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Abstract—In this paper a plastic damage model for nonlinear finite element analysis of concrete

.is presented. The model is based on standard plasticity theory for frictional materials. Details of
the expressions of a new vicld function proposed and of the evolution laws of the model parameters
are given. The model allows to include elastic and plastic stiffness degradation effects. This is also
discussed in the paper together with the problem of mesh objectivity, and the a posteriori
determination of cracks. Finally, one example of application which shows the accuracy of the model
is also given.

1. INTRODUCTION

IT1s WELL known that microcracking in concrete takes place dt low load levels due to physical
debonding between aggregate and mortar particles, or t© simple microcracking in the mortar area.
Cracking progresses following a non-homogeneous path which combines the two mentioned
mechanisms with growth and linking between microcracks along different directions. Experiments
carried out on mortar specimens show that the distribution of microcracking is fairly discontinuous
with arbitrary orientations[1]. This fact is supported by many experiments which show that cracking
can be considered, at microscopic level, as a non-directional phenomenon and that the propagation
of microcracks at aggregate level follows an erratic path which depends on the size of the aggregate
particles. Thus, the dominant cracking directions can be interpreted at macroscopic level as the locus
of trajectories of the damage poinis. _ '

-The above concepts support the idea that the nonlinear behaviour of concrete can be modelled
using concepts of classical plasticity theory provided an adequate yield function is defined for taking
into account the different response of concrete under tension and compression states. Cracking can,
therefore, be interpreted as a local damage effect, defined by the evolution of known material
parameters and by a single yield function which controls the onset and evolution of damage.

‘One of the advantages of such a model is the independence of the analysis with respect to
_crack directions which can be simply identified a pesteriori from the converged values of the

nonlineal solution. This allows to overcome the problems associated to most elastic-brittle smeared
- cracking models such as the need for an uncoupled constitutive equation along each cracking
direction[2-4], the use of an arbitrary defined shear retention factor(2, 4], the lack of equilibrium
in the damage points when more than one crack is formed[2, 5), the difficulty of defining stress paths
at the crack under complex loading/unloading conditions and the difficulty of combining cracking
and plasticity phenomena at the damage points. o ‘ _

In this work an elastoplastic model for nonlinear analysis of concrete based on the concepts
of plastic damage mentioned above is presented[6, 7). The model takes into account all the
important aspects which should be considered in the nonlinear analysis of concrete, such as’
the different response under tension and compression, the effect of stiffness degradation and the
problem of objectivity of the results with respect to the finite element mesh.

The layout of the paper is as follows. First, details of the yield function and the evolution laws
of all material parameters are given. Secondly, the effects of elastic and plastic stiffness degradations
are briefly described. Then, the problem of mesh objectivity and the a posteriori determination of
_ cracking is presented. ‘Finally, an example of application showing the accuracy of the model for.
analysis of concrete structures is presented.
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2. BASIC CONCEPTS OF THE “PLASTIC DAMAGE MODEL”

The proposed plastic damage model can be considered as a general form of classical plasticity
in which the standard hardening variable is replaced by a normalized plastic damage variable «®,
such that 0 < kP < 1. This last variable is similar to the former in the sense that it never decreases
and it only increases if plastic deformation takes place (which is associated to the existence of
microcracking). The limit value of x” = 1 denotes total damage at a point with complete loss of
- cohesion. This can be interpreted as the formation of a macroscopic crack.

If stiffness degradation effects are neglected (and this will be separ&tely treated in Section 8)
the basic equations of the model are:

(a) The yield function defined as:

F(o,$.¢)=Flo,§)—c =0, 0

where ¢ is a cohesion or some constant multiple thereof, and ¢ is an internal friction angle. F(s, ¢)
is a function of the stress components that is first degree homogeneous in the stresses &, given a
physical meaning of scaled stress to the cohesion, The pamcular forms of 4 used in this work are
presented in Section 3.-

(b) The elasto-plastic strain decomposition as:
e=Dg' g +eP=¢c"+¢° , _ 2

where D.s is the elastic constitutive matrix[6).
(¢) The flow rule is defined for the general case of non-associated plasticity as:

}:6@(&, /g c)_

5 = Ag ‘ 3

&=

where 4 is the pléstic‘ loading factor, ¥ is a dilatancy angle and g is a plastic flow vector, normal
to the plastic potential surface %(e, ¥, ¢). From eqs (1{3) the standard elastoplasnc incremental
constltutwe equation can be obtained as: :

¢ =D7-¢ o (4)-

with the elastoplastic constitutive matrix given by:

e
N

where A4 is the hardemng parameter[é 8]. Note from eq. (5) that D¥ is only symmetrlc for¥ =
{associated plasticity).
{d) The evolution laws for internal variables x® and ¢ of the form:

P = 1 [h (6. 1%, 0)- 22 w’c)]———h,‘(a',xﬁ,c)-é” : e

¢=4 [hc(cr, K®, eh (o, kP, ¢) -g?i%iﬁ] = h, (o, k7, ¢) K**. N

. The forms of functxons h, and #&_ will be given in Section 4 and 5, respectwely The cohesion ¢ is

a scaled uniaxial stress, so that its initial value ¢, coincides with the initial yield stress fg, obtained

- from a uniaxial compression test. This value can be interpreted as a discontinuity stress, i.e. the
stress for which the volumetric strain reaches a minimum. Therefore, ¢ = ¢, = f, for kP =0, and
¢ =c¢,=0 for kP = 1. Note, however, that ¢ is not.determined by an explicit function of x?, as is

" the case in simple plasticity models with isotropic hardening, but is itself an internal variable,
depending on the load process, whose evolution is expressed by eq. (7).
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3. DEFINITION OF THE YIELD SURFACE

Recent work[6, 9, 10, 11] has shown that the behaviour of concrete under triaxial compression
states can be adequately modelled by yield criteria of the type of eq. (1} with & being a function
with straight meridians, that is first degree homogeneous in'the stress. components.

In this work two different yield functions that satisfy the above requirement have been
developed. The first one, used in the early stages of this work[12-14] is based on a simple
modification of the well known Mohr-Coulomb yield surface as shown in Fig. 1. The new vield
surface is monitored by a reduction parameter o, which allows to shift the R—¢ curve (R being
the tatio between the maximum tension and compression stresses) towards a region in which the
related values of R and ¢ are compatible with those of concrete (¢ =~30° for R =~ 10)[13].
Numerical results obtained with this simple vield function were good and they can be seen
in [12-14].
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A more detailed study of the experimental work reported for biaxial and triaxial behaviour
of concrete allowed the authors to define a new function of the form [6, 7] (Fig. 2).

F=50,0.0) = 5 W3+ el + 8™y —y¢— ™)~ ¢ =0 ®)

where 7, is the first invariant of stress, w, B and y are dimensionless parameters that can be
~ expressed as functions of the friction angle ¢, o™ is the maximum principal stress and
{*x)»=3[x +|x|]is 2 ramp function. Note that when ¢™* = 0 (biaxial compression), & is just
the Drucker-Prager criterion, with the exception of parameter «. This can be obtained comparing
the initial equibiaxial compression stress Jw With initial uniaxial compression stress Jeos

yielding[6, 7, 15): '
a=(%—1)/(2%f1). | &

Experimental values give 1.10 < fi5/fco < 1.16 which yields 0.08 <o <0.1212.... ,
' Once « is known, § can be determined from the value of R = Jeo/Ffro» Where f1, is the initial
uniaxial tensile yield stress, as[6, 7, 15):

F=(1—a)R—(1+a), (10

and for R ~ 10 and = ~0.10 gives § ~ 7.50.
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Fig. 2. Proposed yield surface: (2) (¢,,—05;; on= 0) plane; (b) octahedral plane; (c) meridian plane.
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The parameter y appears only in triaxial compression with ¢™* < (. Considering the equations
of the straight tension (TM) and compression (CM) meridians of the yield surface it can be
obtained[6, 7]

30—

Co2rma ] aD
where;
P = (ST /T2)ew at a given I,. (12)

Experimental tests show that ™ has a constant mean value of ~0.65[6, 7] which yields a value
of A ~3.5.

4. DEFINITION OF THE PLASTIC DAMAGE VARIABLE «?

Let us consider stress—plastic strain diagrams for uniaxial tension and compression tests (see
Fig. 3). For each test we define: '

i - .. )
KP = —}; f o7 €k dt, for uniaxial tension, and
-4 =0

1 {f . . :
KP=— o€k di, for uniaxial compression (13)
gc =0 )

where g& and gP are the specific plastic works, defined by the areas under each of the curves
or—€% and o€k (Fig. 3) obtained from the tension and compression nmiaxial tests, respectively.
The egs (13) allow the transformation of uniaxial diagrams: ¢ = f (¢) in other: ¢ =f (x%} such that
(Fig. 4): :

tension test:- Q) =fr and f(1)=0
compréssion test: o) =fe and fo(1)=0.

Starting from these concepts, the evolution law for «® can be generalized for a multiaxial stress
state (written in terms of principal stress and plastic strain), as[6, 7, 16]:

3 .
Iépzhx(o'a KP: c'.)'él:lﬂ (hxrep) (14)
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Fig. 3. Uniaxial curves (6—F). (a) Tension; (b} compression.
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Fig. 4. Uniaxial curves: (I) tension and {2) compression. (a) Uniaxial curves (e-«), (b) uniaxial
curves (e—i).

with:
1 1 '
o= [(he )+ (Ba)el = S g {—a>
3
PRC. Z< o
g =gh=—; gF=gp=l , (15)

where indices T and C denote values obtained from uniaxial tension and compression tests,
respectively. In eq. (15) g§ and g? are normalized values of the uniaxial specific plastic work for
tension and compression processes, accordingly to the vield function chosen and also to the uniaxial
tension and compression stresses or and g.. For further details see [6, 7, 15, 16].

5. EVOLUTION LAW FOR THE INTERNAL VARIABLE QF-COHESION c

The evolution of the cohesion ¢ must satisfy ¢ —0 for xP— 1. In this model the evolution
law for the cohesion is given by eq. (7) with the evolution function 4, (e, x?, ¢) defined
byl6, 7, 12,15, 16}

r{6) der(kP) 1 —r(o) dcc(rcp)] (16)

er(k®) drx® . cefx®)  dxP

.h:(ﬂ', KP, C) = l:

where ¢ is the actual value of the cohesion, ¢;(k®) and c-(xP) are the cohesion functions obtained
from tension and compression uniaxial tests, respectively (see Fig. 4), and r(e) is a function defining
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the stress stated, being 0 < r(e) <1 withr(e) =1 1fo' >0overalli=1,2,3,and r(6)=0if g, g 0
over all i =1, 2 3. We have taken: _

3 .

Z {o.»

f'(d') - 3,
e

(I7)

For further details the reader is referred to [6, 7, 15, 16].

6. EVOLUTION LAW FOR THE INTERNAL FRICTION ANGIE ¢

It has been shown[6, 15, 17] that the loss of cohesmn in concrete due to increase plastic damage
affects the value of angle of internal friction, which ranges from ¢ ~ 0 for initial cohesion ¢o until
¢ = ¢™* for the ultimate value of cohesion ¢ = ¢, = 0. In this work the followmg evolutlon law
for ¢ has been chosen:

L . .
2 —p—K——K—L sin g™, V¥ xP<xt
sing = k't K

sin @™, VY rP>xk o (18)

where x* denotes the limit damage for which the value of ¢ remains constant (see Fig. 5).

7. PLASTIC POTENTIAL FUNCTION AND DILATANCY ANGLE ¢

Granular materials like concrete exhibit dilatancy phenomenonf6,15,17]. This can be
modelled introducing an adequate plastic. potential function ¢ to match the numerical values
obtained for the inelastic volume change with experimental data. In this work we have chosen for
% the modified Mohr-Coulomb yield function (see Section 3) with the angle of dilatancy W
substituting the internal friction angle ¢. The evolution law for ¥ has been obtained via a simple
modificaton of the general expression proposed by Rowe for rocks and used by Vermeer and
De Borst[17] for concrete as:

W (c?) = arcsin[ sin ¢ (%) — sin ¢, } (19)

1 — sin ¢ {x?) sin ¢b,,

where ¢, can be taken as a constant value. For concrete ¢, ~ 13°.

The eq. (19) gives for the initial stages of the process a negative dilatancy, which increases as
plastic damage increases, takes a zero value for ¢ = ¢, and réaches a maximum for ¢ = ¢™*. For
concrete a negative value of ¥ has not physical meaning and, therefore, it must be taken ¢ =0
for ¢ < ¢, (see Fig. 6).
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Fig. 3. Evolution law for the internal friction angle{17].
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8. GENERALIZATION OF THE MODEL TO INCLUDE.
STIFFNESS DEGRADATION

. Expenmental results show that near and beyond peak strength cemented granular materials

~ exhibit an increasing degradation of stiffness due to microcracking (Fig. 7). The consideration of

the phenomenon of stiffness degradation makes it necessary some modifications in the basic
concepts of the theory of plasticity used in previous sections and, in particular, that of associated

plasticity]6, 7).

Taking into account the stiffness degradation effects 1mp11es modifying the elastic secant
constitutive matrix Dy in terms of two sets of internal variables: the elastic degradation variables

‘and the plastic degradation variables whose evolutions will be assumed to be governed by rate

equatlons of the form: d¢ = ¢k, ¢) and d" =1;-€7[6, 7, 18] respectively; where k; and |, are vectors
in the stresses space denoting the dlrections of elastxc and plastic degradation, respectzveiy, and @,
is a positive scalar factor (for further details the reader is referred to [6, 7, 18].

In this paper we have used the simplest assumption for elastic degradation based on a simple
1sotroplc degradation variable: 4% such that the secant constitutive matrix is modified by:

Ds(d*‘) 1- d’:)l)0 (20)

where D is the initial stﬂness Parameter d° can be interpreted as the ratio between the area of
degradated matenal and the total area, and it can be expressed[6 7]

e e1)
of | // /'

gt =00 ..__...-----71“ A / | x / J

Fig. 7. Degradation of stiffness module due to microcracking.
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where 2 w*® = ¢°-D°-¢°is the square of the undamaged energy norm of the strain[19), ¢° is the elastic
strain and @ is a constant given for this particular case, by[6]:

__ 2 | E
_.'Eo(eea)z HF

where E® is initial Young modulus; E' and ¢ are the secant Young modulus and elastic
deformation at the limit stress point of elastic degradation, respectively[6]. For further details the
reader is referred to [6, 7. '

For the plastic degradation a simple one-parameter model has also been used in this paper.
This is based on the assumption that plastic degradation takes place only in the softening branch
and that the stiffness is then proportional to the cohesion. The secant constltutive matrix is thus
given by:

Dy (4P, d°) =.'(1 —dF) Ds(d“) (23)

with the plastic degradation parameter d” given by:

AP=1-—— | (24)

where ¢ is the actnal value of cohesion and ¢ is the maximum cohesion value reached For further

details the reader is referred to [6, 7, 18]

9. PROBLEM OF OBJECTIVITY RESPONSE

See Ref. [7]. It has been made abundantly clear over the past decade that the strain-softening
branch of the stress—strain curves cannot represent a local physical property of the material. The
argument have been advanced both on physical grounds and on the basis of the mesh-sensitivity
of numerical solutions obtained by means of the finite-element method. The mesh-sensitivity can
be largely eliminated if one defines g == G/ and g& = G /I, where [ is a charactristic Iength related
to the mesh size, and Gy and G are quantities with the dimensions of energy/area that are assumed
to be material properties.

. In problems involving tensile cracking, G; may be identified with the specific fracture energy
G., defined as the-energy required for form a unit area of crack. It has generally been assumed
that G, is a true material property, and methods have been developed for determining it[4]. For
the characteristic length I, various approaches have been proposed[3, 20, 21].

Not so much attention has been paid to the corresponding compressive problem. Compressive
failure may occur through several mechanisms—orushing, shearing and transverse cracking—and
consequently G., if indeed it is a material property, cannot be readily identified with any particular
physical energy. Moreover, it must be kept in mind that it is only the descending portion of the
stress—strain curve that is mesh-sensitive.

' 10. NUMERICAL EXPERIMENTATION

The constitutive model presented has been implemented in a standard finite element program
* for nonlinear analysis of structures and applied to evaluate the numerical response of several
specimens for which experimental results are known. Before entering in the discussion of the
example analysed, some general considerations on the definition and representation of cracking
have to be done.

Cracking is the most nnportant external manifestation of damage in a concreie structure.
In order to obtain a graphic representation of this kind of damage, some parameters are

EFM 35-1/3—N

22)
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evaluated, at each integration point a Dbosteriori, once convergence of the nonlinear solution has
been reached. This can be interpreted as a postprocessing of the results in which, conditions for
onset of cracking, crack directions, plastic strains (as a measure at the opening of the cracks),
energy dissipation and the shear retention factor are computed[6]. Cracking initiates at a point
when the plastic-damage variable x?is greater than zero, and the maximum principal plastic strain
is positive. Direction of cracking is assumed to be orthogonal to that of the maximum principal
plastic strain at the damaged point. Other criteria for defining onset and directions of cracking the
localization condition based on the acoustic tensor[22] or maximum energy release[1] are also
possible.

Example: Prestressed cantilever beam

The beam shown in Fig. 8 has been subjected to a numerical test consisting of (a) prestressing
in a direction parallel to the nentral axis, and (b) subsequent transversal loading as shown in Fig, 8.
This corresponds to an experimental numerical test studied with some modifications by Rots et af,
in [4]. The numerical data for this example has been obtained from f4].

The material parameter and finite element mesh used are shown in Fig. 8. Four node clements
have been employed in the narrow band shown in Fig. 8, whereas eight node elements are used
in the rest of the beam. 2 x 2 Gaussian quadrature has been used for all elements. _

The load—displacement curve obtained is plotted in Fig. 9(a) Comparison of the obtained
results with those presented in [4] is good. Tt can be seen that the applied load does not reach a
zero value. This is due to the vertical component of the prestressing load, which opposes the
opening of the two beam edges (see Fig. 9d). The dissipated energy is shown in Fig. 9(b) where
it can be seen that the solution destabilizes to the correct value. In Fig. 9(c) the stress changes in
the point under more severe damage is presented. Finally, Fig. 9(d) clearly shows the localization
of deformation, crack and stress evolution. Again it is worth noting that the cracked elements
simulate the effect of a single crack occurring in practice. Also note in Fig. 9(d) the small transverse
cracks due to local bending of the two beam edges. . '
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Fig. 8. Prestressed beam. Relevant material parameters, and finite element mesh.
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Fig. 9. Prestressed beam. (a) Load—displacement; (b} energy-dissipation; {c) stress—strain in the more
damaged integrating point; (d) localization of cracking, and stress evolution.
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11. CONCLUSIONS

In this paper a plastic damage model for finite element nonlinear analysis of concrete has been
presented. The model allows the accurate reproduction of the nonlinear behaviour of concrete
under tension and compression states, including elastic and plastic stiffness degradation effect. The
accuracy obtained in the example analysed shows that it can be successfully applied for nonlinear
analysis of both plain and reinforced concrete structures.
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