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This paper demonstrates the big influence of the control of the mesh quality in the final solution of aero-
dynamic shape optimization problems. It aims to study the trade-off between the mesh refinement dur-
ing the optimization process and the improvement of the optimized solution. This subject is investigated
in the transonic airfoil design optimization using an Adaptive Mesh Refinement (AMR) technique coupled
to Multi-Objective Genetic Algorithm (MOGA) and an Euler aerodynamic analysis tool. The methodology
is implemented to solve three practical design problems; the first test case considers a reconstruction
design optimization that minimizes the pressure error between a predefined pressure curve and candi-
date pressure distribution. The second test considers the total drag minimization by designing airfoil
shape operating at transonic speeds. For the final test case, a multi-objective design optimization is con-
ducted to maximize both the lift to drag ratio (L/D) and lift coefficient (Cl). The solutions obtained with
and without adaptive mesh refinement are compared in terms of solution improvement and computa-
tional cost. Numerical results clearly show that the use of adaptive mesh refinement can improve the
solution accuracy while reducing significant computational cost in both single- and multi-objective
design optimizations.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction theory resolved this drawback via presenting a family of sensitivity
Aerodynamic shape optimization is one of the most important
engineering problems which has got a lot of interest due to the
large number of requests from the aircraft companies. Many inves-
tigations have been carried out over the past two decades in order
to speed up the optimization process and improve the optimality
of the optimized design. Two main numerical optimization meth-
odologies are studied massively by the researchers in the field of
aerodynamic shape optimization; gradient-based methods and
Genetic Algorithms (GAs).

Gradient-based methods rely on sensitivities (gradients) of the
objective function respect to the design parameters. Sensitivities
are considered as the direction for updating design parameters.
Firstly, the traditional finite difference was implemented for eval-
uating sensitivities in aerodynamic shape optimization problems
[1,2]. This method suffers from the fact that the computational cost
is proportional to the number of design variables. The control
derivation methodologies called adjoint method. Using the adjoint
method, the cost of sensitivity computation is virtually indepen-
dent of the number of design variables. As the first attempt, Piron-
neau [3] applied the control theory for the shape optimization.
Jameson and his group [4–6] derived the adjoint method formula-
tion for inviscid/viscous compressible flows with shock waves.
Although the continuous adjoint method is studied in [7,8], the dis-
crete adjoint method has gained more popularity recently, due to
its straightforward formulation and its ability to easily treat the
boundary conditions in viscous problems ([9,10]). Even though
gradient-based methods require much less objective function eval-
uations, they suffer from some unfavorable requirements such as
smoothness of the design space, an appropriate initial guess and
existence of only one single global optimum [11,12]. Indeed, for
handling multi-objective optimization problems, it is necessary
to define a global objective function by making a linear combina-
tion of the available objective functions through different weights
[6,13]. This method is strongly sensitive to the assumed weight
coefficients in a way that some optimal solutions may be lost if
inappropriate weights are selected. Moreover, multiple optimiza-
tion runs are required to be performed in order to compute Pareto
fronts.

For these reasons, researchers motivated to implement GAs
which are based on the process of natural selection instead of
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sensitivities having the capability to escape from local optima to-
ward finding the global solution [14,15]. On the other hand, GAs
are able to generate Pareto fronts in a single optimization run by
improving the objective functions simultaneously and indepen-
dently [15]. Firstly, GAs was studied by Gage and Kroo [16] and
Crispin [17] for aerodynamic shape optimization problems. Qua-
gliarella and Cioppa [18] applied GAs to find shockless airfoils
while Crossley and Laananen [19] used them for helicopter design.
Periaux et al. [20] demonstrated the efficiency of GAs to deal with
complex aerodynamic optimization problems using parallel com-
puters. Based on the concept of multi-layered hierarchical topol-
ogy, Wang et al. [21] studied the parallel hierarchical genetic
algorithms for a multiple element airfoil. Furthermore, GAs are
implemented to multi-component airfoil design [22], inverse de-
sign of wings [23] and many other occasions of the aerodynamic
shape optimization [24–29]. A large number of investigations have
been carried out in the field of multidisciplinary design of aeronau-
tical systems using GAs due to the unique ability of GAs in han-
dling multi-objective optimization problems [30–32]. The main
problem of the GAs approach is the computational expense as they
require many generations in order to find the global optima.
Approximate models [33], hybrid methods [34,35] and parallel
algorithms [20,21] successfully have cured this difficulty.

It is clear that the only common issue in the both aerodynamic
shape optimization approaches, gradient-based methods and GAs,
is the numerical solution of flow equations using CFD codes for
evaluating the objective function. Many investigations have been
performed over the past two decades in order to improve the accu-
racy of the CFD simulations while speeding them up. A part of
these investigations led to the development of the so called adap-
tive mesh refinement (AMR) technique in the CFD field. The basic
idea behind the adaptive mesh refinement is the control of the
mesh resolution by generating an enough fine mesh near the zones
where the solution error is high and assigning a coarse mesh to the
rest of the domain. AMR schemes are able to improve the accuracy
of the flow solution around the high-error zones such as boundary
layers, stagnation points and shock waves. Furthermore, AMR tech-
niques can be considered as a capable tool for reducing the compu-
tational cost of the flow simulation since they let the analyzer
avoid using a fine mesh in all over the domain.

Two main components of adaptive refinement methods are a
reliable error estimator/indicator and a mesh refinement strategy.
In compressible flow problems, two main categories of error indi-
cators are developed by the researchers. The first one is based on
the gradient of a flow variable such as Mach number or density in-
side the element [36] while in the second category the error indi-
cator is approximated by a derivative one order higher than
interpolation functions [37,38]. In order to get a mesh with an
equi-distribution of error inside the domain, a mesh refinement
strategy must be implemented to generate the new adapted mesh
using the information obtained from the error indicator. Mesh
refinement is performed through several different methodologies
such as R-method [39,40], H/P-method [41,42] and M-method
[43,37].

Although the efficiency of AMR tools for aerodynamic analysis
problems in providing accurate CFD results is now fairly well
established [36–38,41,43,42], no work has studied the effect of
AMR in aerodynamic shape optimization problems (in terms of
computational cost and solution improvement). However, a few re-
searches have been carried out using AMR for each design candi-
date of the optimization [44,45,35] but they do not show the
efficiency of the adaptive mesh in comparison with the uniform
one. In this category, the works done by Bugeda and Oñate
[44,45] can be mentioned where they have developed a
methodology which utilizes adaptive mesh for each design in a
suitable manner. Their methodology is based on the derivation of
the sensitivity of the nodal coordinates and some flow variables
with respect to the design variables to project the remeshing
parameters from the old design to the new one.

The main objective of this paper is to show the trade-off be-
tween the AMR during the optimization process and the quality
of the optimized solution in terms of the improvement and the
computational cost. On the other hand, this work demonstrates
the capability of AMR in giving better optimization results using
less computational cost. Different test cases have been used to
compare the behavior of the optimization process with and with-
out the use of AMR strategies. The selected test cases for these
comparisons are intentionally simple as the objective of this study
is not to show the actual capabilities of the state of the art strate-
gies for the optimization of realistic configurations. The inviscid
flow field equations (Euler) and simple geometries have been used
for the achievement of the objectives set in the research. The use of
more complex test cases involving arbitrary geometries and more
advanced fluid flow equations (taking into account viscous and tur-
bulent phenomena) would have prevented the simple interpreta-
tion of results when trying to discriminate the effect of AMR
strategies from the rest of phenomena involved in the analyses.
In any case, the influence of the AMR strategies in the solution of
the presented test cases can be easily extrapolated to more com-
plex problems.

In this paper, two optimization methods are considered; the
first method uses the Multi-Objective GA (MOGA) [46,47] associ-
ated with adaptive mesh refinement technique while the second
method uses the MOGA coupled with a conventional mesh tech-
nique (uniform mesh). Both methods utilize an Euler flow analyzer
[48] and they are implemented to three practical CFD design prob-
lems. The first test case considers the reconstruction of transonic
airfoil design optimization. For the second test, one of important
aerodynamic challenges; airfoil design optimization for drag min-
imization subject to geometry constraint is considered. For the fi-
nal design test case a multi-objective transonic airfoil design
optimization with two constraints on geometry and aerodynamic
performance is conducted. In the first test case, both the MOGA
with adaptive and uniform mesh methods are validated by mini-
mizing the pressure error between a predefined pressure and can-
didate pressure distribution over an airfoil/wing operating at
transonic flight conditions. Through these single- and multi-objec-
tive test cases, the optimization performances of both MOGA with
adaptive and uniform mesh techniques are compared in terms of
solution quality and computational cost.

Numerical results obtained from the single- and multi-objective
design optimizations show the direct benefits of adaptive reme-
shing in the reduction of the total computational cost. Indeed, it
is observed that the best improvement of the optimal solution
using less computational cost is obtained when an adaptive reme-
shing technique is coupled with the optimum design strategy. The
paper will demonstrate how to reduce computational cost and how
to improve solution optimality using adaptive remeshing tech-
niques coupled to MOGA for solving complex design problems. It
is to clarify that the convergence rate is the matter of optimization
strategy and is not to be changed by using different mesh qualities.
For this reason, this paper does not aim to compare the conver-
gence rate of presented test cases.

The test cases presented in this paper have been selected taking
into account their simplicity in order to allow for clear conclusions
from their results. Clearly, they are rather academic test cases, but
the intention of the authors has never been to show the state of the
art capabilities of available optimization techniques. The complex-
ity of more realistic test cases could mask the benefits of integrat-
ing AMR techniques in the optimization process.

The rest of paper is organized as follows; Section 2 describes the
adaptive mesh refinement technique and MOGA. Section 3
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explains the aerodynamic analysis tool named PUMI and its valida-
tion. Section 4 conducts three real-world aerodynamic design opti-
mizations. Section 5 concludes overall numerical results and future
research avenues.
2. Methodology

2.1. Multi-Objective Genetic Algorithms (MOGAs)

For the MOGA, in-house software named Robust Multi-objec-
tive Optimization Platform (RMOP) is utilized. It is a distributed/
parallel computational intelligence framework which is a collec-
tion of population based algorithms including Genetic Algorithm
(GA) [14,15] and Particle Swarm Optimization (PSO) as shown in
Fig. 1. In this paper, a GA searching method in RMOP is used and
it is denoted as MOGA. MOGA uses a Pareto tournament selection
operator which ensures that the new individual is not dominated
by any other solutions in the tournament. RMOP is easily coupled
to any analysis tools such as CFD, Finite Element Analysis (FEA)
and/or Computer Aided Design (CAD) systems. Details of RMOP
and its engineering design applications can be found in Refs.
[46,47].

In this paper, MOGA is coupled with both a conventional mesh
technique and the advanced adaptive mesh refinement strategy
described in Section 2.2. In this research, the design variables are
encoded based on real numbers. The tournament selection without
replacement is selected here since it is efficient in programming. A
simple single-point crossover operator is utilized with an 80%
probability of combination, as the use of smaller values was ob-
served to deteriorate the GA performance. After the crossover,
non-uniform mutation is performed while the mutation probabil-
ity is set to 10%. Each generation consists of 20 individuals and
the termination criterion is predefined by the number of genera-
tion. In all the test cases, the initial population is created randomly.
For the constraint handling, the linear penalty method is used in
such a way that a weighted sum of the individual constraint viola-
tion is added to its fitness value if the constraint is not satisfied.
2.2. Adaptive remeshing strategy

This paper utilizes the error indicator E introduced by Löhner
[49] which is a combination of gradient based and curvature based
Fig. 1. Topology of robust multi-ob
error indicators coupling with the H-method as the refinement
strategy. This error indicator can be defined as Eq. (1)
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where the (.),k and (.),l denote the first-order derivative with respect
to kth and lth directions, respectively, corresponding to x, y and z
directions. cn is a constant depending on the discretization tech-
nique, Nj and Uj are the shape function and the flow variable,
respectively, corresponding to jth node. Therefore, the error matrix
E is obtained as
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It is assumed that the new element size hnew is proportional to old
element size hold by a factor called n which is defined as

n ¼ hnew

hold
ð4Þ

The improved error related to the new mesh has the form shown in
Eq. (5)
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kl

ð5Þ

Given the desired error indicator value Enew for the improved mesh,
the reduction factor n is given by
jective optimization platform.
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In 2D case, once nxx and nyy are obtained for each element, the min-
imum of these two values is replaced in Eq. (6) to calculate the new
element size. It is worth noting that in the current methodology
only a new element size is prescribed for each element and stretch-
ing is not considered. This value is assigned to the corresponding
element in the background mesh to generate a new one. By prede-
fining the minimum and maximum element sizes, the computed
element size is checked to be in this desirable range. If this condi-
tion is not satisfied, the minimum or maximum element size is
considered.

Based on the H-method for refinement strategy, an automatic
grid generator is needed to generate the new mesh using the infor-
mation obtained from the old mesh. The most robust one which is
implemented here uses the advancing front technique [37,50]. An
unstructured grid discretization using 3-noded elements with lin-
ear shape functions are considered here where the density is as-
sumed as the flow variable in Eq. (4). In this paper, given the
minimum/maximum element size, the constant coefficient cn and
the desired error Enew, several remeshing steps are performed every
predefined time steps of the solution process in order to guarantee
a fine mesh at the final step of the analysis. At each remeshing step,
in order to obtain the values of the unknown flow variables to be
used in the initial time step with the new mesh, these values are
interpolated from the previous one.

3. Aerodynamic analysis tool

3.1. Euler solver

In this paper, an Euler based aerodynamic analyzer named
PUMI [48] is utilized. Using Eulerian reference frame, and using
conservative variables, the equations can be written as

@U
@t
þ @Fk

@xk
¼ 0 for k ¼ 1;2;3 ð7Þ

where U is the vector of conservative variables and Fk is the vector
of convective flux along the kth direction.
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where dij is the Kronecker delta. The state vector contains the den-
sity, momentum ðUi ¼ quiÞ and total energy (internal plus external)
per unit volume of the fluid. Assuming that the fluid behaves like an
ideal gas, the expression for the total energy, enthalpy and equation
of states are

e¼q cvTþu2

2

� �
h¼ eþp¼q cpTþu2

2

� �
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After some calculations, the finite element approximation to the
equation set (10) is obtained asZ
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In Eq. (12), there are as many equations as unknowns; therefore the
system can be solved for the nodal values of the approximate solu-
tion by applying proper boundary conditions. The integrals in Eq.
(10) are evaluated using a Gauss quadrature. It is assumed that
the fluxes inside the elements can be interpolated from their nodal
values to increase the efficiency of the algorithm. This is equivalent
to use a Lobato quadrature for the fluxes and it does not affect the
final results significantly. It is the form of

Fk ¼ NjFkðxjÞ ¼ NjF
j
k ð11Þ

With this assumption, Eq. (10) can be transformed into Eq. (12)
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By defining M as the consistent finite element mass matrix and r as
the residual vector, the final equation set can be written as Eq. (13)
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For time integration, an explicit multi-stage Runge–Kutta scheme is
chosen in order to increase the allowable time step. More informa-
tion about the current CFD solver can be found in [48].
3.2. Validation of PUMI and adaptive remeshing

In this section one numerical example is presented to validate
PUMI software and also to illustrate the performance of the adap-
tive remeshing method. The mesh generation and mesh refinement
are carried out using the pre/post processing system named GiD
based on the advancing front technique.

For the validation of CFD analyzer; PUMI, NACA 0012 airfoil is
computed at transonic flight conditions of Mach number
M1 = 0.8 and an angle of attack a = 1.25�. PUMI iterates the phys-
ical model with predefined time-steps until a predefined density
residual is reached (herein 1 � 10�6). In this example, two meshing
strategies have been used as shown in Fig. 2. The first strategy has
consisted in using the uniform mesh (6554 nodes and 12,247 ele-
ments) shown in Fig. 2(a). The second strategy has consisted in
using a AMR procedure starting with an unstructured coarse mesh
consisting of 2084 nodes and 3970 elements as shown in Fig. 2(b).
Consecutive refinement levels are carried out every 200 time-
steps. Fig. 2(c) shows the final adapted mesh consisting of 8721
nodes and 17,245 elements. It can be seen that the adaptive refine-
ments are particularly applied where the shocks occur on the suc-
tion and pressure sides of airfoil, and the trailing and leading edges.
It is notable that the number of degrees of freedom corresponding
to the initial mesh and uniform fine mesh are maintained for each
candidate analysis during the analysis.

Fig. 3 compares Cp distributions obtained by PUMI coupled to
the uniform and the adapted meshes, and the AGARD solution
shown in Ref. [51] where it is validated by comparing results with
the wind tunnel data. It can be seen that numerical results ob-
tained by both uniform and adapted mesh are in good agreement
with AGARD however a better agreement can be found using the
adaptive remeshing method.

Fig. 4 compares Cp contours around NACA 0012 with the uni-
form and adapted meshes. Both techniques successfully capture
the strong shock wave on the suction side of the airfoil as well as
the weak shock on the pressure side of NACA 0012 airfoil. It is
noticed that the adaptive remeshing method can capture shock
waves not only on the surface of the airfoil but also in all over
the domain.



Fig. 2. Mesh conditions around NACA 0012; uniform mesh (a), the adaptive remeshing technique; initial mesh (b), adapted mesh (c).

Fig. 3. Cp distribution comparison.

Fig. 4. Cp contours of the uniform mesh (left) an
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4. Aerodynamic design optimization using MOGA coupled to
adaptive mesh refinement technique

In this section, two single-objective and one multi-objective
design optimizations are conducted using MOGA coupled with
both the uniform mesh and the adaptive remeshing approaches.
Both methods are validated by solving the first test case and then
they are implemented for two more practical test cases. Numerical
results obtained by both methods are compared in terms of
solution accuracy and computational cost to demonstrate the
advantages of adaptive mesh refinement coupled to MOGA.

4.1. Formulation of design problem

For the uniform mesh case, a fine mesh is applied to the analysis
of each candidate design whereas a relatively coarse mesh fol-
lowed by some remeshing steps is implemented for the adaptive
mesh refinement. As described in Section 3.3, the number of de-
grees of freedom corresponding to the uniform mesh is similar
d adapted mesh (right) around NACA 0012.



Fig. 5. The baseline mesh around NACA 0012 (a) and RAE 2822 (b).

Fig. 6. Upper and lower bound of design variables for NACA 0012 (top) and RAE 2822 (bottom) in comparison with the original ones and corresponding free and fixed control
points.

Fig. 7. Cp contours around NACA 0012.
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for all candidate designs during each optimization example. As
well, this idea is assumed for the number of degrees of freedom
corresponding to the coarse mesh. To make a fair comparison of
two methods, a fixed number of adaptive remeshing steps is ap-
plied to each design candidate to keep a computational cost almost
similar to the one for the uniform mesh. It is notable that the addi-
tional costs due to the element size calculation and grid regenera-
tion are also taken into account. Hence, the computational time per
generation for adaptive remeshing approach will be almost equal
to the one of uniform mesh test case.

A fine uniform mesh shown in Fig. 5 is used for the baseline de-
sign to compare the final results. A mesh independent study has
been carried out in several flight conditions in order to find an
appropriate mesh for the baseline design. The minimum element
size considered for the baseline mesh is 2.5 times finer than the
one implemented for the uniform mesh and for the adaptive reme-
shing. Indeed, it is dense enough in the vicinity of the airfoil to



Reduced computational 
cost (55%)

22% lower 
pressure error

Fig. 8. Convergence history for reconstruction design optimization using MOGA
coupled with uniform and adaptive remeshing approaches.

Table 1
Comparison of fitness function values obtained from adaptive remeshing and uniform
mesh test cases by eliminating the effect of mesh difference.

Mesh Type Adaptive remeshing Uniform mesh

Pressure error 0.0174 (�24%) 0.0230
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predict the results in an accurate manner. Fig. 5(a) exhibits the
baseline mesh on NACA 0012 consisting of 23,968 nodes and
47,006 elements and that one on RAE 2822 is shown in Fig. 5(b)
including 24,017 nodes and 47,091 elements.
Fig. 9. Comparison geometries obtained by the target and optimal air

Fig. 10. Mesh conditions around optimal airfoils; uniform
4.2. Parameterization for airfoil design

Bezier curves [52] are utilized to represent the geometry of the
airfoil as a linear combination of the Bezier polynomial. Given a set
of N + 1 control points, the corresponding Bezier curve is defined as

XðtÞ ¼
XN

i¼0

Bi;NðtÞRi Bi;N ¼
n

i

� �
tið1� tÞn�i ð14Þ

where t e [0, 1] denotes the curve parameter, Bi,N(t) are the Bezier
polynomials of order N and Ri are the coordinates of the control
points. The different smooth curves are created by changing these
control points.

The geometries of the airfoils used in this work (NACA 0012 and
RAE 2822) are represented using 24 control points as shown in
Fig. 6. To represent the airfoil geometry accurately, a bigger density
of control points is placed close to the zone where the airfoil curve
has a bigger curvature. The y coordinates of the control points are
considered as the design variables while fixing x coordinates. Two
control points, at the leading edge and the trailing edge, have fixed
values during the optimization to keep the chord length constant.
Also, two other control points near the leading edge are fixed to ob-
tain enough curvature in that zone. In total, 20 design variables are
considered for the optimization problems in Sections 4.3, 4.4 and
4.5.

Fig. 6 also shows the upper and lower bounds for the design
variables corresponding to both airfoils. This defines a wide range
of different geometries which are sufficient for the optimization.
4.3. Reconstruction design optimization of transonic airfoil

4.3.1. Problem definition
This test case considers a single-objective reconstruction design

of NACA 0012 using MOGA coupled with the uniform mesh and the
adaptive remeshing approaches at flow conditions M1 = 0.78 and
foils from the uniform mesh and adaptive remeshing approaches.

mesh test case (a) and adaptive mesh test case (b).
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a = 2.0�. The main objective is to minimize the pressure error be-
tween the target pressure coefficient C�p and the candidate one.
The fitness function uses the least square error of the pressure
shown in Eq. (15)

f ¼ 1
N

XN

i¼1

ðCp � C�pÞ
2 ð15Þ

where N represents the number of pressure points on the airfoil
(N = 200). As shown in Section 4.2, the y coordinate of the control
points around the airfoil are considered as the design variables.

Fig. 7 shows the target pressure contour obtained using the
baseline mesh around NACA 0012 shown in Fig. 5(a).
4.3.2. Interpretation of numerical results
Fig. 8 compares the convergence history for pressure error ob-

tained by MOGA coupled with the uniform mesh and the adaptive
remeshing approaches. Both test cases were allowed to run for
133 h and 400 generation using a single 4 � 2.8 GHz processor.
The uniform mesh approach achieves an optimal airfoil with pres-
sure error of 0.0273 after 222 generations (74 h). The adaptive
remeshing technique coupled with MOGA converged to the pres-
sure error of 0.0213 after 208 generation. This reflects that the
adaptive remeshing technique produces a 22% more optimum
solution. In addition, the adaptive remeshing technique captures
the converged value of the uniform mesh method after 99 genera-
tions (33 h) which is only 45% of uniform mesh computational cost.
In other words, the adaptive remeshing method saves 55% of the
computational cost of the uniform mesh approach. The main rea-
son that the adaptive remeshing method can produce a more im-
proved solution within low computational cost is that the final
adapted mesh conditions provide a better environment to simulate
flow phenomena when compared to the uniform mesh approach.

To make a fair comparison of the pressure error, the baseline
mesh conditions are constructed on each of the optimal airfoils ob-
tained by both methods. Table 1 compares the value of pressure er-
ror obtained by optimal airfoils from the uniform mesh and the
adaptive remeshing approaches. It can be seen that the optimal air-
foil of the adaptive remeshing method produces 24% lower pres-
sure error when compared to the optimal airfoil of the uniform
mesh method.

The geometries of the target airfoil and optimal airfoils obtained
by the uniform mesh and the adaptive remeshing approaches are
compared in Fig. 9. Even though both approaches can capture the
Fig. 11. Comparison of Cp distributions obtained by the target, and optimal airfoils
from uniform mesh and adaptive remeshing approaches.
target geometry, the adaptive remeshing technique produces a
geometry which has a better agreement to the target airfoil when
Fig. 12. Cp contours around the target airfoil (a), uniform mesh (b) and adaptive
remeshing (c) at Cp range of [�1.21:1.19].
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compared with the optimal airfoil from the uniform mesh
approach.
Fig. 13. Mach contours obtained by the target airfoil (a), uniform mesh (b) and
adaptive remeshing (c) at Mach range of [0.0:1.38].
Fig. 10(a) shows the generated mesh on the optimized airfoil
obtained from uniform mesh test case consisting of 6924 nodes
and 13,774 elements whereas that one obtained from adaptive
mesh test case is exhibited in Fig. 10(b) including 7161 nodes
and 14,139 elements.

Fig. 11 compares Cp distributions obtained for the target and
both optimal airfoils with the baseline mesh conditions. It can be
seen that both optimization approaches made a good agreement
to the target pressure distribution on the lower surface of the air-
foil while the adaptive remeshing technique produces a closer
pressure distribution to the target one on the upper surface.

The corresponding Cp contours and Mach contours obtained by
the target and both optimal airfoils are illustrated in Figs. 12 and
13 where there are a good agreement in both pressure and Mach.
It can also be found that there is a similar contour (minimum
and maximum) range to the target one.

4.4. Transonic airfoil design optimization for drag minimization

4.4.1. Problem definition
The test case considers a single-objective design problem for

drag minimization of RAE 2822 using MOGA coupled with the uni-
form mesh and the adaptive remeshing methods at the fixed flow
conditions M1 = 0.78 and a = 3.0�. The fitness function is to maxi-
mize the lift to drag ratio subjected to a geometry constraint as
shown in Eqs. (16) and (17).

f ¼ 1=ðL=DÞ ð16Þ
62% lower 
1/(L/D)

Reduced computational 
cost (95%)

Fig. 14. Convergence history for drag minimization.

Table 2
Comparison of fitness function values obtained from baseline RAE 2822, adaptive
remeshing and uniform mesh test cases.

Mesh type Baseline Adaptive remeshing Uniform mesh

1/(L/D) 0.04232 0.02221 (�48%) 0.02979 (�30%)

Table 3
Comparison of fitness function values obtained from baseline RAE 2822, adaptive
remeshing and uniform mesh test cases by eliminating the effect of mesh difference.

Mesh type Baseline Adaptive remeshing Uniform mesh

1/(L/D) 0.0439 0.0205 (�53%) 0.0242 (�45%)



Fig. 15. The comparison between the baseline RAE 2822, the adaptive remeshing and uniform mesh test case.

Table 4
Airfoil configuration of the baseline RAE 2822 and optimized airfoils using adaptive
remeshing and uniform mesh.

Mesh type Baseline Adaptive remeshing Uniform mesh

(t/c)max 12.11% (@ 37%) 12.14% (@ 37%) 12.48% (@ 37%)
cambermax 1.26% (@ 75%) 1.17% (@ 78%) 1.11% (@ 26%)
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subject to

ðt=cÞmax P 0:1211 ð17Þ

where L/D and t/c represent the lift to drag ratio and the thickness
ratio of the airfoil, respectively. As shown in Section 4.2, the y coor-
dinate of the control points around the airfoil are considered as the
design variables.

4.4.2. Interpretation of numerical results
As illustrated in Fig. 14, both MOGA coupled with the uniform

mesh and the adaptive remeshing techniques are allowed to run
for 150 generations (50 h) using a single 4 � 2.8 GHz processor.
The uniform mesh test case has converged to f = 0.02979 after
142 generations (47.3 h). This value is captured by the adaptive
remeshing approach after 8 generations (2.67 h). In other words,
the adaptive remeshing method improves the optimization effi-
ciency by 95% when compared with the adaptive remeshing
technique.

The fitness value resulted from the target design and the opti-
mal design obtained by the uniform and the adaptive methods
are compared in Table 2. Both optimal airfoils obtained by the uni-
form and the adaptive remeshing techniques improve significantly
the aerodynamic performance. It can be found that the adaptive
method improves the aerodynamic performance by 48% when
compared with the baseline design while an improvement of 30%
is resulted with the uniform mesh method. Since the shock wave
is captured accurately by using AMR technique, the calculated drag
and lift coefficients are more reliable. This causes that the adaptive
mesh test case provides a better quality solution in less computa-
tional cost.

To make a fair comparison, the objective function (1/(L/D)) is
recomputed by implementing the baseline mesh conditions to
both optimal airfoils obtained by the uniform and the adaptive
Fig. 16. Mesh conditions around optimal airfoils; uniform
remeshing approaches. The fitness value of the optimal airfoil from
the uniform mesh approach is 0.0242. This value is captured by the
optimal airfoil of the adaptive remeshing technique with the base-
line mesh conditions after 36 generations when the computational
cost is only 25% of the uniform mesh method. This shows that the
adaptive remeshing technique improves the efficiency of the opti-
mization by 75%.

The objective function corresponding to optimal airfoils ob-
tained by both approaches (using the baseline mesh conditions)
are compared in Table 3. It can be seen that the uniform mesh in-
creases the quality of the optimal airfoil by 45% in comparison with
the baseline design while an improvement of 53% is resulted by the
adaptive remeshing approach. Hence, it can be said that the adap-
tive remeshing approach improves the aerodynamic behavior a
32.7% compared with the uniform mesh approach.

The geometries of the baseline and both optimal airfoils ob-
tained by the uniform and the adaptive remeshing techniques
are compared as shown in Fig. 15. The effect of adaptive remeshing
on the optimal airfoil is distinctive in the lower surface as well as
the upper surface.

Table 4 compares the airfoil characteristics such as the maxi-
mum thickness and the maximum camber for the baseline design
and both optimal airfoils from the uniform and the adaptive reme-
shing techniques. Both optimal airfoils from the uniform and the
adaptive remeshing techniques have lower camber while
mesh test case (a) and adaptive mesh test case (b).



Fig. 18. Cp contours around the baseline airfoil (a), uniform mesh (b) and adaptive
remeshing (c) at Cp range of [�1.45:1.17].

Fig. 17. Cp distributions obtained by the baseline design, and optimal airfoils of the
uniform mesh and adaptive remeshing.
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maintaining similar thickness ratio when compared with the base-
line design.

Fig. 16(a) shows the generated mesh on the optimized airfoil
obtained from uniform mesh test case consisting of 6946 nodes
and 13,749 elements whereas that one obtained from adaptive
mesh test case is exhibited in Fig. 16(b) including 7161 nodes
and 14,239 elements.

The Cp distributions obtained by the baseline design, the uni-
form mesh and the adaptive remeshing techniques are compared
as shown in Fig. 17 using the baseline mesh for each one. It can
be seen that both test cases reduce the intensity of the shockwave
efficiently while the optimal airfoil obtained by the adaptive reme-
shing technique has a weaker shockwave when compared to the
uniform mesh optimal solution.

Figs. 18 and 19 compare Cp and Mach contours obtained by the
baseline design and both optimal airfoils obtained by the uniform
mesh and the adaptive remeshing approaches. It can be seen that
the strong shock wave on the upper surface of the baseline design
is getting weaker by optimizing airfoil geometry especially lower
camber (mentioned in Table 5). The drag minimization approach
has been successful to decrease the strength of the shock wave
on the upper surface of the baseline design.

4.5. Multi-objective airfoil design optimization

4.5.1. Problem definition
In this test case, a multi-objective transonic airfoil shape design

optimization problem is conducted to improve transonic aerody-
namic characteristics of NACA 0012, especially the lift to drag ratio
(L/D) and the lift coefficient (Cl). The fitness functions are defined
as shown in Eqs. (18) and (19) where L/D and Cl are maximized
to extend aircraft range and to improve its maneuverability,
respectively. The optimization has two constraints for geometry
(thickness ratio: t/c) and aerodynamic performance (Clmin). The
geometry constraint is to maintain the fuel tank size of aircraft
and the aerodynamic performance constraint is to have a level
flight at flight conditions of M1 = 0.75 and a = 3.0�. This example
involves minimization of two objective functions

f1 ¼ 1=ðL=DÞ ð18Þ

f2 ¼ 1=Cl ð19Þ

subject to
t=cmax P 0:12 ð20Þ

Cl P Cl1 ð21Þ

The lift coefficient constant Cl1 is calculated using Eq. (22) which
represents the minimum lift coefficient for the aircraft in level
flight.



Fig. 19. Mach number contours around the baseline airfoil (a), uniform mesh (b)
and adaptive remeshing (c) at Mach range of [0.0:1.43].

Table 5
The comparison of the aerodynamic coefficients for adaptive remeshing approach and
the baseline design NACA 0012.

Designs Cl Cd L/D

Baseline 0.5457 0.0279 19.57
Pareto M1 0.5540 (+1.52%) 0.0134 (�51.97%) 41.49 (+112.00%)
Pareto M25 0.6750 (+23.69%) 0.0214 (�23.29%) 31.55 (+61.21%)
Pareto M40 0.7313 (+34.01%) 0.0341 (+22.22%) 21.46 (+9.66%)

Fig. 20. Optimized Pareto fronts after 150 generations and baseline design.
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CL1 ¼ 2W=qV2S ð22Þ

where W is the weight force (m � g) of the aircraft: mass
m = 77,564 kg and acceleration of gravity g = 9.81 m/s2, q is the air
density at 35,000 ft: q = 0.41 kg/s3, S is the wing area:
S = 124.58 m2, V is the aircraft velocity: V = 255 m/s. The Eq. (22)
gives Cl1 = 0.45819. In this case, design parameters for NACA0012
defined in Sectiosn 4.2 are used. Twenty design variables for aero-
foil design are considered in total.

4.5.2. Interpretation of numerical results
Two optimization algorithms; MOGA coupled with uniform and

adaptive remeshing methods have run 50 h of computer time (150
generations). Fig. 20 compares the baseline design (NACA0012 air-
foil) and the Pareto fronts obtained by the uniform mesh and the
adaptive remeshing approaches. It can be seen that all Pareto
members obtained by both methods dominate the baseline design
and the Pareto front obtained by MOGA with the adaptive reme-
shing technique has a better convergence and divergence when
compared to the Pareto front obtained by MOGA coupled with
the uniform mesh. Even though the same MOGA is used for both
optimizations, the use of adaptive remeshing technique results in
speeding up the optimization process while in improving solution
accuracy. From the Pareto front obtained by MOGA with adaptive
remeshing techniques, the best solutions (Pareto members 1 and
40) for fitness functions 1 and 2, and one of compromised solutions
(Pareto member 25) are selected to have further comparisons.

Table 5 compares the aerodynamic characteristics obtained by
the baseline design, and by Pareto members 1, 25 and 40. The best
solution for the fitness function 1 (Pareto member 1) reduces the
total drag (Cd) by 51.97% while improving 112% of the lift to drag
ratio. The best solution for the fitness function 2 (Pareto member
40) produces 34.01% and 21.46% higher Cl and L/D. The compro-
mised solution (Pareto member 25) produces 23.69% higher Cl
and 23.29% lower Cd that results in 61.21% L/D improvement.

Fig. 21 compares the geometries obtained by the baseline de-
sign and Pareto members 1 (the best solution for f1), 25 (compro-
mised solution) and 40 (the best solution for f2). It can be seen that
Pareto optimal solutions 1, 25 and 40 have slightly higher camber



Fig. 21. Geometry comparison between the baseline NACA 0012 and optimal airfoils.

Table 6
Airfoil configuration of the baseline NACA 0012 and the optimized airfoils using
adaptive remeshing approach.

Baseline Pareto M1 Pareto M25 Pareto M40

(t/c)max 12.00%
(@30%)

12.03%
(@35%)

12.01% (@
33%)

12.08%
(@32%)

cambermax 0 0.43% (@71%) 0.78% (@67%) 1.11% (@56%)

Fig. 22. Cp distribution obtained from baseline design and compromised solution.

Fig. 23. Cp contours obtained by the baseline design (a) and
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compared to the baseline design. The geometric characteristics;
maximum thickness ration (t/c) and maximum camber, are com-
pared as shown in Table 6. It can be found that there is similarity
on the thickness ratio and its position due to the first geometry
constraint while the three solutions have different maximum cam-
bers and its positions. The main reason for this difference is that
each Pareto member corresponds to a different compromise be-
tween the two fitness functions. A separate minimization of each
of the fitness functions by solving a single optimization problem
would produce two different cambers and positions. Hence, each
combination of both fitness functions provided by each Pareto
member produces a different solution which is a combination be-
tween both single-optimization ones. The obtainment of airfoils
with non-zero values for maximum camber is in accordance with
this aerodynamics principle of cambered airfoils stating that the
increase of the camber improves aerodynamic properties of the air-
foil especially the lift coefficient. Indeed, it can be observed in Ta-
ble 6 that the greatest value for maximum camber is resulted for
the Pareto M40 which corresponds to the design giving maximum
Cl value. Furthermore, Table 6 demonstrates that the least value for
maximum camber is obtained for the Pareto M1 which corre-
sponds to the design giving maximum L/D value with the mini-
mum Cd value. This result affirms the behavior seen by transonic
and supersonic airfoils that lower camber reduces drag divergence
Mach number which consequently decreases the drag coefficient.

Figs. 22 and 23 compares the pressure (Cp) distributions and
contours obtained by the baseline design and compromised solu-
tion (Pareto member 25). It can be seen that the shock position
on the suction side of airfoil is moved towards the trailing edge
compromised solution (b) at Cp range of [�1.37:1.20].
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when compared to the baseline design while reducing the strength
of shock. It results in improving Cl and L/D by 23.69% and 61.21%
respectively.
5. Conclusion

In this paper, a methodology coupling MOGA and adaptive
remeshing approach is developed and it is implemented to three
practical aerodynamic shape design optimization problems in a
single- and multi-objective manner. From numerical studies, both
MOGA coupled to uniform mesh and adaptive remeshing ap-
proaches are validated through reconstruction/inverse test case
and they are implemented to solve two complex aerodynamic
shape design optimizations; drag minimization and multi-objec-
tive shape design. It is noticed that despite the same MOGA and
CFD analyzer, the use of adaptive remeshing approach accelerates
the optimization process while increasing the solution accuracy
when compared to the one with uniform mesh technique. Ongoing
research focuses on coupling MOGA, Navier–Stokes based CFD ana-
lyzer and adaptive remeshing techniques for 3D wing design and
implementation of Game theory in adaptive remeshing techniques
and its application for robust design optimization are considered
for future research avenues.
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