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Abstract

An edge-based implementation of an implicit, monolithic, finite element (FE) scheme for the solution of the

incompressible Navier–Stokes (NS) equations is presented. The original element formulation is based on the pressure

stability properties of an implicit second-order in time fractional step (FS) method, which is conditionally stable. The

final monolithic scheme preserves the second-order accuracy of the FS method, and is unconditionally stable. Fur-

thermore, it can be demonstrated that the final pressure stabilizing term is practically the same fourth-order pressure

term added by some authors (but following different arguments) to obtain high order accurate results, and that the final

discretized convective terms are formally a second-order discretization of the respective continuous one.

The development of the edge implementation is supported by two criteria: the properties of the element based one,

which has already been extensively tested and for which convergence and stability analysis has already been presented,

and on the enforcement of global conservation and symmetry at the discrete level. A monotonicity preserving term

which decreases the discretization order in sharp gradient regions to avoid localized oscillations (overshoots and

undershoots), is formulated and tested. Some numerical examples and experimental comparisons are presented.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Among the schemes developed over the last decade for the solution of the incompressible NS equations

(monolithic schemes [13,16], projection or fractional step (FS) schemes [3,8,18,20–22,25], artificial com-

pressibility (AC) [7,15,17,23,24,28], pre-conditioning of the compressible NS equations [6,34,35], etc.) the

FS schemes yield highly accurate, pressure-stable results by integrating in an explicit manner the advective

terms of the NS equations. However, the timestep imposed by the smallest elements may be orders of
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magnitude smaller than the timestep required to obtain time-accurate results. For many classes of prob-
lems, e.g. biological flows (blood and air flow) and environmental flows (contaminant release), this implies

tens of thousands of timesteps per simulation, rendering the schemes impractical. Most of the artificial

compressibility and pre-conditioned schemes suffer from the same shortcoming.

On the other hand, the monolithic schemes treat, in general, the advective term in an implicit manner,

which avoids these disadvantages. Nevertheless, these methods are very expensive from a computational

point of view: the velocity and pressure discrete equations are coupled. For this reason, an implicit

monolithic but uncoupled scheme was developed, which is unconditionally stable, and which preserves the

accuracy and stability of a second-order FS method [11,32].
This method was implemented using an element-based discretization, which involves a loop over the

elements, the computations of the element contributions (to the system matrix and to the force vector), and

the assembly of these to the global arrays. Such procedure implies the recalculation of the mass, Laplacian,

and gradient matrices in each iteration of each timestep, which is highly time consuming. In the imple-

mentation that is presented here, the mass, gradients, and Laplacian matrices are computed and stored only

once at the beginning of the run (or each time a remeshing is done). All the left-hand-side (LHS) and right-

hand-side (RHS) terms involved in the final algebraic system are computed by looping over the points of

the mesh, and then over the points connected to a given point. The storage of the final system of equations,
and of the different edge-based arrays (mass, Laplacian and gradients) is done by using a standard com-

pressed sparse row (CSR) format [29]. In this way, the computation of the different terms can be parallelized

in a straightforward manner, since the mesh edge ij is touched only when the loop over the points goes

through the point i (in this work the edge ji is different from the edge ij).
The rest of the paper is organized as follows: In Section 2 the standard element-based stabilized for-

mulation is briefly summarized. In Section 3 the edge-based implementation is presented, and some aspects

of its development are discussed. Section 4 is dedicated to show some 2D and 3D numerical examples, and

some comparisons with the element-based scheme. Finally, in Section 5 some conclusions are drawn.
2. Element-based scheme

The continuous incompressible NS equations to be solved can be written as:

ou

ot
þ ðu � rÞu� mDuþrp ¼ f in X� ð0; tf Þ; ð1Þ

r � u ¼ 0 in X� ð0; tf Þ ð2Þ
where X is the flow domain, t is the time variable, ð0; tf Þ the time interval for the simulation, u the velocity

field, r the gradient operator, m the kinematic viscosity, D the Laplacian operator, p the pressure and f the

external body forces (i.e. the gravity and the Boussinesq forces).
Let r be the viscous stress tensor and u the unit outward normal to the boundary oX. Denoting by an

overbar prescribed values, the boundary conditions for (2) to be considered here are:

u ¼ �u on Cdu; p ¼ �p and n � r ¼ �t on Cnu;

u � n ¼ �un; n � r � g1 ¼ t1 and n � r � g2 ¼ t2 on Cmu

ð3Þ

for t 2 ðt0; tf Þ. The boundary oX has been considered split into three sets of disjoint components Cdu, Cnu

and Cmu, the latter being the part where mixed conditions are prescribed (i.e. the normal velocity and the

tangent stresses). Vectors g1 and g2 (for the three-dimensional case) span the space tangent to Cmu. Finally,

Cdu and Cnu are the two disjoint components of oX where Dirichlet and Neumann boundary conditions for

the velocity are prescribed. Initial conditions have to be appended to problem (2) and (3).
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If the above equations are discretized in time using an implicit trapezoidal rule (h ¼ 1:0 backward-Euler
or h ¼ 0:5 Crank–Nicholson), in space using the orthogonal subscales stabilization (OSS) type scheme

presented in [12,14,32,33], and a Picard linearization to deal with the non-linear terms, the following

expression is obtained: Given unh, find ðunþ1
h ; pnþ1

h ; pnþ1
h ; nnþ1

h Þ in Vh � Qh � ~Vh � ~Vh such that

1

hdt
ðunþh;i

h � unh; vhÞ þ ðunþh;i�1
h � runþh;i

h ; vhÞ þ ðmrunþh;i
h ;rvhÞ � ðpnþ1;i�1

h ;r � vhÞ

þ ðsðunþh;i�1
h � runþh;i

h � bnþ1;i�1p
nþh;i�1
h Þ; unþh;i�1

h � rvhÞ
¼ ðf nþh; vhÞ þ ðrnþh;i�1 � u; vhÞCnu

; ð4Þ

dtðrpnþ1;i
h �rpnþ1;i�1

h ;rqhÞ þ ðsðrpnþ1;i
h � bnþ1;i�1nnþ1;i�1Þ;rqhÞ ¼ �ðr � unþ1;i

h ; qhÞ; ð5Þ

ðpnþh;i
h ;~vhÞ ¼ ðunþh;i

h � runþh;i
h ;~vhÞ; ð6Þ

ðnnþ1;i
h ;~vhÞ ¼ ðrpnþ1;i

h ;~vhÞ ð7Þ

8ðvh; qh;~vh;~vhÞ 2 Vh � Qh � ~Vh � ~Vh. The superscripts n and i stand for the timestep and for the iteration

counter into each timestep, respectively, the subscript h refers to the discrete problem, dt is the timestep size,

and b is the numerical switch given below (see Section 4). The functional spaces are the standard finite

element ones, and the functional form (Æ,Æ) is defined as:

ða; bÞ ¼
Z
X
a � bdX; ða; bÞC ¼

Z
C
a � bdC:

The intrinsic time s has been introduced into the discrete forms to indicate that it has to be computed

element by element. The stability and convergence analysis dictates that it must be computed as [2,9,16]:

s ¼ h2

4mþ 2jujh ; ð8Þ

where h and juj are the typical element size and velocity, respectively.

The scheme (4)–(7) is second-order accurate in time if a Crank–Nicholson time discretization is used, and

also in space if standard linear elements are employed (see [11,32]). The solution in each timestep is per-

formed using a staggered iterative scheme: First the non-symmetric discrete momentum equation (4) is

solved using a standard GMRES method with diagonal pre-conditioning. Then, the pressure equation (5) is

computed by using a conjugate gradient with incomplete LU pre-conditioning (CG-ILU) solver for iso-
tropic meshes, or a CG-Linelet solver for highly stretched grids (see [33] for details). The standard lumped

mass matrix is used for Eqs. (6) and (7).

The convective and pressure (incompressibility) stability is enforced by the fifth term of (4) and the

second term of (5) respectively. It may be noticed that the convective stabilizing term is the subtraction

between the classical SUPG term [4,25] and its projection onto the finite element space. In this sense, the

stabilizing term is the orthogonal projection of the classical SUPG term onto the finite element space,

which, with its Galerkin counterpart (second term of (4)), turns out to be a second-order streamline upwind

discretization of the original convective operator. This is easily corroborated by writing down the one-
dimensional stencil for the nodal point k of such terms (second and fifth terms of the LHS of Eq. (4)) on a

mesh of uniform size h using linear elements:

Lk ¼ 1
8
aðuk�2 � 8uk�1 þ 6uk þ ukþ2Þ ¼ a

duk
dx

þ h2

6

d3uk
dx3

þOðh3Þ; ð9Þ

where a is the advective velocity (unþh;i�1
h for the case of Eq. (4)).
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In the same way, the pressure stabilizing term (second term of Eq. (5)) is the orthogonal projection of the
pressure gradients onto the finite element space times the intrinsic time s. If, as was done for the convective
terms, the one-dimensional stencil of such a term is written down using a mesh of uniform size h, the
following expression is obtained:

Sk ¼
s
h

1

4
pk�2

�
� pk�1 þ

3

2
pk � pkþ1 þ

1

4
pkþ2

�
¼ s

h
3

12
h4

d4pk
dx4

þOðh6Þ: ð10Þ

Taking into account that s is proportional to h or h2 for convective or viscous dominated flows respectively

(see (8)), the pressure stabilizing term is at least of fourth-order. Exactly the same pressure stabilizing term

has been used by other authors, but following different arguments, to obtain highly accurate stable results

(i.e. see [19–21]).

In addition, it must be noted that when convergence is achieved in each timestep (when
unþh;i�1
h � runþh;i

h and pnþ1;i�1
h � pnþ1;i

h ) the first term of (5) has to be zero (or very close to), and the whole

system converges to the solution of a monolithic scheme. Hence, the only purpose to keep such a term

into the final scheme is for pre-conditioning the whole system (4)–(7), and, in such a way, to enforce the

convergence of the block iterative scheme. Extensive numerical experience indicates that if this term is

dropped, the system (4)–(7) becomes highly ill-conditioned, and, therefore, convergence is impossible to

achieve in most cases. The incorporation of the mentioned term in the final scheme was based on a

standard fractional step splitting of the original stabilized monolithic system, as was already presented in

detail in Refs. [11,32].
As a final remark, it is important to mention that the stability of the staggered and the monolithic

schemes is the same: the staggered scheme is deduced from an unconditionally stable implicit FS formu-

lation (see [11,32] for details). Moreover, our numerical experience indicates that for many problems the

uncoupled scheme allows the use of larger timesteps. This is not due to stability issues, but to the fact that

the coupled system (velocity–pressure) becomes very stiff for large timesteps (Courant numbers around 10

for some cases). Therefore, the iterative solver used to obtain the solution of the discrete monolithic system

of equations (pre-conditioned GMRES) stalls very often. On the other hand, different types of solvers can

be used for the different set of equations if they are uncoupled. Such a feature allows to take advantage of
the intrinsic character of each system. For example, a pre-conditioned GMRES solver is highly suitable for

the unsymmetric hyperbolic momentum equations, and a CG-ILU or CG-Linelet for the symmetric elliptic

continuity (pressure) equations.
3. Edge-based implementation

The element-based implementation has been tested in numerous complex applications obtaining accu-
rate results [5,14,31–33]. For most real cases the global matrix of the systems (LHS) and its global force

vectors (RHS) has to be re-computed in each iteration of each time step due to the non-linearity of the

convective and stabilization terms. If a standard element implementation is used, most of the discrete terms

have to be re-computed by looping across the elements, doing the required numerical integrations, doing

numerous gather and scatter operations, and doing many redundancies of information in the element data

structure [19]. This can be highly demanding in terms of cpu-time: the flops overhead ratio between an

element-based implementation and an edge-based one is approximately 2.5 [19]. In addition, a standard

shared-memory parallelization of the elemental loop is complicated, since the contributions to the term ij of
the different matrices come from more than one element. Then, some type of coloring algorithm must be

implemented to enforce that the edge ij is not accessed by elements in different processors at the same time

[19].
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On the other hand, in an edge-based implementation most of the discrete terms, and all the numerical
integrations, are computed at the beginning ot the run, and only a few operations must be implemented to

re-compute the different LHS and RHS non-linear terms. Furthermore, the scatter operations are elimi-

nated, and, because of the type of implementation presented in this work, the parallelization is straight-

forward: two nested loops are performed, the main loop (which is the one to parallelize) is made over the

mesh points i, and the inner one is made over the points surrounding the point i (the edges connected to

point i). The contributions of the edge ij are computed only when the nodal point i is accessed, and,

therefore no coloring algorithm is required. In this work the edge ji (accessed only for the nodal point j) is
considered different from the edge ij. However, as will be shown later, the symmetry of the Laplacian-like
terms is preserved.

In an edge-based implementation, the idea is to express all the contributions in terms ofZ
X
NiNj dX;

Z
X
olNiokNj dX;

Z
X
NiolNj dX and

Z
X
olNiNj dX ð11Þ

for i; j ¼ 1; . . . ; npts and l; k ¼ 1; . . . ; ndof . Hereafter npts is the number of nodal points of the computational
mesh, ndof the number of degrees of freedom per nodal point (three momentum components for 3D cases), l
and k refer to the Cartesian components l and k of a vector or tensor field, i and j to the nodal points i and
j, and the integrals (11) will be referred as the Mass ðMÞ, the Laplacian ðLÞ, the Gradient ðGÞ, and the

transposed Gradient ðGTÞ matrix, respectively. For fixed domains, all the integrals in (11) can be computed

at the beginning of the run, and stored in a standard CSR format. In the above terms, Ni is the standard

shape or test function associated to the nodal point i, and olNi ¼ oNi=oxl. It is important to remark that for

interior points (points that are not boundary points of the mesh),
R
X NiolNj dX ¼ �

R
X olNiNj. Some authors

use such a property to save computer memory [19], However, to simplify the implementation and parall-
elization of the code, and taking into account that computer memory at present is very cheap, in this work

both matrices are stored. Another side effect of doing this, is the reduction of the cache misses, which

implies an important reduction of the cpu time.

In the following subsections we show the different hypotheses and assumptions that have to be done to

compute the different terms of (4)–(7), using only the integrals presented in (11).

3.1. Viscous term

The classical viscous Galerkin term (third term of (4)), is linear for constant viscosity problems. Hence,

its computation using the standard Laplacian matrix (second integral of (11)) is straightforward, and does

not involve any approximation. For variable viscosity problems, i.e. turbulent problems, temperature or

pressure dependent viscosity, etc., some approximations have to be done. In this work the following two

properties, which automatically hold for element-based implementations, are enforced at discrete level:

conservation and symmetry.

The conservation property has to be verified at discrete level not only for the viscous term, but also for

all the stationary terms of (4)–(7). This can be expressed by writing the system of Eq. (4) as:

1

hdt
MðUnþh �UnÞ þ CUnþh ¼ F; ð12Þ

where U is the array of nodal velocities for the whole mesh, C contains all the stationary contributions to

the global system matrix (LHS), and F is the force vector (gravity, Boussinesq, etc.). Then, the conservation

property can be expressed at discrete level as:

Xnpts
j¼1

Xndof
k¼1

Cli;kj

 !
¼ 0 ð13Þ
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for i ¼ 1; . . . ; npts and l ¼ 1; . . . ; ndof . Cli;kj is the row entry li and the column kj of the matrix C . Basically

(13) implies that the sum of any row li of C has to be zero. This property enforces the right balance of

momentum (i.e. no momentum is created by the numerical scheme). A consequence of this is that a constant

solution remains constant across time if no source term is present.

The other important property that must be fulfilled by the viscous term, and that also automatically

holds for element-based implementations, is the symmetry (viscous term Cm
li;kj ¼ Cm

kj;li 8li; kj). From a

physics point of view, it means that the diffusive transport from the point i to the point j is equal to the

diffusive transport from the point j to the point i. This is a very important property for Stokes problems
(when the convective term can be neglected), because it allows to use cheap symmetric solvers (i.e. conjugate

gradient) to deal with the final system of equations. The symmetry is enforced at the discrete level, by

computing the viscous contributions as:

Cm
li;lj �

1

2
ðmi þ mjÞ

Xndof
l¼1

Z
X
olNiolNj dX; ð14Þ

where mi refers to the viscosity evaluated at nodal point i. Note that if the viscosity is not constant, the

conservation property (13) could be violated by (14). This shortcoming is avoided by calculating only the

non-diagonal terms Cm
li;lj, and by computing the diagonal one as the subtraction of the same-row non-

diagonal terms:

Cm
li;li ¼ �

X
kj 6¼li

Cm
li;kj; ð15Þ

li and kj ¼ 1; . . . ; ndof � npts. Then, conservation (13) is enforced at discrete level. Eq. (15) can be re-

interpreted as choosing a viscosity for the coefficient Cm
li;li that fulfills the conservation property. This is

going to be the standard procedure in this work to enforce Eq. (13) for the rest of the stationary terms

(Galerkin and stabilization terms).

3.2. Pressure Galerkin term

The pressure term in (4) is computed with the nodal pressures at the last iteration using the Gradient

matrix G, and is placed at the RHS as:

F p
li ¼ �Gl;ijpj ¼

X
j 6¼i

Z
X
NiolNj dX ðpi � pjÞ: ð16Þ

Note that (16) exactly fulfills the conservation property (13). The ‘‘diagonal’’ term is automatically com-

puted as the subtraction of the same-row non-diagonal ones.

3.3. Convective Galerkin term

The ðli; ljÞ contribution of the convective Galerkin term (second term of (4)), is computed in an element-

based implementation as:

Cc
li;lj ¼

Xndof
k¼1

Z
X
NiakokNj dX; ð17Þ

where ak is the k component of the advective velocity (a ¼ unþh;i�1
h in (4)). At this point some approximation

must be done to express (17) using the pre-computed Gradient matrix G . This may be done by calculating
Cc

li;lj as:
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Cc
li;lj �

Xndof
k¼1

ak;ij

Z
X
NiokNj dX; ð18Þ

where ak;ij is the k component of the advective velocity associated with the edge ij. The first idea is to follow

the same procedure used for the viscous term, i.e. taking aij as the average velocity of nodal points i and j,
and enforcing the conservation property by computing the diagonal as the subtraction of the same-row

non-diagonal terms. However, this procedure would destroy the second-order Galerkin, or central differ-

ence, approximation of the convective term (assuming that linear elements are used). Such a second-order
approximation is reflected at discrete level by the fact that Cc

li;li ¼ 0 for the interior nodal points. Something

that naturally arises in a standard finite element approximation using linear elements (or in finite differences

using a central scheme).

The only way to fulfill the second-order discretization condition is to take aij as a function of only the

nodal point iðaij ¼ ai). In this case it is easy to verify for the interior points that

Cc
li;li ¼ �

X
kj 6¼li

ak;i

Z
X
NiokNj ¼ 0; ð19Þ

implying that the approximation is of second-order, and the conservation property (13) holds. Now the

question is how to compute ai. The first choice is the velocity at nodal point i, ui. However, in this work the

following average has been implemented for the interior points:

ak;i ¼
mijuk;jP
j 6¼i mijuk;j

8j 6¼ i; ð20Þ

where ak;i is the k component of ai, mij is the term ij of the consistent mass matrix (see (11)), and uk;j is the k
component of the velocity at nodal point j. Note that the computation only has to be done over the points j
connected to i (mij ¼ 0 if i is not connected to j).

For the boundary points, the same Eq. (20) is used, but including the nodal point i into the weighted

average:

ak;i ¼
mijuk;jPnpts
j¼1 mijuk;j

8j: ð21Þ

Numerical experience indicates that Eqs. (20) and (21) for the advective velocity associated with the nodal

point i produce a better convergence rate and more accurate results than taking only ai ¼ ui. Moreover, it

can be checked that given a discrete velocity field u, the convective RHS obtained using a standard element-

based implementation

f element
li ¼

Xnpts
j¼1

Xndof
k¼1

Z
X
NiukokNj dXulj

 !
; ð22Þ

is much better approximated by using Eqs. (20) and (21) for the advective velocity than ai ¼ ui. In addition,

it is important to remark that (20) and (21) naturally arise from a central finite difference (or central finite

volume) discretization of the convective NS term.
3.4. Convective stabilization terms

The high order SUPG term of the momentum equation (last LHS term of (4)) can be expressed in two

parts: The low order one given by
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Clow
li;lj ¼

Z
X
s
Xndof
k¼1

ðakokNiÞ
Xndof
m¼1

ðamomNjÞdX ð23Þ

and the projection, or high order term, which is placed at the RHS as:

F high
li ¼

Xnpts
j¼1

Z
X
s
Xndof
k¼1

ðakokNiÞNj dXplj

 !
: ð24Þ

In order to express (23) and (24) in terms of the integrals (11), two approximations have to be realized: The

advective velocity a and the intrinsic time s must be taken out of the integrals.

For the advective velocity the natural choice is given by (20) and (21). This is not only consistent with its

Galerkin convective counterpart, but also approximates in a closer way the element-based terms. In the

same way, the intrinsic time s is evaluated at nodal point i as:

si ¼
h2i

4mi þ 2jaijhi
; ð25Þ

where hi is the minimum length of all the edges surrounding the nodal point i. The dependence of s only on

the nodal point i is required for consistency reasons: if s depends also on node j, exact nodal values of the
velocity would not satisfy the discrete equations [10]. The reason is that the sum over j would not produce

the convective term if the partial derivatives of Nj are multiplied by a factor that depends on node j. This
can be clarified by writing the edge-based terms times the velocity vector for the equation li:

Clow
li;lj ulj �

Xndof
k;m¼1

siak;iam;i

Z
X
okNiomNj dXulj: ð26Þ

Note that if a or s depend on j, the convective term amomNjulj would not be recovered: Each contribution

would be multiplied by a different factor. The low order SUPG terms are computed as:

Clow
li;lj �

Xndof
k;m¼1

siak;iam;i

Z
X
okNiomNj dX ð27Þ

for the non-diagonal terms i 6¼ j, and, following the same procedure as for the viscous Galerkin term, the

diagonal is calculated by enforcing the conservation at discrete level:

Clow
li;li ¼ �

X
kj 6¼li

Clow
li;kj: ð28Þ

The high order terms (24) are also calculated by enforcing the conservation property at the discrete level

using si and ai, and the transposed Gradient matrix GT:

F high
li ¼ �si

X
j 6¼i

Xndof
k¼1

Z
X
okNiNj dX ðplj

 
� pliÞ

!
: ð29Þ

Finally, the projection of the convective term p is computed using an approximation to (6), and, again,

enforcing the conservation property:

ml
iipli ¼

X
j 6¼i

Xndof
k¼1

ak;i

Z
X
NiokNj dX ðulj

 
� uliÞ

!
; ð30Þ

where ml
ii is the component ii of the standard lumped mass matrix.
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3.5. Incompressibility equation

The discrete terms of (5) are approximated following similar procedures than those presented above. The

LHS Laplacian terms (part of the first and of the third term of Eq. (5)) are approximated as follows:

Li;j ¼
Xndof
l¼1

Z
X
ðdt þ sÞolNiolNj dX � ðdt þ sijÞ

Xndof
l¼1

Z
X
olNiolNj dX ð31Þ

8j 6¼ i, and the diagonal term is computed, again, by enforcing the conservation property (13). This is:

Li;i ¼ �
X
j 6¼i

Li;j: ð32Þ

The intrinsic time sij is taken as:

sij ¼
hi þ hj

4ðmi þ mjÞ þ 2ðjaij þ jajjÞ
; ð33Þ

where hi is the minimum length of the edges surrounding the nodal point i. Note that even though the term

L is conservative (the conservation is enforced at the discrete level), it is not consistent in the sense ex-

pressed above for the low order stabilizing convective term. This is, s depends on nodal point j, and,
therefore, exact nodal values of the pressure would not satisfy the discrete equation. The consistency could
be held by making s only depending on the nodal point i. However, this procedure would destroy the

symmetry of the system (5). In addition, it has been demonstrated that the pressure stabilizing terms are

formally of fourth-order (see Section 2), which means that their effect in the final accuracy is very small. The

choice was made: To preserve symmetry and conservation at the price of losing some consistency.

The approximation of the high order stabilizing term (the other part of the second term of (5)), is carried

out by imposing the global conservation at the discrete level as:

F p
i ¼

X
j6¼i

sij
Xndof
l¼1

Z
X
olNiNj dX ðnlj

 
� nliÞ

!
ð34Þ

and the projection of the pressure gradients onto the finite element space computed using (7) as:

ml
iinli ¼

X
j 6¼i

Z
X
NiolNj dX ðpj � piÞ; ð35Þ

where the global conservation is imposed, and a lumped approximation to M is again used.

The computation of the last LHS term �dtðrpnþ1;i�1
h ;rqhÞ is straightforward and no approximations

have to be done. This is expressed as �dt
Pndof

l¼1

R
X olNiolNj dX ðpj � piÞ (the sub/superscripts has been

omitted for simplicity).

Finally, the divergence term (last term of (5)) is computed as:

F div
i ¼ �

X
j 6¼i

Xndof
l¼1

Z
X
NiolNj dX ðulj

 
� uliÞ

!
: ð36Þ

Again, the conservation has been enforced at the discrete level.
Remark 1. Note that for all the stationary terms, only the off-diagonal contributions have to be computed.

The main loop to compute the terms goes over the nodal points, and then over the points surrounding the

nodal point (taking advantage of the CSR storage). The LHS diagonal entrances are computed later in a
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second loop by using the conservation property (13). In a standard edge-based implementation [19], the

conservation property is reflected by the fact that whatever is added to a point of the edge, is subtracted

from the other.

Remark 2. The temporal terms in the momentum equation are assembled after C is constructed (see (12)).

The consistent Mass matrix or its Lumped approximation can be used. In general, the first one is utilized by

the authors to obtain time accurate results, and the second one for steady-state solutions.
4. Monotonicity preserving term

The high order formulation presented in (4)–(7) could not avoid localized oscillations (overshoots and

undershoots) which deteriorate the convergence of the formulation. Even though most numerical problems

that have been solved to date have not presented such anomalies, a type of non-linear numerical switch had

to be designed for some of them to avoid local spurious oscillations.

The idea is to identify the flow regions with strong pressure gradients by the difference between the
pressure term and its projection. Then, at each iteration, a variable b is computed at the edge ij as:

b ¼ 1� jpi � pjj þ 0:5lk;ijðnk;i þ nk;jÞ
jpi � pjj þ j0:5lk;ijðnk;i þ nk;jÞj

; ð37Þ

where pi is the pressure at nodal point i, lk;ij ¼ xk;i � xk;j is the dimension of the edge ij in the k direction, and
nk;i is the k component of the projected pressure gradient at nodal point i. It is straightforward to see that

06 b6 1, taking values close to 1 where the pressure field is smooth, and close to 0 in flow regions with

sharp pressure gradients. A numerical switch to decrease the discretization order in such sharp gradient
regions, is obtained by multiplying the high order SUPG and pressure stabilizing terms by b (see (4) and

(5)). It is important to remark, that a very similar pressure sensor is utilized by some authors, to avoid

expensive limiting procedures when Riemann solvers are used to deal with convection dominated flows (see

[19] for details).
5. Numerical examples

5.1. Backward-facing step

The first example considered is the laminar backward-facing step at different Re numbers. It was per-

formed to verify the effectiveness of the edge-based formulation (4)–(7) to deal with NS steady-state
problems at low and high Re. The problem geometry and mesh is shown in Fig. 1. The aspect ratio of the

backward-facing step H to the overall sectional width is 1:2 and the total length in the horizontal direction

is 40 H. A fully developed parabolic velocity profile is prescribed at the inflow boundary. At the outflow,

the pressure and the viscous stresses were set to zero. The mesh is composed of 16,472 linear triangles and

8542 nodal points.

According to Armaly et al. [1], the Re number will be based on the average value of the inlet velocity

profile and the cross-sectional width of the whole domain. For Re < 500, only one re-circulation zone exists

behind the step. For higher values of Re, another re-circulation zone appears at the top wall of the channel.
Experimental results indicate that a third re-circulation zone appears at the bottom of the wall for values of

Re > 1000.



Fig. 1. From top to bottom: Mesh of 16,472 linear elements and 8542 nodal points. Streamline pattern. Pressure contours; peaks

()1.012· 10�1, 3.067· 10�4).
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The numerical results using the edge-based implementation agree very well for Re < 600 with those that

can be found in the above mentioned reference. For brevity, they have not been included here, and only
those for Re ¼ 1000 are included. In Fig. 1 the streamline pattern is presented. The length of the vortex

behind the step is approximately 13.0. The experimental result is 14.3. Taking into account that some

discrepancies should be expected due to the three-dimensionality of the experimental flow at this Re
number, the results are good. In Fig. 1 the pressure field is presented. Note that there are no pressure

reflections at the outflow: The pressure gradient is parallel to the horizontal direction. Finally, it is

important to mention that the same results were obtained with the element-based code, but using almost

three times more cpu-time than with the edge-based code.
Fig. 2. From top to bottom: Mesh of 369,713 linear elements 68,491 nodal points and velocity field. Pressure contours; peaks

()4.205· 10�1, 3.804·10�1).
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5.2. NACA0012 wing

This example was performed to see if the edge-based formulation could deal with incompressible Euler

flows in 3D geometries. The volumetric mesh consisted of 369,713 elements and 68,491 nodes. The angle of

attack of the flow was fixed at a value of five degrees, the velocity field was prescribed at the inflow, and the

pressures were set to zero at the outflow boundaries.

In Fig. 2 some results using the edge-based formulation are presented. It can be observed that they are

free of spurious oscillations. The cpu-time to decrease the L2 residual norm five-orders of magnitude on an
Pentium Intel386 processor at 1.0 GHz was about 6000 s. The cpu-time ratio between the element-based

code and the edge was around 3. The main difference was found in the computation of the global LHS and

RHS coefficients. The element-based scheme spent almost seven times more cpu-time in such operations

than the edge-based one.

5.3. Air flow through the respiratory ways

This transient real 3D case consisted of computing the air flow through a portion of the respiratory ways
(mesh of 992,354 linear tetrahedra and 184,395 points). The timestep size used for the implicit scheme was

of 0.0625 s, which corresponds to 64 timesteps per respiratory cycle. This problem was also computed with

an explicit second-order accurate fractional step (FS) edge-based code. The timestep size that had to be

used for such a solver was at least three-orders of magnitude smaller than the timestep used for the implicit

method. Therefore, the implicit scheme was about 10 times faster than the explicit one, and the numerical

results were practically the same. In addition, the important flow features were captured in an accurate

manner, as can be observed in Fig. 3.
Fig. 3. Global pressure drops, pressure and velocity details in the stenosis region. Note the reversal in the pressure drop and velocities

from inspiration to expiration. From top to bottom: t ¼ 1:0 s and t ¼ 3:0 s.
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6. Ship topside flow study

The purpose of this example is to compare the numerical results of the edge-based formulation with

experimental data on a real 3D problem. The geometry of the ship (LPD17) is illustrated in Fig. 4 (top left).

The dimensions are: 200 m in length, 30 m in width, and 50 m in height above the waterline. The com-

putational mesh consisted of 5,640,000 tetrahedra and 990,000 points.

The inflow condition was set to uniform flow with a velocity of 30 knots (15.43 m/s) assuming maximum

ship speed. The inflow was in the x direction. The timestep was taken to 0.01 s, the density to 1.225 kg/m3,
and the viscosity to 1.789 · 10�5 kg/m/s. The Reynolds number based on the height of the ship is 5 ·107. The
flow is in the turbulent regime for this Reynolds number. Hence a LES simulation was performed with the

Smagorinsky turbulence model described in [30]. The logarithmic wall law was used for the boundary

condition, and the pressure was set to the hydrostatic pressure at the outflow.

In the first part of the run, a pseudo steady flow was established. After this state was reached, the flow

was integrated for 90 s of real time. Buoyancy effects were considered in the simulation using the Bous-

sinesq’s approximation.
Fig. 4. From top to bottom and left to right: LPD17 geometry. Position of station data time histories: side view of the flight deck;

experimental measurements were obtained at lines (1), (2), and (3). Ribbons colored with the velocity absolute value.
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Some instantaneous streamlines of the flow (ribbons) are shown in Fig. 4. This technique helps to
capture the areas with re-circulation. Fig. 4 (bottom left) shows a large re-circulation above the landing

deck. Fig. 4 (bottom right) shows a particularly interesting feature: The ribbons indicate a pronounced

crossflow from port to starboard near the middle of the ship.

Experimental velocity data from wind tunnel LDV measurements was available at the positions shown in

Fig. 4 (top right). The experimental velocities were averaged and compared with averaged numerical data

over a period of 90 s. Figs. 5–7 show the comparisons. The plotted velocities are in the x direction (u), in the y
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Fig. 5. From left to right: LPD17 u average velocity (1), v average velocity (2), w average velocity (3).
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Fig. 6. From left to right: LPD17 u average velocity (1), v average velocity (2), w average velocity (3).
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direction (v), and in the z direction (w). The crosses are the experimental data, the stars are the average of the
numerical results, and the dash-dotted lines are the standard deviation of the numerical results. The

numerical results agree fairly well with the experimental data for most of the plots. The numerical velocity in

the x direction in the line station (2) (see Fig. 6) shows a significant deviation from the experimental data at

the center positions. One possible explanation is the lack of resolution of the experimental instruments. This

was also seen in earlier computations [26,27]. Experimental errors were not provided for the LDV data.
7. Conclusions

An implicit second-order accurate monolithic edge-based scheme was presented to solve incompressible

flow problems. It was developed from an element-based formulation, which has already been extensively

tested. The main difference between the element-based and the edge-based formulation is the speed to

construct the terms of the final LHS and RHS system. The edge-based solver does less operations than the

element one, which implies an important reduction in the total CPU time.

Other ingredients of the formulation are: The incompressible and convective terms are stabilized using

an OSS scheme. For the incompressibility equation, it was demonstrated that such methods reduce to the
same fourth-order pressure term added by some authors to obtain high order accurate results. For the

convective term, it was shown that the OSS stabilization is nothing but a second-order approximation of

the respective convective operator. The numerical experience indicates that the formulation is very efficient

for all Reynolds numbers, and that its time accuracy is excellent. Such scheme seems to be very efficient for

transient cases, when the critical timestep of the problem is orders of magnitude smaller than the timestep

required to obtain time-accurate results (physical timestep).
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