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Abstract

Superseding so-called first-generation incompressible flow solvers of the projection type (based on Taylor–Galerkin
advection, second-order pressure damping and element-based data structures), the current, second-generation solvers
(based on high-order upwind advection, fourth-order pressure damping and edge-based data structures) have now been
in use for half a decade and have proven remarkably robust and efficient for many large-scale problems. In order to
achieve higher accuracy and speed, these solvers have recently been enhanced in a variety of ways: (a) substepping
for advection, (b) implicit treatment of advective terms via SGS and GMRES-LU-SGS iterative solvers, (c) fully impli-
cit, time-accurate advancement of pressure and velocities, and (d) linelet preconditioning for the pressure-Poisson equa-
tion. The combined effect of these third-generation improvements leads to speedups of the order of O(1:5�1:10), with
similar or even better temporal accuracy, as demonstrated on a variety of academic and industrial problems.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Among the flows that are of importance and interest to mankind, the category of low Mach-number or
incompressible flows is by far the largest. Most of the manufactured products we use on a daily basis will
start their life as an incompressible flow (polymer extrusion, melts, a large number of food products, etc.).
The air which surrounds us can be considered, in almost all instances, as an incompressible fluid (airplanes
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mailto:rlohner@gmu.edu
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flying at low Mach-numbers, flows in and around cars, vans, buses, trains and buildings). The same applies
to water (ships, submarines, torpedoes, pipes, etc.) and most biomedical liquids (e.g. blood). Given this
large number of possible applications, it is not surprising that numerical methods to simulate incompress-
ible flows have been developed for many years, as evidenced by an abundance of literature [13,64,25,27].
The equations describing incompressible, Newtonian flows may be written as
v;t þ vrvþrp ¼ rlrv; ð1Þ
r � v ¼ 0: ð2Þ
Here p denotes the pressure, v the velocity vector and both the pressure p and the viscosity l have been
normalized by the (constant) density q. By taking the divergence of Eq. (1) and using Eq. (2) we can imme-
diately derive the so-called pressure-Poisson equation
r2p ¼ �r � vrv: ð3Þ

What sets incompressible flow solvers apart from compressible flow solvers is the fact that the pressure is
not obtained from an equation of state of the form p = p(q,T), but from the divergence constraint. This
implies that the pressure field establishes itself instantaneously (reflecting the infinite speed of sound
assumption of incompressible fluids) and must therefore be integrated implicitly in time.

The remainder of the paper is organized as follows: Section 2 describes the basic elements of the solver,
in particular the main design criteria. Section 3 treats the spatial discretization, with particular emphasis on
advection and divergence terms. This is followed in Section 4 by the temporal discretization chosen. Sec-
tions 5 and 6 are devoted to iterative solvers and the acceleration to steady state. Section 7 treats fully im-
plicit timestepping. Several examples are given in Section 8. Finally, in Section 9 some conclusions are
drawn and an outlook for future work is summarized.
2. Basic elements of the solver

Since over a decade [42,48,51,43] the numerical schemes chosen to solve the incompressible Navier–
Stokes equations given by Eqs. (1) and (2) have been based on the following criteria:

– Spatial discretization using unstructured grids (in order to allow for arbitrary geometries and adaptive
refinement);

– Spatial approximation of unknowns with simple finite elements (in order to have a simple input/output
and code structure);

– Temporal approximation using implicit integration of viscous terms and pressure (the interesting scales are
the ones associated with advection);

– Temporal approximation using explicit integration of advective terms;
– Low-storage, iterative solvers for the resulting systems of equations (in order to solve large 3-D prob-

lems); and
– Steady results that are independent from the timestep chosen (in order to have confidence in convergence

studies).
3. Spatial discretization

As stated before, we desire a spatial discretization with unstructured grids in order to:

– Approximate arbitrary domains, and
– Perform adaptive refinement in a straightforward manner, i.e. without changes to the solver.
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From a numerical point of view, the difficulties in solving Eqs. (1)–(3) are the usual ones. First-order
derivatives are problematic (overshoots, oscillations, instabilities), while second-order derivatives can be
discretized by a straightforward Galerkin approximation. We will first treat the advection operator and
then proceed to the divergence operator. Given that for tetrahedral grids solvers based on edge data struc-
tures incur a much lower indirect addressing and CPU overhead than those based on element data struc-
tures [44], only these will be considered.

3.1. The advection operator

It is well known that a straightforward Galerkin approximation of the advection terms will lead to an
unstable scheme (recall that on a 1-D mesh of elements with constant size, the Galerkin approximation
is simply a central difference scheme). Three ways have emerged to modify (or stabilize) the Galerkin dis-
cretization of the advection terms:

– Integration along characteristics [22],
– Taylor–Galerkin (or streamline diffusion) [39,6,15] and
– Edge-based upwinding [43].

Of these, we only consider the third option here. The Galerkin approximation for the advection terms
yields a right-hand side (RHS) of the form:
ri ¼ DijFij ¼ Dijðf i þ fjÞ; ð4Þ

where the fi are the �fluxes along edges�
f i ¼ Sij
k Fk

i ; Sij
k ¼

dij
k

Dij ; Dij ¼
ffiffiffiffiffiffiffiffiffiffi
dij

k dij
k

q
; ð5Þ

Fij ¼ f i þ fj; ð6Þ
f i ¼ ðSij

k vk
i Þvi; fj ¼ ðSij

k vk
j Þvj ð7Þ
and the edge-coefficients are based on the shape-functions Ni as follows:
dij
k ¼

1

2

Z
X
ðN i

;kN j � N j
;kN iÞdX: ð8Þ
A consistent numerical flux is given by
Fij ¼ f i þ fj � jvijjðvi � vjÞ; ð9Þ

where
vij ¼ 1

2
Sij

k ðvk
i þ vk

j Þ: ð10Þ
As with all other edge-based upwind fluxes, this first-order scheme can be improved by reducing the differ-
ence vi � vj through (limited) extrapolation to the edge center [44].
3.2. The divergence operator

A persistent difficulty with incompressible flow solvers has been the derivation of a stable scheme for
the divergence constraint Eq. (2). The stability criterion for the divergence constraint is also known as
the Ladyzenskaya–Babuska–Brezzi or LBB condition [24]. The classic way to satisfy the LBB condition
has been to use different functional spaces for the velocity and pressure discretization [18]. Typically, the
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velocity space has to be richer, containing more degrees of freedom than the pressure space. Elements
belonging to this class are the p1/p1+ bubble mini-element [60], the p1/iso-p1 element [64] and the p1/
p2 element [62]. An alternative way to satisfy the LBB condition is through the use of artificial viscosities
[42], �stabilization� [19,63,20] or a �consistent numerical flux� (more elegant terms for the same thing). The
equivalency of these approaches has been repeatedly demonstrated (e.g., [60,42,44]). The approach taken
here is based on consistent numerical fluxes, as it fits naturally into the edge-based framework. For the
divergence constraint, the Galerkin approximation along edge i, j is given by
Fij ¼ f i þ fj; f i ¼ Sij
k vk

i ; fj ¼ Sij
k vk

j : ð11Þ

A consistent numerical flux may be constructed by adding pressure terms of the form:
Fij ¼ f i þ fj � jkijjðpi � pjÞ; ð12Þ

where the eigenvalue kij is given by the ratio of the characteristic advective timestep of the edge Dt and the
characteristic advective length of the edge l:
kij ¼ Dtij

lij : ð13Þ
Higher-order schemes can be derived by reconstruction and limiting, or by substituting the first-order dif-
ferences of the pressure with third-order differences:
Fij ¼ f i þ fj � jkijj pi � pj þ
lij

2
ðrpi þrpjÞ

� �
: ð14Þ
This results in a stable, low-diffusion, fourth-order damping for the divergence constraint.
4. Temporal discretization

As stated before, one is usually interested in physical phenomena that propagate with the advective time-
scales. Diffusive phenomena typically occur at a much faster rate, and should therefore be integrated implic-
itly. Given that the pressure establishes itself immediately through the pressure-Poisson equation, an
implicit integration of pressure also seems appropriate. The hyperbolic character of the advection operator
and the elliptic character of the pressure-Poisson equation have led to a number of so-called projection
schemes. The key idea is to predict first a velocity field from the current flow variables without taking
the divergence constraint into account. In a second step, the divergence constraint is enforced by solving
a pressure-Poisson equation. The velocity increment can therefore be separated into an advective–diffusive
and pressure increment:
vnþ1 ¼ vn þ Dva þ Dvp ¼ v� þ Dvp: ð15Þ

For an explicit integration of the advective terms, one complete timestep is given by

– Advective–diffusive prediction: vn! v�
1

Dt
� hrlr

� �
ðv� � vnÞ þ vn � rvn þrpn ¼ rlrvn: ð16Þ
– Pressure correction: pn! pn+1
r � vnþ1 ¼ 0; ð17Þ
vnþ1 � v�

Dt
þrðpnþ1 � pnÞ ¼ 0; ð18Þ
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which results in
r2ðpnþ1 � pnÞ ¼ r � v
�

Dt
: ð19Þ
– Velocity correction: v� ! vn+1
vnþ1 ¼ v� � Dtrðpnþ1 � pnÞ: ð20Þ
At steady-state, v� = vn = vn+1 and the residuals of the pressure correction vanish, implying that the result
does not depend on the timestep Dt. h denotes the implicitness-factor for the viscous terms (h = 1: first-
order, fully implicit, h = 0.5: second-order, Crank–Nicholson). The forward Euler integration of the advec-
tion terms imposes rather severe restrictions on the allowable timestep. For this reason, alternative explicit
integration schemes have been used repeatedly [66]. Many authors have used multilevel schemes, such as the
second-order Adams–Bashforth scheme. The problem with schemes of this kind is that they use the values
at the current and previous timestep, which makes them awkward in the context of adaptive refinement,
moving meshes, and local or global remeshing. Single step schemes are therefore preferable. Lax–Wendroff
or Taylor–Galerkin schemes offer such a possibility, but in this case the result of steady-state calculations
depends (albeit weakly) on the timestep (or equivalently the Courant-number) chosen. This leads us to sin-
gle step schemes whose steady-state result does not depend on the timestep are preferable.

Projection schemes of this kind (explicit advection with a variety of schemes, implicit diffusion, pressure-
Poisson equation for either the pressure or pressure increments) have been widely used in conjunction with
spatial discretizations based on finite differences [10,11,40,4,5,1], finite volumes [35,53], and finite elements
[21–23,34,49,42,48,50,51,43,61,16,37,12,41,38]), and have served as the basis for industrial CFD solvers
with both element-based data structures (first generation) and edge-based data structures (second genera-
tion) [61,16,36–38].
4.1. Temporal discretization of higher order

The scheme given by Eqs. (16)–(20) is, at best, of second-order in time. It is surprising to note that appar-
ently no attempt has been made to use multistage explicit schemes to integrate the advective terms with
higher order or to accelerate the convergence to steady-state. This may stem from the fact that the implicit
integration of the viscous terms apparently impedes taking the full advantage multistage schemes offer for
the Euler limit of no viscosity. An interesting alternative is to integrate with different timestepping schemes
the different regimes of flows with highly variable cell Reynolds-number
Reh ¼
qjvjh

l
; ð21Þ
where h is the mesh size. For the case Reh < 1 (viscous dominated), the accuracy in time of the advective
terms is not so important. However, for Reh > 1 (advection dominated), the advantages of higher order
time-marching schemes for the advective terms are considerable, particularly if one considers vortex trans-
port over large distances. Dahlquist�s theorem states that no unconditionally stable, implicit one-step
scheme can be of order higher than two (this being the Crank–Nicholson scheme). However, explicit
schemes of the Runge–Kutta type can easily yield higher order timestepping. A k-step, time-accurate
Runge–Kutta scheme or order k for the advective parts may be written as
vi ¼ vn þ aicDtð�vi�1 � rvi�1 �rpn þrlrvi�1Þ; i ¼ 1; k � 1; ð22aÞ
1

Dt
� hrlr

� �
vk � vn
� �

þ vk�1 � rvk�1 þrpn ¼ rlrvk�1: ð22bÞ
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Here, the ai are the standard Runge–Kutta coefficients ai = 1/(k + 1 � i). As compared to the original
scheme given by Eq. (16), the k � 1 stages of Eq. (22) may be seen as a predictor (or replacement) of vn

by vk�1. The original right-hand side has not been modified, so that at steady-state vn = vk�1, preserving
the requirement that the steady-state be independent of the timestep Dt. The factor c denotes the local ratio
of the stability limit for explicit timestepping for the viscous terms versus the timestep chosen. Given that
the advective and viscous timestep limits are proportional to:
Dta �
h
jvj ; Dtv �

qh2

l
; ð23Þ
we immediately obtain
c ¼ Dtv

Dta
� qjvjh

l
� Reh; ð24Þ
or, in its final form:
c ¼ minð1;RehÞ: ð25Þ

In regions away from boundary layers, this factor is O(1), implying that a high-order Runge–Kutta scheme
is recovered. Conversely, for regions where Reh = O(0), the scheme reverts back to the original one (Eq.
(16)). Note also that the very tempting option of ignoring the pressure and viscous terms in Eq. (22) leads
to steady-state results that are not independent of the timestep.

Besides higher accuracy, an important benefit of explicit multistage advection schemes is the larger time-
step one can employ. The increase in allowable timestep is roughly proportional to the number of stages
used (and has been exploited extensively for compressible flow simulations [33]). Given that for an incom-
pressible solver of the projection type given by Eqs. (16)–(20) most of the CPU time is spent solving the
pressure-Poisson system Eq. (19), the speedup achieved is also roughly proportional to the number of stages
used.
5. Iterative solvers

Both Eqs. (16) and (19) lead to large (symmetric) systems of equations of the form:
Ku ¼ r: ð26Þ

Preconditioned conjugate gradient (PCG) solvers [54] are used to solve Eq. (19). For isotropic grids, sim-

ple diagonal preconditioning has proven very effective. For highly stretched RANS grids, linelet precondi-
tioning has proven more effective [48,59]. We also remark that we have attempted repeatedly to use
multigrid as a solver [65], but that for most cases to date the simpler, highly optimized PCG solvers have
proven superior.
6. Acceleration to steady-state

For steady flows, the use of a time-accurate scheme with uniform timestep Dt in the domain will invari-
ably lead to slow convergence. In order to obtain steady results faster, a number of possibilities can be ex-
plored. Among the many we and others have tried, the following have proven the most successful:

– Local timesteps;
– Reduced iteration for the pressure;
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– Substepping for the advection terms;
– Implicit treatment of the advection terms; and
– Fully implicit treatment of advection, diffusion and pressure.

The main features of these are reviewed in the sequel.

6.1. Local timestepping

Faster convergence to steady-state may be achieved by employing local timesteps. Given that the results
obtained by the schemes used do not depend on the timestep, this can be readily done. One simply defines a
separate timestep for each gridpoint, and marches in time until a steady solution is reached. Local timestep-
ping works best for problems that exhibit large variation of grid size and velocity.

6.2. Reduced pressure iterations

The most time-consuming part of projection schemes is the solution of the pressure-Poisson equation at
every timestep. Recall that this is the equation that defines the pressure and establishes a divergence-free
state at the next timestep. If we are only interested in the steady result, obtained after many timesteps, then
the maintenance of an exact divergence-free state at every intermediate timestep is not required. Therefore,
one can use a less stringent convergence criterion for the pressure-Poisson solver, saving a considerable
amount of CPU-time. We have experimented extensively with this option. The results obtained have been
mixed. For inviscid flows (Euler equations, isotropic grids), this option works well. However, for the more
demanding high Reynolds-number cases (separation, highly anisotropic grids), it has proven difficult to de-
fine reliable convergence criteria.

6.3. Substepping for the advection terms

This option was already treated above (see Eqs. (22) and (23)). The speedup achieved is roughly propor-
tional to the stages used.

6.4. Implicit treatment of the advection terms

Any explicit integration of the advective terms implies that information can only travel at most one ele-
ment per timestep. In order to allow for a faster transfer of information and larger timesteps, the advective
terms have to be integrated implicitly [58]. Eq. (16) then becomes:
1

Dt
þ v� � r � rlr

� �
v� � vnð Þ þ vn � rvn þrpn ¼ rlrvn; ð27Þ
leading to a non-symmetric system of equations of the form:
ADv ¼ r: ð28Þ
This may be rewritten as
A � Dv ¼ LþDþUð Þ � Dv ¼ r; ð29Þ
where L, D, U denote the lower, diagonal and upper diagonal entries of A. Classic relaxation schemes to
solve this system of equations include:
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(a) Gauss–Seidel, given by
ðLþDÞ � Dv1 ¼ r�U � Dv0; ð30Þ
ðDþUÞ � Dv ¼ r� L � Dv1: ð31Þ
(b) Lower-upper symmetric Gauss–Seidel (LU-SGS), given by
LþDð Þ �D�1 � DþUð Þ � Dv ¼ r: ð32Þ

These relaxation schemes have been optimized over the years, resulting in very efficient compressible flow
solvers [45–47,56]. Key ideas include:

– Using the spectral radius qA of A for the diagonal entries D; for the advection case, qA = jvj, resulting in:
D ¼ 1

Dt
Mi

l � 0:5
X

Cijjvjij þ
X

kij

� �
I; ð33Þ
where C, k denote the edge coefficients for the advective and viscous fluxes and Mi
l the lumped mass ma-

trix at node i;
– Replacing:
A � Dv � DF; ð34Þ

resulting in:
DF ¼ Fðvþ DvÞ � FðvÞ: ð35Þ

The combined effect of these simplifications is a family of schemes that are matrix free, require no extra
storage as compared to explicit schemes, and (due to lack of limiting) per relaxation sweep are faster
than conventional explicit schemes. For the LU-SGS scheme, each pass over the mesh proceeds as
follows:

– Forward sweep:
Dv̂i ¼ D�1 ri � 0:5
X
j<i

Cij � ðDF̂ij � jvjijDv̂jÞ þ
X
j<i

kijDv̂j

" #
: ð36Þ
– Backward sweep:
r ¼ D � Dv̂ ð37Þ

Dvi ¼ D�1 ri � 0:5
X
j>i

Cij � ðDFij � jvjijDvjÞ þ
X
j>i

kijDv̂j

" #
: ð38Þ
Luo [45] has shown that no discernable difference could be observed when taking central or upwind discret-
izations for DF. As the CPU requirements of upwind discretizations are much higher, all relaxation passes
are carried out using central schemes. Given that the same loop structure (L, D, U) is required for both the
Gauss–Seidel, the LU-SGS and the GMRES matrix-vector products, it is possible to write a single �sweep�
subroutine that encompasses all of these cases. The initialization of the Gauss–Seidel loop is accomplished
with an LU-SGS pass.
7. Fully implicit integration

Using the notation
uh ¼ ð1� hÞun þ hunþ1; ð39Þ
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which implies
unþ1 � un ¼ uh � un

h
; ð40Þ
an implicit timestepping scheme may be written as follows:
vh � vn

hDt
þ vhrvh þrph ¼ rlrvh; ð41Þ

r � vh ¼ 0: ð42Þ
Following similar approaches for compressible flow solvers [2], this system can be interpreted as the steady-
state solution of the pseudo-time system:
vh
;s þ vhrvh þrph ¼ rlrvh � vh � vn

hDt
; ð43Þ

r � vh ¼ 0: ð44Þ
Observe that the only difference between Eqs. (41) and (42) and the original incompressible Navier–Stokes
equations given by Eqs. (1) and (2) is the appearance of new source-terms. These source terms are pointwise
dependent on the variables being integrated (vh), and can therefore be folded into the left hand side for ex-
plicit timestepping without any difficulty. The idea is then to march Eqs. (41) and (42) to steady state in the
pseudo-time s using either the explicit- or implicit-advection projection scheme.
8. Examples

The new schemes have been tested on a variety of examples, a few of which are included here. We remark
from the outset that the main aim is the comparison of speed. Given that the RHS discretization is the same
for the second and third generation solvers, the results will not change for steady flow cases. Detailed com-
parison to experiments, mesh refinement studies, etc. can be found in [43,61,16,37,28,7,36,38,8,9].

8.1. NACA0012

The first example considered is the classic NACA0012 wing at a = 5� angle of attack. This is a steady,
inviscid case (Euler). Figs. 1a and b shows the surface mesh employed, as well as the surface pressures ob-
tained. Although the mesh is rather coarse (nelem=368,872, npoin=68,321), it still allows for a mean-
ingful comparison of the different solvers. This problem was solved using (C denotes the Courant-nr.):

– The standard explicit-advection projection scheme (C = 0.1) with full pressure solution every 20 time-
steps, and partial pressure solution (max 20 PCG iterations) in between (Ex 1);

– The explicit-advection projection scheme with 2–5 substeps for advective prediction (Ex 2–5);
– The implicit-advection projection scheme (C = 4.0) with several SGS relaxations (SGS 1/2/4/10);
– A predictor-corrector scheme (not outlined above) based on the implicit-advection SGS solver (SGS 2S

(01,11)); and
– The implicit-advection projection scheme (C = 4.0) with LU-SGS-GMRES solver for the advection,

again with different number of iterations per timestep (GMRES 3/10).

Each one of these runs was considered converged when the change in lift, normalized by the Courant-
number, was below tl = 10�3 for five subsequent timesteps. We have found such a measure to be a better



Fig. 1. (a,b) NACA0012: surface mesh and pressure, (c,d) NACA0012: convergence history for lift and residuals.
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indicator of convergence than residuals, as this allows the user to state clearly what accuracy is desired.
Fig. 1c and d shows the convergence history for the lift and residuals, respectively. One can see that the
implicit-advection schemes converge significantly faster. The timings obtained summarized in Table 1, indi-
cate that this faster convergence also translates into a drastic reduction in CPU requirements. Note that the
2-step explicit-advection scheme also yields a surprisingly high speedup, but falls short of the speedups ob-
tained for the low-relaxation SGS and LU-SGS-GMRES schemes.

8.2. Wigley Hull

The second example considered is is the well known Wigley Hull, given by the analytical formula:
y ¼ 0:5 � B � ½1� 4x2� � 1� z
D

	 
2
� �

;



Table 1
NACA-0012

Scheme ntime CPU [s] Speedup

Ex 1 (0.1) 540 579 1.00
Ex 2 (0.4) 135 193 3.00
Ex 3 (0.6) 90 157 3.69
Ex 5 (0.8) 70 166 3.48
ImSGS (1) 75 172 13.46
ImSGS (2) 55 142 16.31
ImSGS (4) 70 188 12.30
ImSGS (10) 51 532 4.35
ImSGS 2 (01) 110 556 4.16
ImSGS 2 (11) 50 280 8.27
ImGMRES (3) 70 216 10.72
ImGMRES (10) 55 772 3.00
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where B and D are the beam and the draft of the ship at still water. The case considered here, which had
D = 0.0625, B = 0.1, has been studied before by several authors [29,17,1,30,31,43,67]. This is a steady, invis-
cid case (Euler) with free surface (no mesh movement, i.e. geometric free surface conditions). Fig. 2a and b
shows the surface mesh employed (the volume mesh had nelem=360,247, npoin=67,785), as well as
the wavepattern obtained. Fig. 2c and d shows the convergence history for the wavedrag and residuals,
respectively. The wavedrag coefficient obtained for the present mesh was cw = 0.532 · 10�4, and compares
favourably with the experimental data of cw = 0.567 · 10�4 [32] and the moving mesh result of
cw = 0.607 · 10�4 [43]. One can see that the implicit-advection schemes converge significantly faster. The
timings, summarized in Table 2, confirm a considerable speedup. As before, note the surprising speedup
obtained by the multistep explicit-advection schemes.
8.3. von Karman vortex street

The third example considered is also a well known benchmark case [55]. A circular cylinder is suspended
in a uniform stream of incompressible fluid. The separation at the back of the cylinder generates the so-
called von Karman vortex street, whose characteristics depend on the Reynolds number
Re ¼ qV 1D
l

;

where D denotes the diameter of the cylinder. This is essentially a 2-D example, but was run with the 3-D
solver. A mesh of nelem=113,056, npoin=23,228 was used for the simulation, with special placement
of points in the vicinity of the cylinder. The parameters were chosen such that the resulting Reynolds num-
ber was Re = 190.

Fig. 3a and b shows the surface grid and the absolute value of the velocity in a cut plane. In order to
compare the different schemes, the run was started impulsively using the explicit-advection scheme. The
run was continued until the vortex street was fully developed. Starting from this (restart) state, the different
schemes were exercised and compared to one another. The lift of the cylinder as a function of time for the
original explicit-advection projection scheme, the 2/3/5-step explicit-advection projection scheme, as well as
the implicit-advection Crank–Nicholson (h = 0.50) scheme with different timesteps is displayed in Fig. 3c.
For the implicit timestepping scheme, the pseudo steady state system given by Eqs. (43) and (44) was solved
using a local Courant-nr. of C = 4.0, implicit advection and SGS relaxation. Typically, 10–20 SGS itera-
tions were required for convergence. Observe that for the schemes that employ a reasonable timestep,



Fig. 2. (a) Wigley Hull: surface mesh, (b) Wigley Hull: free surface elevation, (c,d) Wigley Hull: convergence history for wavedrag and
residuals.

Table 2
Wigley Hull

Scheme ntime CPU [s] Speedup

Ex 1 1910 3232 1.00
Ex 2 350 890 3.63
Ex 3 235 778 4.15
ImSGS (2) 285 682 4.74
ImSGS (4) 260 713 4.53
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and in particular all the explicit-advection multistep schemes, the results are almost identical. The Strouhal
number obtained is approximately S = 0.2, in good agreement with experiments [55]. Not surprisingly, as
the timestep is increased, the implicit schemes remain stable, but the solution deteriorates. Recall that for
Dt = 0.4, a particle in the free stream crosses the cylinder in 2.5 timesteps (!). The timings recorded are sum-
marized in Table 3. We remark that the timestep for the explicit-advection schemes is approximate.



Fig. 3. (a) von Karman vortex street: surface mesh, (b) von Karman vortex street: Abs(Veloc), (c) von Karman vortex street: lift
history.
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Table 3
von Karman vortex street

Scheme Dt ntime CPU [s] Speed

Ex 1 0.1 0.002 9961 12,929 1.00
Ex 2 0.4 0.008 2490 4194 3.08
Ex 3 0.6 0.012 1660 3296 3.92
Ex 5 0.8 0.016 1245 3201 4.03
Ex 5 1.2 0.025 830 1546 8.36
Ex 5 1.6 0.033 623 1114 11.60
Ex 5 1.8 0.037 554 995 12.99
ImSGS (5) 0.1 200 3189 4.05
ImSGS (5) 0.2 100 1612 8.02
ImSGS (5) 0.4 50 962 13.43
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8.4. High-Re bump

The fourth example considered is high Reynolds-number flow past a parabolic bump. As before, this is
essentially a 2-D example, but was run with the 3-D solver. The parameters were set to: q = 1.0, v = (1, 0,0),
l = 10�5, L = 1, which implies a Reynolds-number of Re = 105. The Baldwin–Lomax turbulence model [3]
was used. The resulting flow is steady and shows the development of a boundary layer. Fig. 4a and b shows
a zoom of the surface mesh employed, as well as the velocity field obtained. As in the previous cases,
although the mesh is coarse (nelem=23,785, npoin=5,674), it still allows for a meaningful comparison
of the different solvers.

As before, this problem was solved using:

– The standard explicit-advection projection scheme (C = 0.1) with full pressure solution every 20 time-
steps, and partial pressure solution in between (max 20 PCG iterations);

– The implicit-advection projection scheme (C = 4.0) with SGS relaxation;
– The implicit-advection projection scheme (C = 4.0) with LU–SGS–GMRES solver for the advection.

For the pressure-Poisson equation (as well as the velocity PCG solver of the explicit-advection projection
scheme), linelet preconditioning was used. Fig. 4c and d shows the convergence history for the lift and resid-
uals, respectively. As before, one can see that the implicit-advection schemes converge significantly faster.
The timings recorded have been summarized in Table 4.
8.5. Ahmed car body

The fifth example considered is high Reynolds-number flow past the so-called Ahmed body. This is a
standard test case for external car aerodynamics. The parameters were set to: q = 1.0, v = (1, 0,0),
l = 2.33 · 10�7, L = 1, which implies a Reynolds-number of Re = 4.29 · 106. The k�� turbulence model
was used. The resulting flow is quasi-steady and shows the development of a vortex train behind the body.
Fig. 5a–c shows the surface mesh employed, as well as the pressure and velocity field obtained. Note the
boundary layer mesh (the complete mesh consisted of (nelem=420,245, npoin=77,279).

This problem was solved using the fully implicit scheme with a timestep of Dt = 0.1, a local Courant-nr.
of C = 4.1 and LU-SGS-GMRES relaxation. Fig. 5d,e show the forces computed. Note that after t = 30,
a quasi-steady state is reached. The speedup compared to the explicit-advection scheme is approximately
1:10.



Fig. 4. (a) Bump: detail of surface mesh, (b) bump: velocities, (c,d) bump: convergence history for lift and residuals.

Table 4
High-Re bump

Scheme ntime CPU [s] Speedup

Exp 790 144 1.00
ImSGS (10) 100 31 4.65
ImSGS (4) 100 25 5.76
ImGMRES (10) 100 38 3.79
ImGMRES (2) 100 25 5.76
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8.6. Generic car model

The sixth example considered is a realistic car configuration, such as those commonly encountered for
external car aerodynamics. The parameters were set to: q = 1.2, v = (12,0,0), l = 1.80 · 10�5, which im-
plies a Reynolds-number of Re = 3.2 · 106. The Smagorinsky turbulence model was used. As with the



Fig. 5. (a) Ahmed body: surface mesh, (b,c) Ahmed body: surface pressure and speed, (d,e) Ahmed body: drag and lift history.
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Ahmed body, the resulting flow is quasi-steady and shows the development of a vortex train behind the
body. Fig. 6a–c shows the surface mesh employed, as well as the pressure and velocity field obtained. Note,
as before, the boundary layer mesh (the complete mesh consisted of (nelem=3,690,728, npoin=

657,696).
This problem was run in two stages. First, local timestepping with a local Courant-nr. of C = 4.1 and

LU-SGS-GMRES relaxation was used to achieve quickly the overall flowfield. Then, the fully implicit
scheme with a global timestep of Dt = 0.01, a local Courant-nr. of C = 4.1 and LU-SGS-GMRES relaxa-
tion was employed to run the time-accurate simulation. Fig. 6d shows the drag force computed. For this
case, the speedup compared to the explicit-advection scheme is in excess of 1:10.

8.7. Airwake of T-AKE 1 ship

This seventh example demonstrates the use of the multistage explicit-advection projection scheme for a
typical production run. Specifically, the topside air-wake flow and stack gas simulation for the T-AKE 1
ship is considered. This LES study was performed for a 0 degree angle of attack of inflow. The parameters
for this study were set to: angle of attack of inflow a = 0.0, density q = 1.225 kg/m3, velocity
v = (28.8, 0,0) m/s and viscosity l = 1.789 · 10�5 kg/m/s, yielding a Reynolds number of Re = 8 · 107.
Turbulence was modelled with the Smagorinsky model [57]. The numerical study was performed for the
ship at full-scale: the length from stern to bow is 200 m, the height from the water line to the tip of the
stacks is 40 m. Fig. 7a shows the geometry definition of the T-AKE 1. Fig. 7b shows a close up to the sur-
face mesh used. The volume mesh contains 8,863,995 elements and 1,574,805 points. The time integration
was performed using the explicit-advection projection scheme with five stages, allowing a Courant number
of C = 1.0. This gives a speedup of approximately 1:10 over the second generation explicit-advection pro-
jection scheme. The solution was integrated for 2 min of real time with a previous initialization to bring the
flow to a pseudo-steady state. The timestep was of approximately Dt = 0.36 · 10�2 s, which permits the
accurate capture of the unsteady features for this turbulent flow. Using the implicit-advection option does
not yield any significant gain in speed, and may compromise the temporal accuracy of the solution. The
unsteady flow can be seen in the instantaneous streamlines shown in Fig. 7c. The (real) time needed to com-
plete a run like this is of approximately 1 month using 32 processors on an SGI 3800. Comparisons with
wind tunnel measurements [14] support the accuracy of the multistage explicit-advection projection scheme.
A remarkable agreement between the experiment and the computational results is presented in Table 5 for
the temperature measured at different heights above the helipad of the ship. Levels of concentration were
calculated for two chemical species. Fig. 7d shows an iso-surface of concentration. For a detailed report of
this run, see [52,9].

8.8. Paper mill optimization

The combined enhancements in solver speed and computer power have made it possible to use less
sophisticated optimization techniques to improve products or processes. A typical case is the paper machine
headbox shown in Fig. 8. This problem was taken from [26]. The objective is to change the shape of the
upper surface so that the outflow at all three lower exits is equal.

Four Bezier-points that describe the upper surface were taken as design parameters. The optimization
was carried out using a steepest descent algorithm, where the gradient of the objective function was com-
puted via second order finite differences. Although the geometry is 2-D, the case was run with the 3-D code
on a PC (2.2 GHz Intel P4, Linux OS). A typical mesh had O(25 Kels), and the CFD runs required less than
1 min to converge. Fig. 8 shows the geometry/outline of the problem (initial:straight, final:curved), the final
velocity field, as well as the convergence history of the objective function.



Fig. 6. (a) Generic car model: surface mesh, (b, c) Generic car model: surface pressure and velocities, (d) Generic car model: Body:
drag history.
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Fig. 7. (a) T-AKE 1 Ship: geometry definition, (b) T-AKE 1 Ship: detail of surface mesh, (c) T-AKE 1 Ship: instantaneous streamlines,
(d) T-AKE 1 Ship: iso-surface of concentration.

Table 5
Comparison to experiments

Height (m) Texp (�C) Tcfd (�C) Diff. (%)

5 20.10 20.14 0.2
10 20.10 20.23 0.6
15 20.30 20.50 1.0
20 21.10 21.38 1.3
25 22.50 23.86 6.0
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9. Conclusions and outlook

A second-generation incompressible flow solver of the projection type has been improved by considering:

– Runge–Kutta substepping for the advective terms;
– Implicit advection treatment via SGS and LU-SGS-GMRES;



Fig. 8. (a) Paper machine headbox: initial and final geometry, (b) paper machine headbox: velocities for final geometry, (c) paper
machine headbox: convergence of cost function.
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– Implicit timestepping via solution of steady-state problems in pseudo-time; and
– Linelet preconditioning for highly anisotropic grids commonly encountered for RANS applications.

The combined effect of these enhancements has led to speedups of the order of O(1:5�1:10) without dete-
rioration of results, as demonstrated on a variety of academic and industrial problems. Future work will
consider:

– Implicit coupling to the energy equation via Boussinesq approximation;
– Further exploration of (parallel) acceleration techniques;
– Inclusion of vorticity confinement for implicit solvers;
– Adaptive, physics-dependent timestepping; and
– Adaptive mesh refinement for wakes and vortical structures.
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[47] H. Luo, D. Sharov, J.D. Baum, R. Löhner, A class of matrix-free implicit methods for compressible flows on unstructured grids,

in: First International Conference on Computational Fluid Dynamics, Kyoto, Japan, 10–14 July 2000.
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[65] J. Waltz, R. Löhner, A grid coarsening algorithm for unstructured multigrid applications, AIAA-00-0925, 2000.
[66] P. Wesseling, Principles of Computational Fluid Dynamics, Springer, 2001.
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