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Abstract. The present paper provides a variational formulation for elastoplasticity as
foundation of a novel mixed finite element formulation. The tangential-displacement
normal-normal-stress (TDNNS) method, which is based on the Hellinger-Reissner type
formulation, is extended from linear elasticity to plasticity. The second law of thermo-
dynamics serves as basis for a thermodynamically consistent variational inequality. The
notion of the dissipation inequality and a corresponding dissipation function are starting
points rather than definitions of a yield function and a flow potential. Excellent per-
formance and accuracy of the proposed method are demonstrated in several benchmark
problems.

1 INTRODUCTION

Efficient simulation of thin-walled structures is already challenging in the range of elas-
ticity but even more so in problems of elastoplasticity, as, e.g., the analysis of sheet metal
forming processes. A discretization of thin-walled structures with standard finite element
methods is adverse due to diverse locking phenomena such as shear locking or volume
locking. In common finite element programs, reduced integration is used to circumvent
these problems [1], which, however, might lead to hourglass instabilities. Alternatively,
mixed finite element methods based on the Hellinger-Reissner or the Hu-Washizu princi-
ples [2, 3, 4] provide effective means to avoid locking phenomena. Mixed methods allow,
in addition to the displacements, using stresses and/or strains as unknown fields. A mixed
finite element method for nearly incompressible elasticity based on the theoretical frame-
work of the Hellinger-Reissner principle is derived in [5]. Pechstein and Schöberl presented
the tangential-displacement normal-normal-stress (TDNNS) method, which is based on
the Hellinger-Reissner principle for elasticity, in [6]. It has been shown rigorously that
TDNNS elements do not suffer from shear locking when modeling thin structures [7].

The aim of the present paper is to extend the TDNNS method to elastoplastic materials
in small-strain regimes. The literature on elastoplasticity is huge; we refer to the mono-
graphs [8, 9, 10, 11, 12] for both theoretical and computational foundations. A common
approach to solve elastoplastic problems is the application of the return-mapping algo-
rithm, as suggested by [13, 14]. An elastic predictor gained from an elastic trial step is fol-
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lowed by a plastic corrector. For a comprehensive exposition of return-mapping methods,
we refer to Simo and Hughes [12]. In contrast to this intrinsically iterative approach, we
aim at designing a thermodynamically consistent mixed variational formulation. Different
formulations to describe elastoplastic material behavior in a thermodynamical framework
are presented e.g. by Han and Reddy [9], Lubliner [8] or Srinivasa [15]. For the definition
of a variational formulation the principle of maximum dissipation is of central importance
in the field of plasticity. It states that among all possible processes the actual process
is that which is most dissipative. Examples of using a mixed finite element formulation
applied to elastoplasticity can be found in [16, 17].

In this work the TDNNS method is extended to plasticity based on a variational formu-
lation for three-dimensional problems. The three independent degrees of freedom are the
tangential component of the displacement, the normal component of the normal stress vec-
tor and the plastic strain. The present paper starts with the basic relations of the classical
plasticity theory in Section 2. In Section 3 a thermodynamically consistent framework is
introduced. The connection between the flow rule and the dissipation inequality is de-
rived. Section 4 provides a brief overview of the variational formulation using the TDNNS
method for elasticity with the extension to plasticity. Finally, Section 5 treats numerical
investigations, which emphasize the performance of the TDNNS method.

2 Classical Plasticity Theory

In the following, we outline the basics of the classical rate-independent plasticity theory
for small deformations following [12]. An additive decomposition of the total strain ε into
an elastic part εe and a deviatoric plastic part εp is allowed for the assumption of small
strains

ε = εe + εp with tr εp = 0, (1)

i.e., the volumetric part of plastic strains tr εp is assumed to vanish. In classical plasticity
theory, the following key elements are required:

• A scalar-valued yield function F defines the yield surface in stress space. The yield
condition states that

F (σ,α) ≤ 0 (2)

where σ denotes the stress tensor and α comprises internal variables such as the
plastic strain εp and the accumulated plastic strain γ. The yield surface and yield
function are usually assumed convex.

• A flow potential G relates the actual stress state σ and the direction of plastic flow

ε̇p = λ
∂G

∂σ
, (3)

where λ is usually referred to as consistency or Kuhn-Tucker parameter and ε̇p
specifies the plastic strain rate. The consistency parameter λ cannot be negative
due to the irreversible character of the plastic deformation. If the flow potential G
and the yield function F coincide, the flow rule is called associated .
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• A consistency condition for the yield condition (2) and the Kuhn-Tucker parameter
(3), i.e.,

λ ≥ 0, F (σ,α) ≤ 0, λF (σ,α) = 0, (4)

ensures that the stress state remains on the yield surface during plastic loading.

In the case of perfect plasticity, the yield surface is independent of the state of plastic
deformation. Two standard models, and a combination of both, are typically used for the
modeling of a hardening response, i.e., an evolution of the yield surface based on plastic
strains and their temporal evolution:

• Isotropic hardening: The yield surface keeps its shape but expands with increasing
stress. The von Mises yield criterion can be expressed via

F iso = ‖ devσ‖ − 2

3
H0 γ −

√
2

3
Y ≤ 0, (5)

where devσ := σ − (trσ)I/3 denotes the deviatoric part of the stress tensor with
the second-order identity tensor I; H0 is the modulus of isotropic hardening, Y
defines the yield stress and γ denotes the accumulated plastic strain rate

γ =

∫ t

0

‖ε̇p(s)‖ ds. (6)

The accumulated plastic strain is non-negative and monotonically increasing.

• Kinematic hardening: As opposed to isotropic hardening, size and shape of the yield
surface remain fixed, but its origin may translate

F kin =

∥∥∥∥(devσ)− 2

3
H0 εp

∥∥∥∥−
√

2

3
Y ≤ 0. (7)

• Combined kinematic and isotropic hardening: The extension to a combined isotropic/
kinematic hardening model is defined for θ ∈ [0, 1]

F =

∥∥∥∥(devσ)− (1− θ) 2

3
H0 εp

∥∥∥∥− θ 2

3
H0 γ −

√
2

3
Y ≤ 0. (8)

The extremal values of θ correspond to the two special cases of hardening cited
above, i.e., θ = 1 for isotropic hardening θ = 0 and for kinematic hardening.

3 Maximum Plastic Dissipation

The principle of maximum plastic dissipation plays a pivotal role within our consid-
erations. Together with the second law of thermodynamics, it forms the foundation for
the derivation of consistent constitutive equations that govern the stress response and
the evolution of internal variables. Assuming isothermal conditions, the second law of

3



M. Nagler, A. Pechstein and A. Humer

thermodynamics is formulated in terms of the Clausius-Duhem inequality, which requires
the dissipation ξ, i.e., the rate of dissipated energy, to be positive:

ξ = σ · ε̇− ψ̇ ≥ 0. (9)

In the above relation, ψ denotes the stored energy density, which is also referred to
as Helmholtz free energy. The Helmholtz free energy ψ is additively decomposed into
reversible (elastic) and irreversible (plastic or hardening) contributions,

ψ = ψe(εe) + ψp(εp, γ), (10)

where the plastic part ψp depends only on the internal variables. Substituting its rate,
the (reduced) dissipation inequality (9) is recast into

ξ =

(
σ − ∂ψe

∂εe

)
: ε̇e +

(
σ − ∂ψp

∂εp

)
: ε̇p −

∂ψp
∂γ

γ̇

=

(
σ − ∂ψe

∂εe

)
: ε̇+

∂ψe
∂εe

: ε̇p −
∂ψp
∂εp

: ε̇p −
∂ψp
∂γ

γ̇ ≥ 0.

(11)

From the above relation, we identify stresses and dissipative driving forces dual to the
harding variables as

σ =
∂ψe
∂εe

, q1 = −∂ψp
∂εp

, q2 = −∂ψp
∂γ

. (12)

For a linear elastic material, the strain energy is assumed quadratic in the elastic strains
εe = ε− εp:

ψe =
1

2
(ε− εp) : C : (ε− εp). (13)

In the above relation, C denotes the fourth-order elasticity tensor, which, in the case of
isotropy, can be expressed as

C = λ I⊗ I + 2µ1, (14)

where 1 the fourth-order symmetric identity tensor and λ, µ are the Lamè constants. The
stress response follows from the general constitutive equation (12) as the derivate with
respect to the elastic strains, i.e.,

σ =
∂ψe
∂εe

= C : εe. (15)

The dissipation therefore follows as

ξ = −∂ψp
∂εp

: ε̇p −
∂ψp
∂γ

γ̇ + σ : ε̇p ≥ 0. (16)

Hardening is characterized by including internal variables in the description of the yield
surface. For linear kinematic hardening, the internal variable is equal to the plastic strain
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tensor εp; for isotropic hardening, the accumulated plastic strain γ serves as internal
variable. Consequently, the (combined) free energy takes the following form

ψp(εp, γ) = (1− θ) 1

3
H0 εp : εp + θ

1

3
H0 γ

2. (17)

Within our thermodynamical approach, the yield function F is defined implicitly by the
explicit choice of a dissipation function ξ. For the sake of brevity, we only consider
kinematic hardening (i.e., θ = 0) in the subsequent derivations. To realize the von Mises
yield criterion in Eq. (7), a dissipation function is chosen as a positively homogeneous
function of degree 1:

ξ =

√
2

3
Y ‖ε̇p‖. (18)

To reveal the connection of the dissipation function (18) and the yield criterion (7), we
consider the reduced form of the dissipation inequality, Eq. (16), which is rewritten as

−∂ψp
∂εp

: ε̇p + σ : ε̇p − ξ(ε̇p) = 0. (19)

Inserting the definition of the plastic part of the free energy for kinematic hardening,
Eq. (17) and the dissipation function (18), the following form can be obtained

−2

3
H0 εp : ε̇p + σ : ε̇p −

√
2

3
Y ‖ε̇p‖ = 0. (20)

Assuming ‖ε̇p‖ 6= 0, i.e., plastic loading occurs, we divide the above relation by ‖ε̇p‖,

−2

3
H0 εp :

ε̇p
‖ε̇p‖

+ (ε− εp) : C :
ε̇p
‖ε̇p‖

−
√

2

3
Y = 0, (21)

and rearrange it as

ε̇p
‖ε̇p‖

:

(
σ − 2

3
H0 εp

)
=

√
2

3
Y. (22)

As the plastic strains are deviatoric, only the deviatoric part of the stresses contributes
to the dissipation, i.e.,

ε̇p
‖ε̇p‖

:

(
dev(σ)− 2

3
H0 εp

)
=

√
2

3
Y. (23)

The norm of the above relation results in the well-known von Mises yield function for
kinematic hardening: ∥∥∥∥(dev σ)− 2

3
H0 εp

∥∥∥∥ =

√
2

3
Y. (24)
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4 Finite element formulation

The TDNNS method was developed for linear elasticity in [6]. The method uses mixed
finite elements which are based on the Hellinger-Reissner principle. In the Hellinger-
Reissner formulation, the displacement vector together with the stress tensor are used as
separate unknowns. The variational formulation is defined as follows

−
∫

Ω

(S : σ) : δσ dΩ +

∫
Ω

ε : δσ dΩ +

∫
Ω

σ : δε dΩ =

∫
Ω

f · δu dΩ, (25)

where u denotes the displacement field, f are body forces and S = C−1 is the fourth-order
compliance tensor.

In the TDNNS formulation, the tangential component of the displacement ut and
the normal component of the normal stress vector σnn serve as degrees of freedom. For
the displacement, tangential-continuous elements proposed by Nedelec [18] are utilized.
Elements for which the normal component of the normal stress vector is continuous were
introduced by Pechstein and Schöberl [6]. Note that, for this choice, inter-element gaps
in normal direction may arise, which must be treated correctly. To this end, the following
variational formulation based on Eq. (25) is used

−
∫

Ω

σ : S : δσ dΩ + 〈ε(u), δσ〉+ 〈ε(δu),σ〉 =

∫
Ω

f · δu dΩ. (26)

In Eq. (26), the integral is replaced by a duality product to account for the discontinuous
displacement field

〈ε(u),σ〉 =
∑
T

(∫
T

ε(u) : σ −
∫
∂T

un σnn

)
= −

∑
T

(∫
T

divσ · u−
∫
∂T

σnt · ut
)

= −〈divσ,u〉.
(27)

In what follows, we present an extension of the TDNNS method to plasticity. To include
σ and εp as variables, we introduce the enthalpy density h by a Legendre transformation
of the Helmholtz free energy:

h(σ, εp) = min
ε

(ψ(ε, εp)− σ : ε). (28)

Considering the additive decomposition of the free Helmholtz energy in Eq. (10) and
inserting Eqs. (13) and (17) in Eq. (28), we obtain

h(σ, εp) = min
ε

(
1

2
(ε− εp) : C : (ε− εp) +

1

3
H0 εp : εp − σ : ε

)
. (29)

Using the relation
ε = S : σ + εp, (30)
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the enthalpy density reads

h(σ, εp) = −1

2
σ : S : σ +

1

3
H0 εp : εp − σ : εp. (31)

Considering a finite time interval (tn, t), the potential Π is given by

Π =

∫
Ω

h(σ, εp)dΩ−
∫

Ω

h(σn, εp,n)dΩ +D (32)

where the nonnegative dissipation D for the time interval t− tn is defined as

D :=

∫ t

tn

∫
Ω

ξ dΩdt u
∫

Ω

√
2

3
Y ‖∆εp‖ dΩ ≥ 0. (33)

with plastic strain increments
∆εp = εp − εp,n (34)

By inserting Eqs. (31) and (33) in Eq. (32), we arrive at the constrained optimization
problem∫

Ω

(
−1

2
σ : S : σ − σ : εp +

1

3
H0 εp : εp +

√
2

3
Y ‖∆εp‖

)
dΩ −→ min

εp
max

σ,− divσ=f
. (35)

A variation of the Lagrangian functional

L(σ, εp,u) =−
∫

Ω

(
1

2
σ : S : σ + σ : εp + f · u− 1

3
H0 εp : εp −

√
2

3
Y ‖∆εp‖

)
dΩ

− 〈divσ,u〉 −→ min
εp

min
u

max
σ

(36)
leads to a variational formulation. To solve the problem, we propose a regularization of
the non-differentiable dissipation function. The used regularization technique is discussed
in detail in [9, Section 12.4].

5 Numerical investigation

The following two examples, in the framework of small strain elasto-plasticity, are con-
sidered to demonstrate the performance of the TDNNS-method in combination with the
notion of a dissipation function. First, we study a cantilever beam subjected to a trans-
verse tip force. The displacement at the free edge under kinematic hardening condition is
considered in a full load cycle. As a second example, we consider the well-known problem
of Cook’s membrane. In both examples, a convergence study for displacement quantities
is conducted. For this purpose, the TDNNS-method combined with the notion of a dissi-
pation function, as presented in the previous chapters, is implemented in the open source
finite element software Netgen/NGSolve. The number of the elements is increased until
convergence is reached. Unless stated otherwise, second order elements are used. Our
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results are compared to results obtained with the commercial software tool ABAQUS
6.14. In ABAQUS, we create models with a fine discretization, which guarantees high
accuracy. The TDNNS elements are also compared with standard displacement-based
elements using the principle of maximum dissipation implemented in Netgen/NGSolve.

5.1 Cantilever beam

A thin cantilever beam, depicted in Fig. 1, clamped on the left hand side and subjected
to a transverse force tz on the right hand side, is studied. The material properties and
dimensions are listed in Tab. 1. In order to examine the convergence rate of mesh
refinements in x−direction (see Fig. 2), the deflection of the free end during a loading
and unloading cycle is analyzed. The first discretization uses structured quadrilaterial
meshes (Fig. 2a), the second one is a graded mesh that is refined towards the clamped
end (Fig. 2b). Meshes with 2× 1× 1, 4× 1× 2, 8× 1× 4 and 16× 1× 8 grids are used
for the TDNNS- and the standard-method in Netgen/NGSolve. The reference solution
in ABAQUS uses quadratic elements (20 node quadratic brick), reduced integration and
approximately 1.7× 106 degrees of freedom with eight elements across the thickness. The
load-deflection curve of the reference solution compared with the TDNNS-method refined
towards the clamped end, illustrated in Fig. 3, show a good correlation. points A and
B specify the loadsteps at which the deflection is evaluated. In both methods, about 40
loadsteps in a loading-unloading cycle are considered. The relative error of the deflection
obtained with the TDNNS and the standard-method compared to the ABAQUS reference
solution is evaluated at point A after loading and point B after unloading for different
discretizations, as can be seen in Fig. 4. As expected, the relative error decreases as the
spatial resolution and the number of degrees of freedom inscrease.

tz
L WHxyz

Figure 1: Geometry of the cantilever beam.

Material setup

Dimensions L = 100, W = 10, H = 1 [mm]
Young’s modulus 210000 [MPa]
Poisson’s ratio ν = 0.3
Yield stress Y = 240 [MPa]
Hardening modulus H = 7000 [MPa]

Table 1: Cantilever beam: material param-
eters and dimensions.

xyz
(a)

xyz
(b)

Figure 2: Cantilever beam: different meshes in x-direction, (a) structured quadrilaterial
mesh and (b) refinement towards the clamped left side.
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Figure 3: Cantilever beam: load-
deflection curve generated with
ABAQUS and the TDNNS method
(refined towards the clamped end,
second order elements).
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TDNNS, Point B, ref. tw. sing.

Figure 4: Cantilever beam: relative
error of the deflection compared to
ABAQUS reference solution evaluated
at loadpoint A after loading and load-
point B after unloading for different
mesh refinements.

5.2 Cook’s Membrane

As a second example, the well-known Cook’s membrane problem is considered, see
Fig. 5. The material properties and dimensions are listed in Tab. 2. Two different
discretizations are considered for the analysis in Netgen/NGSolve. The first one uses
structured quadrilaterial meshes and the second mesh is refined towards the singularity
at the upper left corner. Meshes with grids n × n, n = 3, 4, . . . 20 in x and z-directions
with only one element in thickness direction are used. The convergence behavior for
the displacement uz in the upper right corner, at point A in Fig. 5, is studied. Again,
a reference solution wih ABAQUS (20 node quadratic brick, reduced integration) with
approximately 1.6 × 106 degrees of freedom and four element layers across the thickness
is created. In Fig. 6, load-displacement curves of the reference solution and the TDNNS-
method with various numbers of loadsteps are illustrated. The results of the vertical
displacement in point A for a various number of elemens per side is depicted in Fig. 7.
We observe a good agreement of the ABAQUS results and the TDNNS-method with 5
and 20 loadsteps. The relative errors of the displacement uz, obtained with the TDNNS-
and the standard displacement-based elements with respect to the ABAQUS solution
for both mesh refinements and various mesh grids are depicted in Fig. 8. A significant
difference is noted if the mesh is refined towards the singularity. Using a graded mash,
as little as 3× 3 elements are sufficient to a obtain relative error below 1% with TDNNS
elements. Displacement-based elements show relative errors of more than 5% with second
order (p = 2) elements and more than 2% with third order (p = 3) elements. In Fig. 9,
the plastic strain componont εxx of the TDNNS-method with a mesh grading towards the
singularity (3×3 grid and 8×8 grid) and of the ABAQUS reference solution is illustrated.
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H1

H2

xyz
Wfz

L1
Figure 5: Geometry of Cook’s membrane.

Dimensions L1 = 48, H1 = 44 [mm]
H2 = 16, W = 1 [mm]

Point A A = (48, 60, 0.5) [mm]
Young’s modulus 206900 [MPa]
Poisson’s ratio ν = 0.29
Yield stress Y = 450 [MPa]
Hardening modulus H = 129240 [MPa]
Shear force f 350 [N/mm2]

Table 2: Cook’s membrane: material pa-
rameters and dimensions.
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Figure 6: Cook’s membrane: vertical
displacement at cornerpoint A for differ-
ent load steps.
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Figure 7: Cook’s membrane: vertical
displacement uz at cornerpoint A for dif-
ferent mesh sizes.
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Figure 8: Cook’s membrane: relative error of vertical displacement over the number of
coupling degrees of freedom (dof).
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(a) (b) (c)

Figure 9: Cook’s membrane: plastic strain component εxx with Netgen/NGSolve (a) 3×3
grid, (b) 8× 8 grid and (c) ABAQUS reference solution.
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[3] E. Hellinger. Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer
Anwendungen. 4, 1913.

[4] K. Washizu. Variational methods in elasticity and plasticity. Pergamon press Oxford,
3, 1975.
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