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SUMMARY

A ﬁxed-mesh method for ‘the analysxs of transient forming processes is presented The mesh covers

.material regions and zones through which the material may flow. These last zones are identified by a
pseudomaterial with relatively small physical parameters. During time processing, the interface between
both materials is followed by an arbitrary Lagrangian mesh: This technique appears to be suitable for

~ the treatment of moving surfaces with sharp corners. A particular boundary condition for the
Navier—Stokes equations is also introduced in order to model a porous wall.
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| - INTRODUCTION
" “Forming processes are currently solved by an Eulerian flow formulation in which the material
'is treated as a non-Newtonian fluid.!* This is a good approach when plastic strains are large
. enough 50 that elastic strains are negligible. When transient processes need to be modelled,

- changes in the geometry and moving free surface have to be considered. The most intuitive

procedure to solve this problem is the Updated Lagrangian method where the mesh for a given
position is updated at each time step in terms of the instantaneous velocity field.? This method
has the disadvantage that the mesh becomes distorted during the analysis and some forms of
- remeshing are required. Furthermore, complex configuration with the creation of new free -
_boundary surfaces are not possible. An alternative approach is the so-called Arbitrary
Lagrangian—Eulerian method in which the mesh is deformed in terms of an arbitrary velocity
independently of the flow velocity except at the boundary. This method is very versatile but
requires some experience by the user to be successful.?
- A simple and original approach to solve this problem is the so- called pseudoconcentratlon
- method proposed by Thompson.4 ** This is a fixed-mesh approach in which the mesh is defined
in such a way that it covers both the material and the region through which the material will
flow. In regions where the material is flowing, appropriate physical variables (viscosity,
density, weight, etc.) are used. In those regions where the material has not yet penetrated, an
artificial low value of the physical parameters is used. Furthermore, the method assigns a new

- wvariable (the pseudoconcentration) throughout the mesh in such a manner that its value

indicates the presence or absence of material. This concentration is updated at each time step
by setting its material derivative equal to zero.

The main advantage of the pseudoconcentratlon method is the use of a fixed mesh. This

implies economy, no distorted elements and easy treatment of complex free surface geometries
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with the possibility of creation of new free surfaces. Furthermore, the definition of the
pseudoconcentration to convex free surfaces has the advantage of simplicity, and it does not
require user’s manipulations during the analysis. The robustness and conservative character of
this method have been proved in several works. %’

Nevertheless, in some particular forming problems, the pseudoconcentration method gives
unacceptable results and ad soc user’s manipulations are needed to overcome these difficulties.
In particular, this'situation appears when the free surface presents corners (a classical problem
in metal-forming processes). Corners represent a singularity in the definition of a smooth
concentration function. '

Even with re-smoothing techniques, the treatment of corners with a single concentration
function implies that-corners become round or numerical instability appears. This drawback
“leads to erroneous results. Corners can be treated with two different pseudoconcentration
functions, one of each. for each side of the corner, but this solution is not applicable when
several corners are present or in 3D problems. _

Another classical problem connected with fixed-mesh methods appears in the treatment of
injection in closed moulds. Owing to the fact that the incompressibility condition is imposed
in the whole domain, the pseudomaterial must escape or become compressed when the mould
is filled. This difficulty appears also in some contact problems when internal bubbles of
pseudomaterial remain confined between the material and the mould walls. Holes on the
boundary or partial elimination of the boundary condition have been proposed to overcome
this difficulty.® ' ' .
~ In this paper we use a fixed mesh with a fictitious material (pseudomaterial) as in the original
method proposed by Thompson,*® but we use an independent Lagrangian mesh to follow the

free surface. ' . .

Thus, a fixed finite element mesh is initially defined covering-both regions, one region with
the material and the other one containing the pseudomaterial. On the interface, a surface mesh
which may or not coincide with the fixed mesh will be defined. The surface mesh is defined
in such a way that it can identify points which are outside the surface as pseudomaterial, and
inside thé surface as real material. ' : . :

After each time step the co-ordinates of the surface mesh are updated with the instantaneous
velocity field evaluated on this surface. In this way, we preserve the advantage of fixed-mesh
methods in that the finite element mesh never becomes distorted. Besides, we have also the
advantage of Lagrangian methods concerning the representation of moving corners. The flow
problem is exactly the same as in the pseudoconcentration method but the evaluation of the
new concentration function is changed, at each time step, by computing the flow velocity on
the interface. This is a non-expensive step which must be carried out just on the interface
nodes. In 3D problems, the method seems to be very competitive in comparison with standard
pseudoconcentration evaluations in which a solution of a non-symmetrical system of equations
is necessary on the 3D domain. '

- The pseudo-material escaping problem in closed moulds is treated by introducing a new
boundary condition in the Navier—Stokes equations: the porous _boundary condition (PBC).
On this boundary, the flow may filter through using a Darcy type law, i.e. the normal velocity
is proportional to the pressure gradient, and inversely proportional to the viscosity. In this
-manner, when the boundary is in contact with the pseudomaterial, the viscosity has a small
value and the fluid filters through the wall with a velocity proportional to the flow pressure.
When the viscosity grows, i.e. the material contacts the mould walls, the boundary becomes
nearly impermeable. This is a more realistic boundary condition and it is in accordance with
the physics of the problem.
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GOVERNING EQUATIONS

For simplicity we con51der here the case of an incompressible viscous creeping flow neglecting
the effect of inertial acceleration terms. This situation is typlcai of many forming problems
where the assumption of small elastic strains leads to an analogy between the equations
describing the metal deformation process and those of the flow of an incompressibie non-
Newtonian creeping fluid.!? In addition a quasistatic approach will be chosen where the
transient problem is integrated in time as a series of stationary steps. With these assumptions
the momentum equations can be simply written as

doy; S . .
e b ob: =0 in Q 1
_ o S ax; e ! @)
in which i=1, ...;%dim, =1, ..'.,ndirr; (1 € naim < 3), pb; are the body forces, and the stress
‘tensor ¢y; is given by ‘

dui %) @)

3 X ax;

The unknown functions are the veloc1ty field u; and the pressure p. The physical parameters
are the body. force pb; and the dynamic viscosity u, which can be taken as a function of the
strain rate, the yield stress, the temperature and the stresses.:

The basic formulation of the problem (1) is completed with the incompressibility condition

au,-

ax; =01in @ 3)

" and boundary conditiohs
G,’jl'ijr—«"-ﬁ on I'r
Cwi=u;on Iy,

Where n;is the unit outward normai vector to the surface Iy, T, isthe spec1f1ed surface traction
on I'r and u; the specified velocity on T'y. '

PSEUDOMATERIAL METHOD WITH LAGRANGIAN FREE SURFACE UPDATE A

Equations (1) and (3) are applied to both parts of the domain: the material part in which the
‘true’ viscosity and gravitational forces are defined and the pseudomaterial one, through which

- the material will flow. In this last part, a small value of the viscosity and bady forces are used,
normally correspondirig to the physical properties of air.

The whole domain is divided by a fixed finite-element mesh in which standard interpolation
functions may be used. In this paper, isoparametric quadrilateral elements, with biquadratic
velocity fields and bilinear discontinuous pressure, were employed. An iterative penalty

* .method to properly satisfy the incompressibility condition was used.® In this context, a
condensation at element level to eliminate the nodal pressure variables was performed.

- Furthermore, an Arbitrary Surface Mesh is defined on the free surface material (Figure 1).
This ASM may not necessary match the fixed mesh. An arbitrary number of nodés and
‘elements may be used in this definition for the purpose of locating the moving surface. This
ASM must be defined in such a way that a unit normal vector to this surface (i) identifies the
material and pseudomaterial regions. The physical properties are evalnated at each Gauss
integration point according to the sign of the ASM normal vector which determines the
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AT‘M:TC?}I; ‘Jurfa(:c mesh

Figure 1.

existence of pseudomaterial at such point. A geometrical search has been implemented for
evaluating this location. Once the flow problem is solved, the position of the ASM is updated
by a Lagrangian step: '

| | X=X ubEh, At - @)
in which A is the time step, and' xf is the position of the ASM node number i at time ¢,. The
velocities 1asm, at each node on the ASM are evaluated accordingly to its last position using
the standard interpolation functions and nodal velocities of the finite element containing such
an ASM node. Therefore, the ASM nodes velocities do not appear directly in the FEM
equations. ‘

PQROUS BOUNDARY CONDITIONS

A problem connected with the use of fixed-mesh algorithms appears due to the fact that the
incompressibility condition is imposed in the whole domain. The pseudomaterial must escape
or is compressed in some regions, for instance in the walls of closed moulds. This is a real
physical problem which is solved, in practice, using porous moulds through which the
. pseudomaterial may filter. _ :

Numerically, this problem has been solved using holes in the same specific places, through
which the pseudomaterial may flow.® _ .

A more realistic boundary condition, in accordance with the physics of the problem, can be
introduced to the Navier—Stokes equations. Thus, in those boundaries in which a porous
material exists (named I'x), we assume that the velocity field is governed by Darcy’s law: &1

Py .
v,,:;(_p—po) on 'k 7 5

in which v, is the velocity normal to the boundary, £ the permeability of the porous boundary,

# the viscosity and po an external reference pressure. When the material gets into contact with

the boundary, the viscosity grows, and the boundary becomes almost impermeable.
Equation (5) states a linéar restriction between the velocity and the pressure field. This may
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~ be introducéd in a weak form on the boundary as
- ok ' .
eln——~(p—po)| dT'=0 U (6)
Ty [ ' .
where ¢ are appropriate weight functions, or, in a local way-at each node,
k. , o
v§.=w (p'~ po) (7)

in which v? and p' are the normal ve10c1ty and the pressure at node i.

Considering v, and p discretized on the boundary T by standard finite eiement shape
functions ¢; and y;:

Vv,,=¢bv,,,‘
p=Y¥p

in which'.v,, and p are the local values of the normal velocities and pressure, equation'(é)
becomes (choosing ¢; = ¢;)
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- Equation (8) represents the linear restrictions between v, and p which must be introduced in
the global system.

The spatial finite element discretization of equations (1) and (3) usmg a standard penalty
approach®!? can be written as:

Kv = H'p =f

(10)
.Hv+ecMp=10

All matnces appearmg in system {10} are standard in the context of the finite element method
(see Reference 12).
The local velocity vector v is now split into two parts:

V= ["] - | oy
Vi ) - ,. .

where local axes must be defined at those nodes in which one of the global axes does not



142 © - .M. CRUCHAGA, E. ONATE AND S. IDELSOHN
coincide with the direction of the outward normal velocity v, Combining (10) and (11) it gives:

Kmtv.n + Kn!vi — Hgnp =f, )
" KinVn -+ Kpvi = HEp =1 (12)
Hpnvn +Hpvi+ eMp = 0

Using (8) and elunlnatlng the first equations correspondmg to the v, terms gives:

Kivi — (M} — Ki:N)p = £ + Kng

: 13
Hywv; + (HpaN + eM)p =Hp,g 13
Once system (13) is solved, vector v, is evaluated using (8).
Special care must be taken in solving (13) by a penalty _methbd as indicated above. As is well
known the penalty parameter £ must tend to zero to reasonably satisfy the incompressible
condition. For a small value of the ratio &/g, vector g tends to zero but the matrix Hp.N in
the second equation of system (13) is of the same order of éM. This situation can introduce
significant errors in the incompressibility condition. To overcome this difficulty, a smaller
value of £ may be introduced which can lead to ill-conditioning or alternatively an iterative
penalty method may be used as explained in Reference 9.
In the iterative penalty method, system (10) is solved iteratively, writing

Kv; HTp',-~f
“Hv -+ eMp! = eMp'~!

In this way, the penalty mcompresmblllty condm()n ig adjusted 1terat1vely and 1arger values of
€ are allowed. ‘

(14)

NUMERICAL RESULTS

The objective of the first two exai’nples is to test the validity of the porous boundary condition.
The material properties are shown in Table I and the external reference pressure is taken equal
to zero. -

" The'first example is a uniform ﬂow-inside a closed mould with a porous wall in the outflow
boundary as indicated in Figure 2(a). Increasing the value of the permeability coefficient &, we
must obtain a decreasing resistance to the flow through the wall. As the flow is incompressible,

~ we must always obtain the income veiocny at the exit.

Erroneous results in the velocity field for small values of the parameter & are obtained using

a simple penalty method to impose the incompressibility condition. This is shown in Figure

2(b) in which the velocity along the x-direction should be constant in order to satisfy the

incompressibility condition. On the other hand, the use of an iterative penalty method adjusts

the penalty parameters automatically and, even for smaller values of permeability, the
incompressibility condition is satisfied and the correct constant velocity field is obtained as

shown in Figure 2(c).

Table I. Matérial properties

" Dynamic viscosity <= 1000-0
“Density p=10-0
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Figure 2. Uniform flow inside a closed mould: (2} finite slement mesh and bo{lndary conditions; (b) \}elocity along
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The second example is a 2D extrusion problem. A porous wall was imposed in the vertical
wall at the exit in order to test the behaviour of the material and the pseudomaterial in contact
with the wall. The finite element mesh and boundary conditions are displayed in Figure 3(a).
The problem was solved using the flow properties shown in Table I.

Figures 3(b)~(d) show the flow lines after the contact of the material with the porous wall

for different values of the permeability coefficient varying from the impermeable case to a
perfectly permeable case. ' : o
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Table II. Properties

Material dynamic viscosity

u=1000-0
Material density cp=1-0
. Pseudomaterial dynamic viscosity - :u = 0-001
. Pseudomaterial density - :p=0-001
" Gravity g=10-0
. . Lens geometry :
Initial thickness :0-93 . ) ’

-Initial radius - :8-0
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Figure 6. ‘Lens slumping: (a) enhanced finite element mesh; (b) final lens position with Lagrangian free surface update
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The third example is an industrial process in which the advantage of the méthod proposed
in this paper can clearly be noted. The problem is the slumping forming of a lens. The lens,
initially plane, is heated until plasticity occurs and takes the shape of a prescribed fixed mould
by gravity (Figure 4).

The problem was solved using two different psa:udomater:al methods. Firstly with the
standard pseudo-concentration techmque" § and then usmg the Lagrangian free surface
update proposed in this paper.

The material physical properties and other general characteristics of the problem are shown
in Table II (using SI units). B

The first mesh used is plotted in Fzgure S(a) Four quadrﬂatera}s represent a quadratlc finite
element of nine nodes. :

Figures 5(b) and 5(c) show the final lens positions using the pseudoconcentration method,
and Figure 5(d) the final position obtained with the present method. In the case of Figure 5(c)
a smoothing technique for the pseudoconcentration variable has been employed. This is a
classical technique used in the pseudoconcentration method,*® i.e. the concentration is
redefined at each time step to avoid large gradients. This smoothing eliminates the wiggles in
‘the contact surface as may be seen in Figure 5(b)} but, on the other hand, erroneous
deformations are obtained in the corners. Fzgure 5(d) shows that both spurious behaviours are
eliminated with the present formulation. No porous boundary condition has been used in this
case. For this reason, the lens is not able to contact the mould and a spurious layer of
pseudomaterial remains between the mould and the lens as shown in Figure 5(d). Finally, a
new mesh shown in Figure 6(a) has been used in order to improve the precision of the method
at the corners. The final position of the lens obtained with the Lagrangian free surface update
method is presented in Figures 6(b) and 6(c). In the first of them, the porous boundary

_condition has not been used. In the last Figure, the porous boundary condition has been
imposed. Note that now .the lens is fully in contact with the mould and the problem of the
boundary layer of incompressible pseudomaterial disappears.

CONCILUSIONS

Moving surfaces with sharp corners, usually found in forming processes may be accurately
* treated using a pseudomaterial approach when the interface between two materials is followed
" with an arbitrary Lagrangian mesh. This technique seems to be more accurate than the
standard pseudoconcentration method which sometimes leads to nnacceptable oscillations of
the free surface or roundness of the corners.
_ Furthermore, the porous boundary condition proposed is a very easy'way to enhance the
robustness of the pseundomaterial method to deal accurately with contact problems.
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