 4,73 

Mar. 2019 - Feb. 2020 4,37 5,95 6,35 9,79 6,52 5,34 

June 2019 - May 2020 4,15 5,32 5,57 8,69 7,35 4,77 

Source: CIMNE - BEE Group own elaboration 
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Table 3. Coefficient of Variation (CV) of the RMSE over distinct periods and tariffs 

CVRMSE [%] 2.0A 2.0DHA 2.1A 2.1DHA 3.0A all 

June 2018 - May 2019 5,75 8,53 7,34 9,99 8,94 6,45 

Sept. 2018 - Aug. 2019 5,68 9,08 7,56 10,68 8,55 6,55 

Dec. 2018 - Nov. 2019 5,65 8,06 7,40 10,27 7,84 6,27 

Mar. 2019 - Feb. 2020 5,95 7,73 8,25 12,40 8,61 7,03 

June 2019 - May 2020 5,56 7,06 7,06 11,03 8,58 6,27 

Source: CIMNE - BEE Group own elaboration 

For both of the selected metrics, the accuracy levels reach a good level for characterisation purposes. Another 
interesting correlation between real observations and predictions from the data-driven models is to compare 
the energy signatures, either using a daily (see Figure 14) or a 4-hours (see Figure 15) resampling. In both 
cases, it has been proved that the predictions follow the main tendency and the variance of the consumption - 
temperature correlation. 

Figure 14. Predicted daily energy signature versus actual data 

 
Source: CIMNE - BEE Group own elaboration 
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Figure 15. Predicted 4-hourly aggregated energy signature versus actual data 

 
Source: CIMNE - BEE Group own elaboration 
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Figure 16. Weather-dependent characterisation parameters of the model 

 
Source: CIMNE - BEE Group own elaboration 

The weather-related coefficients are depicted in Figure 16. Dark blue lines correspond to the characterisation 
during June 2019 - May 2020 and the yellow ones to July 2018 - June 2019. In the Y-axis, the different weather 
dependence coefficients in heating and cooling modes are depicted. Uraw heating values are the ⍵+

h model 
coefficients depending dht (hour of the day), Ulp heating values are the ⍵+

h,lp model coefficients depending the 
dht , Iair

 heating values are the ⍵+
ah model coefficients depending the dht , Tbal heating values are the heating 

balance temperature depending the dht , 𝝉𝝉 heating is the thermal time constant during the heating season, Uraw 

cooling values are the ⍵+
c model coefficients depending dht , Ulp cooling values are the ⍵+

c,lp model coefficients 
depending the dht , Iair

 cooling values are the ⍵+
ac model coefficients depending the dht , Tbal cooling values are 

the cooling balance temperature depending the dht , and 𝝉𝝉 cooling is the thermal time constant during the 
cooling season.  
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It can be seen that the coefficients across different tariffs vary largely, and tend to be higher, the more 
consumption is made by the tariff customers. This is a normal effect, as customers with 2.1 and 3.0 tariffs, 
tend to have more electricity or HVAC equipment on their dwellings or buildings. One of the most interesting 
outcomes is that this characterisation methodology accounts for the heating and cooling dependencies on 
different parts of the day. Hence, it could be inferred which part of the day the reference building or dwelling 
responds with more emphasis against the weather conditions. The balance temperature helps to understand 
the most common HVAC operation schedule during a typical day or how people or energy managers set the 
setpoints of their thermostats. Additionally, differences in the thermal time constant show differences in 
building's envelope characteristics among different tariffs. At a glance, it seems that 2.1 and 3.0 tariffs, in the 
residential economic sector are related to higher thermal inertia buildings or better insulation. 

Figure 17. Baseload-dependent characterisation parameters of the model 

 
Source: CIMNE - BEE Group own elaboration 

Regarding the baseload characterisation, the daily and weekly profiles for each usage pattern and tariffs are 
depicted in a similar way to the weather dependence coefficients. Figure 17 shows the evolution of the 
baseload along the period June 2018 - May 2019 to June 2019 - May 2020. The dark blue lines correspond to 
the most updated coefficients, and their remarkable differences are produced, in some cases, along the day of 
the week; even the daily profile is quite similar in terms of relative consumption between different parts of the 
day. 

In summary, using the regression model obtained, the decomposition of the three components (baseload, 
heating, cooling) is made for the whole period of data affected by each of the evaluation periods (June 2018 - 
May 2019 to June 2019 - May 2020). In the web application, the results of this disaggregation are much better 
represented using interactive plots. However, to show the results in a paper format, Figure 18 represents the 
daily disaggregation and the total consumption. For the sake of comparison between different periods, all the 
X-axis represent the months from January to December. 
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Figure 18. Daily electricity disaggregation results over distinct periods and tariffs 

 
Source: CIMNE - BEE Group own elaboration 

It is noted that, in all the cases, the significance of the baseload consumption is much higher than the weather 
dependence components. Also, stands out the high variance in the baseload component in tariff 3.0A, which 
corresponds to the weekdays-weekends variation. Another detail that can be seen in this plot is the impact of 
the Covid-19 lockdown in Spain during the months from March to May of the last evaluation period, especially 
in the case of tariff 3.0A, where allegedly some business buildings/dwellings are integrated in the residential 
sector subset of the Datadis database. The evolution of the heating and cooling components through the year 
seems to fulfil the normal behaviour during a natural year, considering the total consumption series and the 
climate data of the case study area. However, it is noted that the reference building of tariff 2.1DHA has the 
major impact in terms of heating dependency. So, it can be interpreted that customers with this tariff have 
more electricity resourced heating systems compared to the customers with other tariffs. 

 

2.4 KPIs of the characterisation 

Once the characterisation model is technically fitted, a set of KPIs is defined to make comparisons along with 
different areas, even when certain conditions of those areas differ widely from the point of view of the type of 
users, weather conditions, or building characteristics. To do so, simple units and plots were chosen to represent 
the model results. 
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Figure 19. Usage patterns detected over distinct tariffs 

 
Source: CIMNE - BEE Group own elaboration 

The results of the clustering and classification of the usage patterns are depicted using Figure 19. In the right 
pane, the different usage patterns in multiple colours are displayed. In grey, the interval of daily load curves at 
confidence 95% is shown. In the left pane, the daily classification is represented, and it can be observed that 
some patterns have continuity in time. Hence, they tend to evolve over time, depending on certain conditions 
that interact with energy consumption. These conditions are related to the weather, part of the year, holiday 
seasons and other unknown variables. 

Figure 20. Intraday summarised electricity disaggregation results over a natural year and distinct tariffs 

 
Source: CIMNE - BEE Group own elaboration 
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The heat map above uses the most updated characterisation model (Trained with data from July 2019 to June 
2020) to show the average kWh/year contribution of each electricity component by tariff through a natural year 
(X-axis, each step is one month) and the different parts of the day (Y-axis, each step are four hours). 

It can be seen that in the case of baseload, it seems that during the Covid-19, it has been incremented by about 
20% during the step 12 to 16h. This can be related to more people in their homes cooking during lunchtime. On 
the contrary, 3.0A customers decrease their consumption drastically during those months. The heating and 
cooling components can be observed in the different intraday dependencies along different tariffs and months 
of the year (see Figure 20). Maybe, again, the 3.0A customers clearly behave significantly different in terms 
of cooling dependency compared to customers with other tariffs. 

Additionally, to increase the understandability of the distribution between components and their evolution in 
time, Figure 21 represents the relative disaggregation on a natural year basis between the baseload, heating 
and cooling components, and the affectation of holidays and Covid-19 lockdown on the total consumption. 

Figure 21. Yearly-aggregated relative subcomponents of the electricity consumption over distinct periods and tariffs 

 
Source: CIMNE - BEE Group own elaboration 

For instance, regarding tariff 2.0A and the first period July 2018 to Jun 2019: the baseload component 
represents approximately 86% of the total annual consumption, the heating component the 11%, the cooling 
component represents 2%, and the holidays periods do not contribute at all. In the Covid-19 lockdown 
percentage, the percentage means the relative amount of affectation during the lockdown period (15 March to 
21 June 2020), not the total annual consumption. 

Hence, in terms of conclusions taking a look at the evolution of subcomponents in time, as a general fact, the 
tendencies are very similar along time. However, significant differences can be detected between different 
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tariffs. This corresponds to the different users/building typologies that characterise each tariff, as explained in 
the electricity consumption data section. 

Figure 22. Yearly-aggregated absolute subcomponents of the electricity consumption over distinct periods and tariffs 

 
Source: CIMNE - BEE Group own elaboration 

The absolute consumption contribution in kWh per natural year is illustrated in Figure 22. A decrease in total 
consumption in the 3.0A and 2.0DHA tariffs could be detected, especially the former, which is much more 
affected by the Covid-19 lockdown (approx. -20%). Then, in general, for the rest of the tariffs, the same amount 
of total consumption during the whole evaluation period is observed. And again, a similar conclusion to the ones 
detected using the relative disaggregation plot can be made. 

2.5 Data integration 

The implementation of this methodology consists of combining and analysing multiple layers of data, as shown 
in Figure 23. Considering that this information has heterogeneous characteristics, both in terms of frequency, 
geographical reference, and typology, one of the mandatory aspects of cross-analysis is the harmonisation of 
these layers. Specific aggregations and transformations are done for each input dataset. For instance, GML files 
of cadastre data are transformed to tabular data and aggregated to several geographical levels to be able to 
correlate cadastral information to socioeconomic conditions, electricity consumption and weather data. 

Python 3.8 is used to extract, transform, and load data processes, using QGIS 3.10 as a backend to analyse 
geospatial data. Regarding the electricity characterisation model, it is implemented in R 4.1. All these scripts 
store the raw, intermediate and final results to a MongoDB 4 non-relational database. 
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Figure 23. General view of the data flow and the architecture of the software 

 
Source: CIMNE - BEE Group own elaboration 

The relationships and transformations among the different databases are depicted in the UML model shown in 
Figure 24, where the classes are named using the following structure: 
"<name_of_the_provider>:<name_of_the_collection>". In the case of intermediate or final classes used by the 
data analytics backend or the frontend to visualise results, the provider's name is "beegeo". The calculations 
considered for the aggregations to higher geographical levels are explained in SQL format in yellow notes. 

The implementation of this UML representation is made using a combination of open-source analytics and 
storage technologies that allow validating the methodology over the province of Lleida. 
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Figure 24. UML of the data model used in the Spanish implementation 

 
Source: CIMNE - BEE Group own elaboration 
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3 Results of the validation 

3.1 Data visualisation 

The visualisation of the characterisation KPIs is made using an R Shiny frontend application, which has been 
developed on-purpose for this use case. In general, the data prompted into this web application is always read 
from the MongoDB database. However, some of the normalisation calculations are computed on-demand using 
the serialised characterisation models estimated in the analytics backend. The web application is mounted on 
Docker containers; hence, it should be horizontally scalable, which is an interesting feature for future 
deployment of the application, either for Spain or other EU countries. The time framework used in this validation 
concerns only data from the beginning of 2018 until June 2020, but the ETL processes are prepared to 
recursively obtain new data as soon as the inputs become available online. 

To sum up, the web application is divided into four tabs: KPIs on a map, Characterisation, Benchmarking and 
KPIs correlation. In the following subsections, a detailed explanation of the objectives and the outcomes that 
can be reached in each tab is provided.  

3.1.1 "KPIs on a map" tab 

Figure 25. Web application - "KPIs on a map" tab 

 
Source: CIMNE - BEE Group own elaboration 

This is the home section of the web application. Its purpose is to give a clear and simple visualisation of all the 
estimated consumption KPIs, cadastre information and socioeconomic indicators. The visualisation could be 
filtered by tariffs, economic sectors, periods, percentiles ranges, and an interesting feature is a tiny histogram 
representing the distribution of values of the variable depicted on the map, especially important when outliers 
can generate useless colouring legends. The web application users can see at a glance several key factors for 
the characterisation of the whole region in analysis. For instance, in this case, the total annual consumption per 
dwelling area is depicted. Therefore, even if the KPI is normalised by area, there are large differences comparing 
the postal codes near Lleida (city) and the rest of the province. At 50 km around Lleida, the tendency is to 
expend much more electricity consumption compared to inner parts of the province. Nonetheless, there are 
several exceptions, especially in the Pyrenees. 

To sum up, this section would be very useful for making a preliminary comparison along the region in analysis 
and taking the first conclusions depending on the desired application. For instance, a heat pumps dealer could 

Lleida 
(city) 
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take a look at the heating and cooling components KPIs to understand where would be more suitable to make 
some advertising campaign or to prioritise the customer search areas of a salesperson during a certain period.  

3.1.2 "Characterisation" tab 

Figure 26. Web application – "Characterisation" tab (first part) 

 
Source: CIMNE - BEE Group own elaboration 
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Figure 27. Web application – "Characterisation" tab (second part) 

 
Source: CIMNE - BEE Group own elaboration 

The characterisation section provides detailed information about electricity consumption usage on a single 
postal code. Several of the plots shown in this tab are interactive versions of the KPIs results explained in the 
section above, such as information about the model accuracy, the usage patterns detected and the 
disaggregation results in several time aggregation levels. 

Using this tab, the potential web application user can go deeper into the detail of the most common electricity 
uses in a certain geographical area. For example, to understand the principal differences within tariffs over a 
certain economic sector and use this information to estimate the impact of a certain application, or to evaluate 
when some dependency occurs in time, or its evolution in time, which could indicate changes in the electric 
equipment, user behaviour or energy performance indicators of the building. 
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3.1.3 "Benchmarking" tab 

Figure 28. Web application – "Benchmarking" tab 

 
Source: CIMNE - BEE Group own elaboration 

In this tab, the objective is to exploit the usage of the characterisation models to compare in detail two postal 
codes normalising the results by weather conditions and building/dwelling sizes. This normalisation procedure 
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means that the difference in electricity consumption should be caused by the energy performance of buildings 
or by the occupants HVAC operation schedule in the case of cooling and heating electricity consumption 
components. In parallel, intraday differences along a natural year between the baseload consumption, and the 
contribution of holidays periods and the Covid-19 lockdown period, are also depicted. In all these cases, the 
normalisation against the size of buildings/dwellings is also performed so that the benchmarking conclusions 
could be more related to differences in usage patterns or building occupancy. 

To sum up, this section of the web application is a second derivative of the characterisation section. From a 
user point of view, this can help figure out the reason behind a significant change in electricity consumption. 
The normalising feature implemented in this section filters two of the most important factors that cause a 
change in electricity consumption: the size of buildings and the weather severity. Hence, more realistic 
comparisons could be made in terms of EPB and use trends between pairs of geographical areas in analysis. 

3.1.4 "KPIs correlation" tab 

Figure 29. Web application - "KPIs correlation" tab 

 
Source: CIMNE - BEE Group own elaboration 

All the KPIs represented in the map section can be cross-correlated in this tab of the web application. This 
application is quite helpful to understand tendencies and relations between the KPIs, providing a wider 
characterisation of the territory, to understand if the increase of a certain cadastre or socioeconomic indicator 
has a significant correlation to another energy consumption KPI. For instance, it could be inferred if there's a 
relation between holidays periods contribution to the energy consumption and average percentage of single 
households, or the average incomes by person. 

3.2 Interpretation of the characterisation at a large scale 

The map visualisation of the web application depicts the normalised results by built area and helps interpret 
the electricity consumption at aggregated geographical levels. In the following subsections, this interpretation 
is discussed and compared between the residential sector and the offices, retail and public services sectors, 
including all the tertiary and public buildings. There are some regions without colouring because consumption 
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data is not available for that postal codes. Three main reasons, or a combination of them, are behind this lack 
of data: 

1. The area does not have enough consumption points in that sector to assure privacy. 

2. The implantation of the AMI is residual. It could happen in certain rural areas with few inhabitants. 

3. It does not exist a sufficient amount of historical data to estimate the characterisation model 
parameters—at least one year of data. 

3.2.1 Heating dependence 

As shown in the next figures, the heating consumption depends quite highly on the location and the sector under 
analysis. In the case of the residential sector, there is a heating dependence between 2% to 40% of total 
consumption, with a special focus on certain areas of the West Pyrenees, which may be due to the lack of gas 
distribution in that zones and the implantation of electric radiators, heat pumps and floor heating systems. 
Postal codes around city centres (Lleida, Tarrega or Balaguer), where many new buildings have been constructed 
in recent years, also have more electricity consumption dependence due to heating. Regarding the tertiary 
buildings, between 3 to 30% of the total consumption is made by cause of heating uses. In this case, the 
dependence is not so evident in the West Pyrenees area, as many building boilers are resourced by gas-oil or 
biomass. Nonetheless, a significant number of postal codes, especially in the eastern part of the province, have 
a significant consumption due to heating. 

Figure 30. Heating consumption per built area in the case 
of residential sector customers 

Figure 31. Heating consumption per built area in the 
case of offices, retail and public services customers 

  
Source: CIMNE - BEE Group own elaboration and OpenStreetMap Source: CIMNE - BEE Group own elaboration and OpenStreetMap 
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Figure 32. Heating consumption per built area in the case of residential sector customers. Estimated heat transfer 
coefficient factors: envelope losses, ventilation losses and air infiltration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: CIMNE - BEE Group own elaboration 

Regarding how buildings are performing and how the HTC is distributed between these three factors: envelope 
losses, ventilation losses and air infiltration losses, the upper figure shows that the envelope transfer tends to 
be the most important energy transfer factor. Additionally, it can be seen that the percentage due to envelope 
losses tends to increase if the postal code is located in a region where the heating dependence is higher. 
Regarding the ventilation and air infiltration factors, an interesting tip could be to change/repair the windows 
or consider more efficient user ventilation strategies, especially when the air infiltration factor becomes 
significant >6-7%. 
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3.2.2 Cooling dependence 

Compared to the heating dependence, the electricity consumption due to cooling needs is between 0 to 10% of 
the total consumption in the residential sector and between 0 to 25% in the case of tertiary buildings. As shown 
in the figures below, in the residential sector, the locations with more influence on cooling needs are mainly 
around the capital of the province (Lleida). In contrast, in the case of tertiary buildings, it is difficult to find a 
pattern. Still, the map could be used to indicate which regions integrate air-conditioning systems in their tertiary 
buildings. 

Figure 33. Cooling consumption per built area in the case 
of residential sector customers. 

Figure 34. Cooling consumption per built area in the case 
of offices, retail and public services sector customers. 

  
Source: CIMNE - BEE Group own elaboration and OpenStreetMap Source: CIMNE - BEE Group own elaboration and OpenStreetMap 

3.2.3 Baseload consumption 

The baseload consumption has a similar geographical pattern to the cooling dependence. In addition, both 
sectors are the most important factor in consumption, between 55% to 97% of the total consumption, which is 
not strange, considering that this component aggregates all non-HVAC electric equipment (e.g. stand by devices, 
lighting)In the residential sector, again the regions with more baseload consumption are situated around the 
province's capital city. Besides, as shown in Figure 35, a positive correlation has been found between incomes 
per household and baseload consumption. This relationship is consistent because, in general, households with 
more financial resources have more electrical equipment and thus have a higher baseline consumption. 

In the case of offices, retail and public buildings, high baseload consumption depends quite highly on the size 
of the buildings, as shown in Figure 36. The two most probable reasons are: 

— smaller buildings are characterised by more electric equipment per building area compared to larger ones, 

— there is a lack of energy efficiency in some smaller buildings that originates the difference in the ratio 
baseload consumption by building area. 
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Hence, more information is needed to understand the root cause of this difference. However, it has been proved 
that the developed methodology provides useful insights to detect this kind of problem. 

Figure 35. Correlation between baseload consumption 
and incomes per household in the residential sector 

Figure 36. Correlation between baseload consumption 
and building size in offices, retail and public buildings 

 
 

Source: CIMNE - BEE Group own elaboration Source: CIMNE - BEE Group own elaboration 

 

Figure 37. Baseload consumption per built area in the 
case of residential sector customers. 

Figure 38. Baseload consumption per built area in the 
case of offices, retail and public services sector 

customers. 

  
Source: CIMNE - BEE Group own elaboration and OpenStreetMap Source: CIMNE - BEE Group own elaboration and OpenStreetMap 
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3.2.4 Effect of holidays 

In the case of the residential sector, the holidays' effect on the total consumption depends very significantly on 
the proximity of the postal code to the ski resorts of the Pyrenees, where lots of second residences, hotels and 
apartments are occupied during the weekends or holidays periods. Near the capital, the influence of holidays 
can even become close to negative, because many people go on short breaks or trips, whereas other people do 
more activities at their homes.  

On the contrary, the influence of holidays in the tertiary sector is lower than in the residential sector. However, 
even if the percentages of influence range from -3% to 7%, it has the same effect in similar regions of the 
Pyrenees and Pre-Pyrenees, whilst, in more populated areas around the capital, the consumption is reduced 
compared to non-holiday periods. 

Figure 39. Holidays effect on total consumption per built 
area in the case of residential sector customers. 

Figure 40. Holidays effect on total consumption per built 
area in the case of offices, retail and public services 

sector customers. 

  
Source: CIMNE - BEE Group own elaboration and OpenStreetMap Source: CIMNE - BEE Group own elaboration and OpenStreetMap 
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4 Conclusions 
A methodology to characterise different geographical areas from the electricity consumption point of view has 
been developed, implemented and validated. 

Moreover, open-source software has been created to extract the information from publicly-available data 
sources, to transform and store this data into databases, to analyse and model the electricity consumption only 
based on high-frequency time series data and to visualise the KPIs and the outcomes obtained using a web 
application created on purpose. 

It has been proved that the implementation of this type of methodologies is feasible in Spain, but it can also 
be done in other EU countries. 

The list of possible applications that could reuse this characterisation methodology is quite large, targeting 
different types of beneficiaries: 

— Public Authorities aiming at a better planning of renewables integration, prioritising the implementation of 
energy efficiency measures in those geographical areas where a significant fault is detected, or assessing 
the evaluation of ECM applied in districts or regions. 

— Private companies aiming at improving their marketing strategies, based on the links existing between the 
territory and the electricity consumption use trends. 

The same types of aggregation strategies used in this methodology could scale up/down the characterisation 
to wider/narrower geographical levels than postal code, such as regions, provinces, or areas affected by the 
same transformer station. For validation purposes, and considering that this is the lower level currently 
available, the Spanish postal code was used to represent what could be done with statistical models in terms 
of characterisation of energy consumption, merging aggregated actual electricity consumption, weather data, 
cadastre data and socioeconomic information. 

In case of reuse of the characterisation methodology and the tools at a wider national or EU scale, it is 
recommended to move the granularity of the geographical levels to at least the provincial level for simplicity. 
However, it should be considered that the methodology and the tools, when applied at a more local level, could 
provide more relevant outcomes. For instance, they could be effectively used as a starting point to estimate at 
a local level the amount of needed in-situ renewables generation to achieve the related Sustainable 
Development Goals 2030. This aspect is extensively discussed in many technical departments of Spanish 
municipalities, and the availability in production of the tools (currently in a prototype version) would provide 
them accurate information about the real consumption by districts, trends and disaggregation of uses, 
potentiality of self-consumption. In summary, it would give them a very useful input to determine, for example, 
how much photovoltaic power should be integrated and where it is most needed. 



45 

References 

[1] Fonseca, J.A. and Schlueter, A., 'Integrated model for characterisation of spatiotemporal building energy 
consumption patterns in neighborhoods and city districts', Applied Energy, Vol. 142, Mar. 2015, pp. 
247–265. 

[2] Swan, L. G. and Ugursal, V. I., 'Modeling of end-use energy consumption in the residential sector: A 
review of modeling techniques', Renewable Sustainable Energy Reviews, Vol. 13, No. 8, Oct. 2009, pp. 
1819–1835. 

[3] Voulis, N., Warnier, M., and Brazier, F. M. T., 'Statistical Data-Driven Regression Method for Urban 
Electricity Demand Modelling' in 2018 IEEE International Conference on Environment and Electrical 
Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), 
Jun. 2018, pp. 1–6. 

[4] 'Province of Lleida', Wikipedia. Oct. 25, 2020 [Online]. Available: 
https://en.wikipedia.org/w/index.php?title=Province_of_Lleida&oldid=985386577 

[5] ‘Data Specifications / Themes / Buildings | INSPIRE’ Available: 
https://inspire.ec.europa.eu/Themes/126/2892 

[6] ‘CARTOGRAFÍA CATASTRAL - INSPIRE.’ Available: http://www.catastro.minhap.es/webinspire/index.html 

[7] 'Experimental statistics. Main page.' Available: 
https://www.ine.es/en/experimental/atlas/experimental_atlas_en.htm 

[8] ‘DATADIS. La plataforma de datos de consumo eléctrico.’ Available: https://datadis.es/ 

[9] ‘Persona Jurídica – Sede.’ Available: https://www.sede.fnmt.gob.es/en/certificados/certificado-de-
representante/persona-juridica 

[10] ‘Codigos Postales de España.’ Available: https://www.codigospostales.com/ 

[11] ‘Productos y Servicios / Informacion estadística / Cartografía secciones censales y callejero de Censo 
Electoral.’ Available:  
https://www.ine.es/ss/Satellite?L=es_ES&c=Page&cid=1259952026632&p=1259952026632&pagena
me=ProductosYServicios%2FPYSLayout 

[12] Goeman, J., Meijer, R., Chaturvedi, N., and Lueder, M., 'Penalised: L1 (Lasso and Fused Lasso) and L2 
(Ridge) Penalised Estimation in GLMs and in the Cox Model'. R CRAN, 2018. 



46 

List of abbreviations and definitions 

AMI Advanced Metering Infrastructure 

API Application Programming Interface 

BIC Bayesian Information Criterion 

CIMNE International Centre of Numerical Methods in Engineering (in Catalan: Centre Internacional de 
Mètodes Numèrics en l'Enginyeria) 

CSV Comma Separated Values 

CVRMSE Coefficient of Variation of the Root Mean Squared Error 

DSO Distribution System Operator 

ECM Energy Conservation Measures 

EPB Energy Performance of Buildings 

ESCO Energy Service Company 

ETL Extract, Transform and Load 

EU European Union 

GIS Geographical Information System 

GML Geography Mark-up Language 

GPKG Geo PaCKaGe  

HTC Heat Transfer Coefficient 

HVAC Heating, Ventilation and Air Conditioning 

ICL Integrated Completed Likelihood 

INE National (in Spanish: Instituto Nacional de Estadística) 

JSON JavaScript Object Notation 

KML Keyhole Markup Language 

KPI Key Performance Indicator 

NUTS Nomenclature of Territorial Units for Statistics (in French: Nomenclature des Unités Territoriales 
Statistiques) 

MAPE Mean Average Percentage Error 

RC Resistances and Capacitators  

RMSE Root Mean Squared Error 

SQL Structured Query Language 

UML Unified Modeling Language  

 

 

 



47 

List of figures 

Figure 1. Spanish Cadastre layer visualised in QGIS ................................................................ 7 

Figure 2. Aggregated electricity consumption of a subset of tariffs in a single postal code .................... 9 

Figure 3. Representation of the census tract (colour-filled) and postal code (red-framed) geographical levels 
in a mixed urban-rural region.........................................................................................11 

Figure 4. Representation of the census tract (colour-filled) and postal code (red-framed) geographical levels 
in an urban region .....................................................................................................12 

Figure 5. Postal code selected for the case study .................................................................13 

Figure 6. Electricity consumption time series of the case study and the outlier's threshold considered in each 
series in green .........................................................................................................14 

Figure 7. Selection of optimal number of clusters .................................................................15 

Figure 8. Multiple gaussian distributions representing each detected cluster ...................................16 

Figure 9. Clustering of the daily load curves, only using days that are presumably not affected by weather 
conditions. These six profiles represent the usage patterns of the case study ...................................17 

Figure 10. Classification of the complete series using the representative usage patterns detected with the 
clustering technique ...................................................................................................17 

Figure 11. Example of a first-order low pass filter depending on a set of different time constants ..........20 

Figure 12. Model training periods to characterise the evolution in time of the dependencies .................22 

Figure 13. Accuracy of the characterisation model over distinct periods and tariffs ...........................23 

Figure 14. Predicted daily energy signature versus actual data ..................................................24 

Figure 15. Predicted 4-hourly aggregated energy signature versus actual data ................................25 

Figure 16. Weather-dependent characterisation parameters of the model .....................................26 

Figure 17. Baseload-dependent characterisation parameters of the model .....................................27 

Figure 18. Daily electricity disaggregation results over distinct periods and tariffs ............................28 

Figure 19. Usage patterns detected over distinct tariffs ..........................................................29 

Figure 20. Intraday summarised electricity disaggregation results over a natural year and distinct tariffs ..29 

Figure 21. Yearly-aggregated relative subcomponents of the electricity consumption over distinct periods and 
tariffs ...................................................................................................................30 

Figure 22. Yearly-aggregated absolute subcomponents of the electricity consumption over distinct periods 
and tariffs ..............................................................................................................31 

Figure 23. General view of the data flow and the architecture of the software ................................32 

Figure 24. UML of the data model used in the Spanish implementation ........................................33 

Figure 25. Web application - "KPIs on a map" tab .................................................................34 

Figure 26. Web application – "Characterisation" tab (first part) ..................................................35 

Figure 27. Web application – "Characterisation" tab (second part) ...............................................36 

Figure 28. Web application – "Benchmarking" tab .................................................................37 

Figure 29. Web application - "KPIs correlation" tab ................................................................38 

Figure 30. Heating consumption per built area in the case of residential sector customers ...................39 

Figure 31. Heating consumption per built area in the case of offices, retail and public services customers .39 



48 

Figure 32. Heating consumption per built area in the case of residential sector customers. Estimated heat 
transfer coefficient factors: envelope losses, ventilation losses and air infiltration. .............................40 

Figure 33. Cooling consumption per built area in the case of residential sector customers. ...................41 

Figure 34. Cooling consumption per built area in the case of offices, retail and public services sector 
customers. .............................................................................................................41 

Figure 35. Correlation between baseload consumption and incomes per household in the residential sector42 

Figure 36. Correlation between baseload consumption and building size in offices, retail and public buildings
 ..........................................................................................................................42 

Figure 37. Baseload consumption per built area in the case of residential sector customers. .................42 

Figure 38. Baseload consumption per built area in the case of offices, retail and public services sector 
customers. .............................................................................................................42 

Figure 39. Holidays effect on total consumption per built area in the case of residential sector customers. 43 

Figure 40. Holidays effect on total consumption per built area in the case of offices, retail and public services 
sector customers. ......................................................................................................43 

 



49 

List of tables 

Table 1. Electricity tariffs description in the Spanish market ...................................................... 9 

Table 2. Mean Average Percentage Error (MAPE) over distinct periods and tariffs ..............................23 

Table 3. Coefficient of Variation (CV) of the RMSE over distinct periods and tariffs ............................24 

 



 

 

  

GETTING IN TOUCH WITH THE EU 

In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre 
nearest you at: https://europa.eu/european-union/contact_en 

On the phone or by email 

Europe Direct is a service that answers your questions about the European Union. You can contact this service: 

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

- at the following standard number: +32 22999696, or 

- by electronic mail via: https://europa.eu/european-union/contact_en 

FINDING INFORMATION ABOUT THE EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa website at: 
https://europa.eu/european-union/index_en 

EU publications 
You can download or order free and priced EU publications from EU Bookshop at: https://publications.europa.eu/en/publications. 
Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see 
https://europa.eu/european-union/contact_en). 

https://europa.eu/european-union/contact_en
https://europa.eu/european-union/contact_en
https://europa.eu/european-union/index_en
https://publications.europa.eu/en/publications
https://europa.eu/european-union/contact_en


 

 

KJ-02-21-934-EN
-N

 

doi:10.2760/362074 

ISBN 978-92-76-40553-5 


	1 Introduction
	1.1 Preliminary approaches of the methodology

	2 Description of the characterisation methodology
	2.1 Data collection and refinement
	2.1.1 Cadastre data
	2.1.2 Socioeconomic data
	2.1.3 Electricity consumption data
	2.1.4 Weather data

	2.2 Geographical levels
	2.2.1 Building level
	2.2.2 Postal code level
	2.2.3 Census tract level

	2.3 Data-driven electricity characterisation at postal code geographical level
	2.3.1 Case study
	2.3.2 Data cleaning
	2.3.3 Inferring usage patterns
	2.3.4 Data-driven model
	2.3.5 Case study results

	2.4 KPIs of the characterisation
	2.5 Data integration

	3 Results of the validation
	3.1 Data visualisation
	3.1.1 "KPIs on a map" tab
	3.1.2 "Characterisation" tab
	3.1.3 "Benchmarking" tab
	3.1.4 "KPIs correlation" tab

	3.2 Interpretation of the characterisation at a large scale
	3.2.1 Heating dependence
	3.2.2 Cooling dependence
	3.2.3 Baseload consumption
	3.2.4 Effect of holidays


	4 Conclusions
	References
	List of abbreviations and definitions
	List of figures
	List of tables

